特許第6803452号(P6803452)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日本碍子株式会社の特許一覧

<>
  • 特許6803452-電気化学セル 図000003
  • 特許6803452-電気化学セル 図000004
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6803452
(24)【登録日】2020年12月2日
(45)【発行日】2020年12月23日
(54)【発明の名称】電気化学セル
(51)【国際特許分類】
   H01M 8/1016 20160101AFI20201214BHJP
   H01M 12/08 20060101ALI20201214BHJP
   H01M 10/30 20060101ALI20201214BHJP
   C25B 9/10 20060101ALI20201214BHJP
【FI】
   H01M8/1016
   H01M12/08 K
   H01M10/30 Z
   C25B9/10
【請求項の数】7
【全頁数】19
(21)【出願番号】特願2019-226700(P2019-226700)
(22)【出願日】2019年12月16日
(65)【公開番号】特開2020-98780(P2020-98780A)
(43)【公開日】2020年6月25日
【審査請求日】2019年12月17日
(31)【優先権主張番号】特願2018-235736(P2018-235736)
(32)【優先日】2018年12月17日
(33)【優先権主張国】JP
【早期審査対象出願】
(73)【特許権者】
【識別番号】000004064
【氏名又は名称】日本碍子株式会社
(74)【代理人】
【識別番号】110000202
【氏名又は名称】新樹グローバル・アイピー特許業務法人
(72)【発明者】
【氏名】菅 博史
(72)【発明者】
【氏名】中村 俊之
(72)【発明者】
【氏名】岡田 陽平
(72)【発明者】
【氏名】大森 誠
【審査官】 渡部 朋也
(56)【参考文献】
【文献】 特開2013−191523(JP,A)
【文献】 国際公開第2016/167030(WO,A1)
【文献】 特開2014−011000(JP,A)
【文献】 特開2018−106882(JP,A)
【文献】 特開2013−120727(JP,A)
【文献】 国際公開第2017/221531(WO,A1)
【文献】 特開2010−113889(JP,A)
【文献】 特表2004−511072(JP,A)
【文献】 特開平11−73982(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01M 8/1016
C25B 9/10
H01M 10/30
H01M 12/08
(57)【特許請求の範囲】
【請求項1】
カソードと、
アノードと、
前記カソードと前記アノードとの間に配置され、水酸化物イオン伝導性を有する電解質と、
を備え、
前記電解質は、Ni、Mn及びAlを含む層状複水酸化物、又は、Ni、Al及びTiを含む層状複水酸化物によって構成される無機固体電解質体を含む、
電気化学セルの作動温度において、pH値6における前記電解質の水酸化物イオン伝導度は、pH値13.5における前記電解質の水酸化物イオン伝導度の0.40倍以下である、
電気化学セル。
【請求項2】
カソードと、
アノードと、
前記カソードと前記アノードとの間に配置され、水酸化物イオン伝導性を有する電解質と、
前記カソードと前記電解質との間、及び/又は、前記アノードと前記電解質との間に配置されるTiOと、
を備え、
電気化学セルの作動温度において、pH値6における前記電解質の水酸化物イオン伝導度は、pH値13.5における前記電解質の水酸化物イオン伝導度の0.40倍以下である、
電気化学セル。
【請求項3】
前記作動温度において、pH値6における前記電解質の水酸化物イオン伝導度は、pH値13.5における前記電解質の水酸化物イオン伝導度の0.10倍以下である、
請求項1又は2に記載の電気化学セル。
【請求項4】
カソードと、
アノードと、
前記カソードと前記アノードとの間に配置され、水酸化物イオン伝導性を有する電解質と、
を備え、
前記電解質は、Ni、Mn及びAlを含む層状複水酸化物、又は、Ni、Al及びTiを含む層状複水酸化物によって構成される無機固体電解質体を含む、
電気化学セルの作動温度において、pH値6における前記電解質の水酸化物イオン伝導度は、pH値8.2における前記電解質の水酸化物イオン伝導度の0.80倍以下である、
電気化学セル。
【請求項5】
カソードと、
アノードと、
前記カソードと前記アノードとの間に配置され、水酸化物イオン伝導性を有する電解質と、
前記カソードと前記電解質との間、及び/又は、前記アノードと前記電解質との間に配置されるTiOと、
を備え、
電気化学セルの作動温度において、pH値6における前記電解質の水酸化物イオン伝導度は、pH値8.2における前記電解質の水酸化物イオン伝導度の0.80倍以下である、
電気化学セル。
【請求項6】
前記作動温度において、pH値6における前記電解質の水酸化物イオン伝導度は、pH値8.2における前記電解質の水酸化物イオン伝導度の0.70倍以下である、
請求項4又は5に記載の電気化学セル。
【請求項7】
前記電解質は、連続孔を形成する多孔質基材を含み
前記無機固体電解質体は、前記連続孔内に配置される、
請求項1又は4に記載の電気化学セル。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電気化学セルに関する。
【背景技術】
【0002】
電気化学セルの一種である亜鉛空気二次電池は、亜鉛をアノードに使用し、空気極をカソードに使用する電池である(例えば、特許文献1参照)。亜鉛空気二次電池では、電解質として水酸化カリウム水溶液等のアルカリ水溶液が用いられ、水酸化物イオン伝導性を有する電解質体(セパレータ)がアノード/カソード間に設けられる。
【0003】
亜鉛空気二次電池における電池反応は、次の式のとおりである。
【0004】
・アノード: Zn+2OH → ZnO+HO+2e
・カソード: 1/2O+HO+2e → 2OH
【0005】
また、電気化学セルの一種であるアルカリ形燃料電池は、Pt、Ni、Co、Fe、Ru、Sn、及びPdなどの金属触媒をアノードとし、空気極をカソードに使用する電池である(例えば、特許文献2参照)。アルカリ形燃料電池では、水酸化物イオン伝導性を有する電解質体がアノード/カソード間に設けられる。
【0006】
アルカリ形燃料電池では、様々な液体燃料又は気体燃料を使用することができ、例えばメタノールを燃料とした場合、アルカリ形燃料電池における電気化学反応は、次の式のとおりである。
【0007】
・アノード: CHOH+6OH → 6e+CO+5H
・カソード: 3/2O+3HO+6e → 6OH
【先行技術文献】
【特許文献】
【0008】
【特許文献1】国際公開第2016/088673号
【特許文献2】特開2016−071948号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
ここで、本発明者らは、鋭意研究を重ねた結果、以下に説明する新たな知見を得た。すなわち、電気化学セルのアノード又は/及びカソードに面方向における微少な抵抗むらが存在すると、電解質には、水酸化物イオンが相対的に流れやすい領域と、水酸化物イオンが相対的に流れにくい領域とが生じる。そのため、電気化学セルの作動中、電解質のうち水酸化物イオンが相対的に流れやすい領域に水酸化物イオンが集中することによって、電解質が局所的に劣化してしまうおそれがある。
【0010】
本発明は、電解質の局所的な劣化を抑制可能な電気化学セルの提供を目的とする。
【課題を解決するための手段】
【0011】
本発明に係る電気化学セルは、カソードと、アノードと、カソードとアノードとの間に配置され、水酸化物イオン伝導性を有する電解質とを備える。電気化学セルの作動温度において、pH値6における電解質の水酸化物イオン伝導度は、pH値13.5における電解質の水酸化物イオン伝導度の0.40倍以下である。
【発明の効果】
【0012】
本発明によれば、電解質の局所的な劣化を抑制可能な電気化学セルを提供することができる。
【図面の簡単な説明】
【0013】
図1】アルカリ形燃料電池の構成を模式的に示す断面図
図2図1の部分拡大図
【発明を実施するための形態】
【0014】
(固体アルカリ形燃料電池10)
以下、水酸化物イオン(OH)をキャリアとする電気化学セルの一例として、固体アルカリ形燃料電池10について図面を参照しながら説明する。
【0015】
図1は、実施形態に係る固体アルカリ形燃料電池10の構成を示す断面図である。固体アルカリ形燃料電池10は、カソード12、アノード14、及び電解質16を備える。
【0016】
固体アルカリ形燃料電池10は、下記の電気化学反応式に基づいて、比較的低温(例えば、50℃〜250℃)で発電する。ただし、下記の電気化学反応式では、燃料の一例としてメタノールが用いられている。
【0017】
・カソード12: 3/2O+3HO+6e→6OH
・アノード14: CHOH+6OH→6e+CO+5H
・全体 : CHOH+3/2O→CO+2H
【0018】
(カソード12)
カソード12は、電解質16に接続される。カソード12は、一般的に空気極と呼ばれる陽極である。固体アルカリ形燃料電池10の発電中、カソード12には、酸化剤供給手段13を介して、酸素(O)を含む酸化剤が供給される。酸化剤としては、空気を用いるのが好ましく、空気は加湿されていることがより好ましい。カソード12は、内部に酸化剤を拡散可能な多孔質体である。カソード12の気孔率は特に制限されない。カソード12の厚みは特に制限されないが、例えば10〜200μmとすることができる。
【0019】
カソード12は、固体アルカリ形燃料電池(AFC)に使用される公知のカソード触媒を含むものであればよく、特に限定されない。カソード触媒の例としては、白金族元素(Ru、Rh、Pd、Ir、Pt)、鉄族元素(Fe、Co、Ni)等の第8〜10族元素(IUPAC形式での周期表において第8〜10族に属する元素)、Cu、Ag、Au等の第11族元素(IUPAC形式での周期表において第11族に属する元素)、ロジウムフタロシアニン、テトラフェニルポルフィリン、Coサレン、Niサレン(サレン=N,N’−ビス(サリチリデン)エチレンジアミン)、銀硝酸塩、及びこれらの任意の組み合わせが挙げられる。
【0020】
カソード触媒は、担体に担持されていてもよい。担体としては、カーボン粒子が好ましい。カソード12の構成材料の好ましい例としては、白金担持カーボン(Pt/C)、白金コバルト担持カーボン(PtCo/C)、パラジウム担持カーボン(Pd/C)、ロジウム担持カーボン(Rh/C)、ニッケル担持カーボン(Ni/C)、銅担持カーボン(Cu/C)、及び銀担持カーボン(Ag/C)などが挙げられる。カソード12におけるカソード触媒の担持量は特に限定されないが、好ましくは0.05〜10mg/cm、より好ましくは、0.05〜5mg/cmである。
【0021】
カソード12の作製方法は特に限定されないが、例えば、カソード触媒(所望により担体を含む)をバインダーと混合してペースト状にし、このペースト状混合物を電解質16のカソード側表面16Sに塗布することによって形成することができる。
【0022】
(アノード14)
アノード14は、電解質16に接続される。アノード14は、一般的に燃料極と呼ばれる陰極である。固体アルカリ形燃料電池10の発電中、アノード14には、燃料供給手段15を介して、水素原子(H)を含む燃料が供給される。アノード14は、内部に燃料を拡散可能な多孔質体である。アノード14の気孔率は特に制限されない。アノード14の厚みは特に制限されないが、例えば10〜500μmとすることができる。
【0023】
水素原子を含む燃料は、アノード14において水酸化物イオン(OH)と反応可能な燃料化合物を含んでいればよく、液体燃料及び気体燃料のいずれの形態であってもよい。
【0024】
燃料化合物としては、例えば、(i)ヒドラジン(NHNH)、水加ヒドラジン(NHNH・HO)、炭酸ヒドラジン((NHNHCO)、硫酸ヒドラジン(NHNH・HSO)、モノメチルヒドラジン(CHNHNH)、ジメチルヒドラジン((CHNNH、CHNHNHCH)、及びカルボンヒドラジド((NHNHCO)等のヒドラジン類、(ii)尿素(NHCONH)、(iii)アンモニア(NH)、(iv)イミダゾール、1,3,5−トリアジン、3−アミノ−1,2,4−トリアゾール等の複素環類化合物、(v)ヒドロキシルアミン(NHOH)、硫酸ヒドロキシルアミン(NHOH・HSO)等のヒドロキシルアミン類、及びこれらの組合せが挙げられる。これらの燃料化合物のうち炭素を含まない化合物(すなわち、ヒドラジン、水加ヒドラジン、硫酸ヒドラジン、アンモニア、ヒドロキシルアミン、硫酸ヒドロキシルアミン等)は、一酸化炭素による触媒被毒の問題が無いため特に好適である。
【0025】
燃料化合物は、そのまま燃料として用いてもよいが、水及び/又はアルコール(例えば、メタノール、エタノール、プロパノール、イソプロパノールなどの低級アルコール等)に溶解させた溶液として用いてもよい。例えば、上記燃料化合物のうち、ヒドラジン、水化ヒドラジン、モノメチルヒドラジン及びジメチルヒドラジンは液体であるので、そのまま液体燃料として使用可能である。また、炭酸ヒドラジン、硫酸ヒドラジン、カルボンヒドラジド、尿素、イミダゾール、及び3−アミノ−1,2,4−トリアゾール、及び硫酸ヒドロキシルアミンは固体であるが水に可溶である。1,3,5−トリアジン及びヒドロキシルアミンは固体であるがアルコールに可溶である。アンモニアは気体であるが水に可溶である。このように、固体の燃料化合物は、水又はアルコールに溶解させて液体燃料として使用可能である。燃料化合物を水及び/又はアルコールに溶解させて用いる場合、溶液中の燃料化合物の濃度は、例えば30〜99.9重量%であり、好ましくは66〜99.9重量%である。
【0026】
また、メタノール、エタノール等のアルコール類やエーテル類を含む炭化水素系液体燃料、メタン等の炭化水素系ガス、或いは純水素などは、そのまま燃料として用いることができる。特に、本実施形態に係る固体アルカリ形燃料電池10に用いられる燃料としては、メタノールが好適である。メタノールは、気体状態、液体状態、及び、気液混合状態のいずれであってもよい。
【0027】
アノード14は、AFCに使用される公知のアノード触媒を含むものであればよく、特に限定されない。アノード触媒の例としては、Pt、Ni、Co、Fe、Ru、Sn、及びPd等の金属触媒が挙げられる。アノード触媒は、カーボン等の担体に担持されるのが好ましいが、金属触媒の金属原子を中心金属とする有機金属錯体の形態としてもよく、この有機金属錯体を担体として担持されていてもよい。アノード14の構成材料の好ましい例としては、ニッケル、コバルト、銀、白金担持カーボン(Pt/C)、白金ルテニウム担持カーボン(PtRu/C)、パラジウム担持カーボン(Pd/C)、ロジウム担持カーボン(Rh/C)、ニッケル担持カーボン(Ni/C)、銅担持カーボン(Cu/C)、及び銀担持カーボン(Ag/C)が挙げられる。
【0028】
アノード14の作製方法は特に限定されないが、例えば、アノード触媒(所望により担体を含む)をバインダーと混合してペースト状にし、このペースト状混合物を電解質16のアノード側表面16Tに塗布することによって形成することができる。
【0029】
(電解質16)
電解質16は、カソード12とアノード14との間に配置される。電解質16は、カソード12及びアノード14のそれぞれに接続される。電解質16は、カソード12と接触するカソード側表面16Sと、アノード14と接触するアノード側表面16Tとを有する。電解質16は、膜状、層状、或いは、シート状に形成される。
【0030】
電解質16は、水酸化物イオン伝導性を有する。電気化学セル10の作動温度において、電解質16の水酸化物イオン伝導度は、pH値が低いほど小さくなるという性質(以下、「pH依存性」と略称する。)を有する。従って、横軸をpH値とし縦軸に水酸化物イオン伝導度の対数をとった座標上に、作動温度における電解質16の水酸化物イオン伝導度とpH値との関係を示す複数の実測値データをプロットし、これらのプロットから最小二乗法により近似直線(一次式)を導出した場合、当該近似直線は正の傾きを有する。
【0031】
このようなpH依存性を電解質16が有することにより次の効果が得られる。カソード12及びアノード14の少なくとも一方に面方向(カソード12、電解質16及びアノード14の積層方向に対して垂直な方向)における微少な抵抗むらが存在すると、電解質16には、水酸化物イオンが相対的に流れやすい領域と、水酸化物イオンが相対的に流れにくい領域とが生じる。そのため、固体アルカリ形燃料電池10の作動中、電解質16のうち水酸化物イオンが相対的に流れやすい領域では水酸化物イオンが少なくなるため、周辺の領域に比べて相対的にpH値が低くなって水酸化物イオン伝導度が小さくなる。その結果、電解質16のうち水酸化物イオンが相対的に流れやすい領域に水酸化物イオンが過剰に集中することを抑制できるため、電解質16が局所的に劣化してしまうことを抑制できる。
【0032】
ここで、本実施形態に係る電解質16は、後述するように、多孔質基材20と、多孔質基材20の連続孔20a内に配置され、水酸化物イオン伝導性を有する複合部22aとを有する複合膜である。このような複合膜を電解質として用いる場合、Nafion(登録商標)などによって形成される単一膜を電解質として用いる場合に比べて、水酸化物イオンの流れやすい領域と流れにくい領域とが電解質の内部に生じやすい。そのため、上述した効果は、複合膜を電解質として用いる場合に特に有効である。
【0033】
また、本実施形態に係る電解質16は、カソード12及びアノード14と直接的に接続されている。このように、電解質として電解液が用いられない場合、電解液が用いられる二次電池(ニッケル亜鉛二次電池、亜鉛空気二次電池など)に比べて、水酸化物イオンの流れやすい領域と流れにくい領域とが電解質の内部に生じやすい。そのため、上述した効果は、電解質として電解液が用いられない合に特に有効である。
【0034】
なお、固体アルカリ形燃料電池10の作動温度とは、固体アルカリ形燃料電池10の温度制御のために管理される温度である。作動温度としては、定常的に作動する固体アルカリ形燃料電池10に近接又は当接する所定位置における温度を用いることができる。定常的に作動するとは、1時間内における温度変化が±5度以内に収まる状態で作動することを意味する。作動温度は特に制限されないが、50℃〜250℃の範囲内に設定することができる。
【0035】
以下、電解質16が有するpH依存性について数量的に説明する。
【0036】
pH値6における電解質16の水酸化物イオン伝導度は、pH値13.5における電解質16の水酸化物イオン伝導度の0.40倍以下である。これにより、電解質16のうち水酸化物イオンが相対的に流れやすい領域に水酸化物イオンが過剰に集中することをより抑制できるため、電解質16が局所的に劣化してしまうことをより抑制できる。
【0037】
pH値6における電解質16の水酸化物イオン伝導度は、pH値13.5における電解質16の水酸化物イオン伝導度の0.10倍(すなわち、1/10)以下であることが好ましい。これにより、電解質16のうち水酸化物イオンが相対的に流れやすい領域に水酸化物イオンが過剰に集中することを更に抑制できるため、電解質16が局所的に劣化してしまうことを更に抑制できる。
【0038】
pH値6における電解質16の水酸化物イオン伝導度は特に制限されないが、例えば、10-3mS/cm以上10mS/cm以下とすることができる。また、pH値13.5における電解質16の水酸化物イオン伝導度は特に制限されないが、例えば、10-2mS/cm以上100mS/cm以下とすることができる。
【0039】
pH値6における電解質16の水酸化物イオン伝導度は、以下の方法により測定される。まず、カソード12/電解質16/アノード14の接合体を作成した後、カソード12及びアノード14それぞれにリード付きの端子を接続する。次に、炭酸ガス飽和のイオン交換水を用いて測定環境をpH値6の作動温度に調整した状態で、バッテリーハイテスタBT3562(HIOKI社製)を使用して抵抗値を測定する。そして、測定した抵抗値からpH値6における水酸化物イオン伝導度を算出する。
【0040】
また、pH値13.5における電解質16の水酸化物イオン伝導度は、以下の方法により測定される。まず、カソード12/電解質16/アノード14の接合体を作成した後、カソード12及びアノード14それぞれにリード付きの端子を接続する。次に、0.1M KOH水溶液を用いて測定環境をpH値13.5の作動温度に調整した状態で、バッテリーハイテスタBT3562を使用して抵抗値を測定する。そして、測定した抵抗値からpH値13.5における水酸化物イオン伝導度を算出する。
【0041】
ただし、作動温度より低い温度でなければ測定環境を整えられない場合、電解質16の作動温度における水酸化物イオン伝導度は、以下の方法により測定される。まず、上記手法を用いて、室温(=20℃)においてpH値6及びpH値13.5それぞれにおける水酸化物イオン伝導度を算出する。また、室温と作動温度の中間値より高い温度(以下、「中間温度」という。)においてpH値6及びpH値13.5それぞれにおける水酸化物イオン伝導度を算出する。次に、室温かつpH値6における水酸化物イオン伝導度と、中間温度かつpH値6における水酸化物イオン伝導度とを用いて、外挿法により作動温度かつpH値6における水酸化物イオン伝導度を算出する。また、室温かつpH値13.5における水酸化物イオン伝導度と、中間温度かつpH値13.5における水酸化物イオン伝導度とを用いて、外挿法により作動温度かつpH値13.5における水酸化物イオン伝導度を算出する。
【0042】
一方で、pH値13.5の強アルカリ雰囲気下では電解質16の構成材料が分解してしまう場合がある。例えば、電解質16がNi−Al系のLDH(層状複水酸化物)を含有する場合には、pH値13.5における水酸化物イオン伝導度の測定中に電解質16が分解して抵抗値の増大が進んでしまう。この場合には、pH値13.5における水酸化物イオン伝導度を正確に測定することができない。
【0043】
そこで、pH値13.5における水酸化物イオン伝導度を正確に測定できない場合には、以下のように、pH値8.2における水酸化物イオン伝導度に対するpH値6における水酸化物イオン伝導度の比を調整すればよい。
【0044】
まず、pH値6における電解質16の水酸化物イオン伝導度は、pH値8.2における電解質16の水酸化物イオン伝導度の0.80倍以下である。これにより、pH値6における水酸化物イオン伝導度をpH値13.5における水酸化物イオン伝導度の0.40倍以下とした場合と同様、電解質16のうち水酸化物イオンが相対的に流れやすい領域に水酸化物イオンが過剰に集中することをより抑制できるため、電解質16が局所的に劣化してしまうことをより抑制できる。
【0045】
また、pH値6における電解質16の水酸化物イオン伝導度は、pH値8.2における電解質16の水酸化物イオン伝導度の0.70倍以下であることがより好ましい。これにより、pH値6における水酸化物イオン伝導度をpH値13.5における水酸化物イオン伝導度の0.10倍以下とした場合と同様、電解質16のうち水酸化物イオンが相対的に流れやすい領域に水酸化物イオンが過剰に集中することを更に抑制できるため、電解質16が局所的に劣化してしまうことを更に抑制できる。
【0046】
pH値8.2における電解質16の水酸化物イオン伝導度は、以下の方法により測定される。まず、カソード12/電解質16/アノード14の接合体を作成した後、カソード12及びアノード14それぞれにリード付きの端子を接続する。次に、0.1M NaHCO水溶液を用いて測定環境をpH値8.2の作動温度に調整した状態で、バッテリーハイテスタBT3562を使用して抵抗値を測定する。そして、測定した抵抗値からpH値8.2における水酸化物イオン伝導度を算出する。
【0047】
以上のように電解質16の水酸化物イオン伝導度に上述したpH依存性を持たせるには、後述する無機固体電解質体22を構成する典型金属に遷移金属を添加する手法を用いることができる。無機固体電解質体22が含有する金属カチオンは任意に選択可能であるため、金属カチオンの組み合わせに応じて層間距離を調整できる。一般に、層間距離は、水酸化物イオン伝導度に影響を与えるものであり、特に中性付近(pH6〜pH8)における水酸化物イオン伝導度への影響が大きい。そのため、層間距離を調整することによって、水酸化物イオン伝導度にpH依存性を持った電解質16を作製することができる。層間距離を調整するために添加する遷移金属としては、例えばNi、Ti、Feなどが挙げられる。
【0048】
或いは、電解質16の水酸化物イオン伝導度に上述したpH依存性を持たせるには、pHに依存して水酸化物イオン伝導を阻害する材料を電解質16の少なくとも一方の主面に異相として析出させる手法を用いることもできる。これにより電解質16の水酸化物イオン伝導度が低下するため、結果として電解質16の水酸化物イオン伝導度にpH依存性を持たせることができる。pHに依存して水酸化物イオン伝導を阻害する材料としては、例えばTiOなどが挙げられる。
【0049】
図2は、電解質16の断面を拡大して示す模式図である。電解質16は、多孔質基材20と無機固体電解質体22とを有する。
【0050】
多孔質基材20は、連続孔20aを形成する。連続孔20aは、多孔質基材20の表裏面に連なるように形成される。連続孔20aには、後述する無機固体電解質体22が含浸されている。
【0051】
多孔質基材20は、三次元網目構造を有していてもよい。「三次元網目構造」とは、基材の構成物質が立体的かつ網目状に繋がった構造である。ただし、多孔質基材20は、三次元網目構造を有していなくてもよい。
【0052】
多孔質基材20は、金属材料、セラミックス材料及び高分子材料から選択される少なくとも1種によって構成することができる。
【0053】
多孔質基材20を構成する金属材料としては、ステンレス(Fe−Cr系合金、Fe−Ni−Cr系合金など)、アルミニウム、亜鉛、ニッケル、又は、チタンなどを用いることができる。このような金属材料は、セラミックス材料や高分子材料に比べて熱伝導性が高いため、多孔質基材20の放熱効率を向上させることができるとともに、多孔質基材20内の温度分布を低減させることができる。三次元網目構造を有する限り、多孔質基材20の形態は特に制限されず、例えば、多孔質金属材料(例えば、発砲金属材料)によって構成されるセル状又はモノリス状の構造物であってもよいし、細線金属材料によって構成されるメッシュ状の塊であってもよい。
【0054】
また、多孔質基材20が金属材料によって構成される場合、多孔質基材20の表面には絶縁膜が形成されていてもよい。絶縁膜は、Cr、Al(OH)、Al、ZrO、MgO、MgAlなどによって構成することができる。多孔質基材20をステンレスによって構成する場合、ステンレスを酸化処理することにより、絶縁膜としてのCr膜を簡便に形成することができる。また、アルマイト処理等によって形成されるAl(OH)等の不働態被膜は、アルカリ環境下において安定的であるため好ましい。ただし、本実施形態では、後述する第1及び第2膜状部22b,22cが、カソード12及びアノード14それぞれとの間で絶縁膜として機能するため、多孔質基材20の表面には、絶縁膜が形成されていなくてもよい。
【0055】
多孔質基材20を構成するセラミックス材料としては、アルミナ、ジルコニア、チタニア、マグネシア、カルシア、コージェライト、ゼオライト、ムライト、酸化亜鉛、炭化ケイ素、及びこれらの任意の組合せが挙げられる。
【0056】
多孔質基材20を構成する高分子材料としては、ポリスチレン、ポリエーテルサルフォン、ポリプロピレン、エポキシ樹脂、ポリフェニレンサルファイド、フッ素樹脂(PVDF、PTFE等)、セルロース、ナイロン、ポリエチレン、ポリイミド及びこれらの任意の組合せが挙げられる。多孔質基材20をフレキシブル性の高い高分子材料で構成する場合には、連続孔20aの体積を大きくしながら厚さを薄くしやすいため、水酸化物イオン伝導性を向上させることができる。高分子材料によって構成される多孔質基材20としては、市販の微多孔膜を用いることができる。
【0057】
多孔質基材20の厚さは特に制限されないが、例えば、200μm以下とすることができ、好ましくは100μm以下、より好ましくは75μm以下、さらに好ましくは50μm以下、特に好ましくは25μm以下であり、5μm以下が最も好ましい。多孔質基材20の厚さの下限値は、用途に応じて適宜設定すればよいが、ある程度の堅さを確保するには1μm以上が好ましく、2μm以上がより好ましい。
【0058】
多孔質基材20の断面における連続孔20aの平均内径は特に制限されないが、例えば、0.001〜1.5μmとすることができ、好ましくは0.001〜1.25μm、より好ましくは0.001〜1.0μm、さらに好ましくは0.001〜0.75μm、特に好ましくは0.001〜0.5μmである。これらの範囲内とすることによって、多孔質基材20に支持体としての強度を付与しつつ、無機固体電解質体22の緻密度を向上させることができる。連続孔20aの平均内径とは、多孔質基材20の断面を電子顕微鏡で観察した場合に、観察画像上で無作為に選出した20箇所における連続孔20aの円相当径を算術平均することによって得られる。連続孔20aの円相当径とは、観察画像において、連続孔20aの断面積と同じ面積を有する円の直径である。なお、電子顕微鏡の倍率は、連続孔20aの断面サイズに応じて適宜設定すればよい。
【0059】
連続孔20aの体積率は特に制限されないが、例えば、10〜60%とすることができ、好ましくは15〜55%、より好ましくは20〜50%である。これらの範囲内とすることによって、多孔質基材20に支持体としての強度を確保しつつ、無機固体電解質体22の緻密度を向上させることができる。連続孔20aの体積率は、アルキメデス法により測定することができる。
【0060】
また、図2では図示されていないが、多孔質基材20は、それ自体の内部に複数の細孔を有することが好ましい。複数の細孔は、多孔質基材20の内部において、互いに繋がっていてもよい。そして、各細孔は多孔質基材20の表面に開口する開気孔であって、各細孔には無機固体電解質体22が含浸していることがより好ましい。これによって、連続孔20a→多孔質基材20内の細孔→連続孔20aという短距離イオン伝導パスや、連続孔20a→多孔質基材20内の細孔→第2膜状部22c、或いは、第1膜状部22b→多孔質基材20内の細孔→第2膜状部22cという長距離イオン伝導パスを形成することができる。その結果、複合部22a内のイオン伝導可能領域が広がるため、電解質16全体としてのイオン伝導性を向上させることができる。
【0061】
無機固体電解質体22は、水酸化物イオン伝導性を有する。固体アルカリ形燃料電池10の発電中、無機固体電解質体22は、カソード12側からアノード14側に水酸化物イオン(OH)を伝導させる。無機固体電解質体22は、緻密であることが好ましい。アルキメデス法で算出される無機固体電解質体22の相対密度は特に制限されないが、90%以上が好ましく、より好ましくは92%以上、さらに好ましくは95%以上である。無機固体電解質体22は、例えば水熱処理によって緻密化することができる。
【0062】
無機固体電解質体22は、水酸化物イオン伝導性を有するセラミックス材料によって構成することができる。このようなセラミックス材料としては、水酸化物イオン伝導性を有する周知のセラミックスを用いることができるが、以下に説明する層状複水酸化物(LDH:Layered Double Hydroxide)が特に好適である。
【0063】
LDHは、M2+1−x3+(OH)n−x/n・mHO(式中、M2+は2価の陽イオン、M3+は3価の陽イオンであり、An−はn価の陰イオン、nは1以上の整数、xは0.1〜0.4、mは水のモル数を意味する任意の整数である)の一般式で示される基本組成を有する。M2+の例としてはMg2+、Ca2+、Sr2+、Ni2+、Co2+、Fe2+、Mn2+、及びZn2+が挙げられ、M3+の例としては、Al3+、Fe3+、Ti3+、Y3+、Ce3+、Mo3+、及びCr3+が挙げられ、Anの例としてはCO2−及びOHが挙げられる。M2+及びM3+としては、それぞれ1種単独で又は2種以上を組み合わせて用いることもできる。
【0064】
LDHは、複数の水酸化物基本層と、これら複数の水酸化物基本層間に介在する中間層とから構成される。中間層は、陰イオン及びHOで構成される。水酸化物基本層は、例えば金属MがNi、Al、Tiの場合には、Ni、Al、Ti及びOH基を含む。以下、LDHの水酸化物基本層がNi、Al、Ti及びOH基を含む場合について説明する。
【0065】
LDH中のNiはニッケルイオンの形態を採りうる。LDH中のニッケルイオンは典型的にはNi2+であると考えられるが、Ni3+等の他の価数もありうるため、特に限定されない。LDH中のAlはアルミニウムイオンの形態を採りうる。LDH中のアルミニウムイオンは典型的にはAl3+であると考えられるが、他の価数もありうるため、特に限定されない。LDH中のTiはチタンイオンの形態を採りうる。LDH中のチタンイオンは典型的にはTi4+であると考えられるが、Ti3+等の他の価数もありうるため、特に限定されない。水酸化物基本層は、Ni、Al、Ti及びOH基を主要構成要素として含むのが好ましいが、他の元素ないしイオンを含んでいてもよいし、不可避不純物を含んでいてもよい。不可避不純物は、製法上不可避的に混入されうる任意元素であり、例えば原料や基材に由来してLDH中に混入しうる。
【0066】
LDHの中間層は、陰イオン及びHOで構成される。陰イオンは1価以上の陰イオン、好ましくは1価又は2価のイオンである。好ましくは、LDH中の陰イオンはOH及び/又はCO2−を含む。
【0067】
上記のとおり、Ni、Al及びTiの価数は必ずしも定かではないため、LDHを一般式で厳密に特定することは非実際的又は不可能である。仮に水酸化物基本層が主としてNi2+、Al3+、Ti4+及びOH基で構成されるものと想定した場合、LDHは、一般式:Ni2+1−x−yAl3+Ti4+(OH)n−(x+2y)/n・mHO(式中、An−はn価の陰イオン、nは1以上の整数、好ましくは1又は2であり、0<x<1、好ましくは0.01≦x≦0.5、0<y<1、好ましくは0.01≦y≦0.5、0<x+y<1、mは0以上、典型的には0を超える又は1以上の実数である)なる基本組成で表すことができる。もっとも、上記一般式はあくまで「基本組成」と解されるべきであり、Ni2+、Al3+、Ti4+等の元素がLDHの基本的特性を損なわない程度に他の元素又はイオン(同じ元素の他の価数の元素又はイオンや製法上不可避的に混入されうる元素又はイオンを含む)で置き換え可能なものとして解されるべきである。
【0068】
本実施形態において、無機固体電解質体22は、複合部22a、第1膜状部22b、及び第2膜状部22cを有する。
【0069】
複合部22aは、第1膜状部22bと第2膜状部22cとの間に配置される。複合部22aは、多孔質基材20の連続孔20a内に配置される。複合部22aは、連続孔20a内に含浸されており、多孔質基材20と一体化している。このように、無機固体電解質体22を多孔質基材20で支持することによって、無機固体電解質体22の強度を向上できるため、無機固体電解質体22を薄くすることができる。その結果、電解質16の低抵抗化を図ることができる。
【0070】
本実施形態において、複合部22aは、多孔質基材20の連続孔20a内の略全域に広がっているが、無機固体電解質体22が第1膜状部22b及び第2膜状部22cの少なくとも一方を有さない場合、複合部22aは、多孔質基材20の一部にのみ含浸されていてもよい。
【0071】
第1膜状部22bは、複合部22aのカソード12側に連なる。第1膜状部22bは、膜状に形成される。第1膜状部22bは、複合部22aと一体的に形成される。第2膜状部22cは、複合部22aのアノード14側に連なる。第2膜状部22cは、膜状に形成される。第2膜状部22cは、複合部22aと一体的に形成される。第1膜状部22b及び第2膜状部22cそれぞれは、水酸化物イオン伝導性セラミックス成分によって構成される。第1膜状部22b及び第2膜状部22cそれぞれの厚さは特に制限されないが、例えば、10μm以下とすることができ、好ましくは7μm以下、より好ましくは5μm以下である。第1膜状部22b及び第2膜状部22cそれぞれは、一様な平面状に形成されていてもよいし、縞状など所望の平面形状にパターン化されていてもよい。
【0072】
電解質16の作製方法は特に限定されないが、例えば、以下の手法を採用することができる。まず、アルミナ及びチタニアの混合ゾルを調製し、この混合ゾルを多孔質基材20内部の全体又は大部分に浸透させる。次に、混合ゾルが浸透した多孔質基材20を熱処理(大気雰囲気、50〜150度、1〜30分)することによって、多孔質基材20の各孔内にアルミナ・チタニア層を形成する。次に、ニッケルイオン(Ni2+)及び尿素を含む原料水溶液に多孔質基材20を浸漬させる。次に、原料水溶液中で多孔質基材20を水熱処理する。この際、水熱処理条件(100〜150度、10〜100時間)を適宜調整することによって、多孔質基材20内に複合部22aが形成されるとともに、多孔質基材20の両主面に第1膜状部22b及び第2膜状部22cが形成されて電解質16となる。
【0073】
(実施形態の変形例)
以上、本発明の実施形態について説明したが、本発明はこれらに限定されるものではなく、本発明の趣旨を逸脱しない限りにおいて種々の変更が可能である。
【0074】
[変形例1]
上記実施形態において、電解質16は、無機固体電解質体22を支持する多孔質基材20を有することとしたが、多孔質基材20を有していなくてもよい。この場合、電解質16は、板状に形成された無機固体電解質体によって構成することができる。
【0075】
[変形例2]
上記実施形態において、無機固体電解質体22は、複合部22a、第1膜状部22b、及び第2膜状部22cを有することとしたが、第1膜状部22b及び第2膜状部22cの少なくとも一方を有していなくてよい。
【0076】
無機固体電解質体22が第1膜状部22bを備えていない場合、複合部22aは、多孔質基材20の連続孔20aの全体に含浸されていてもよいし、多孔質基材20の連続孔20aのうちカソード12側の領域にのみ含浸されていてもよい。多孔質基材20の連続孔20aのうちカソード12側の領域にのみ複合部22aが含浸される場合、連続孔20aの空隙領域にはアノード14の少なくとも一部を配置すればよい。連続孔20aの空隙領域に配置されるアノード14は、連続孔20aに充填されていてもよいし、連続孔20aの内表面を覆うように膜状に形成されていてもよい。
【0077】
無機固体電解質体22が第2膜状部22cを備えていない場合、複合部22aは、多孔質基材20の連続孔20aの全体に含浸されていてもよいし、多孔質基材20の連続孔20aのうちアノード14側の領域にのみ含浸されていてもよい。多孔質基材20の連続孔20aのうちアノード14側の領域にのみ複合部22aが含浸される場合、連続孔20aの空隙領域にはカソード12の少なくとも一部を配置すればよい。連続孔20aの空隙領域に配置されるカソード12は、連続孔20aに充填されていてもよいし、連続孔20aの内表面を覆うように膜状に形成されていてもよい。
【0078】
[変形例3]
上記実施形態では、本発明に係る電気化学セルの一例として、水酸化物イオンをキャリアとするアルカリ形燃料電池について説明したが、水酸化物イオンをキャリアとする種々の電気化学セルに適用可能である。電気化学セルとは、化学エネルギーを電気エネルギーに変えるための装置、又は、電気エネルギーを化学エネルギーに変えるための装置であって、全体的な酸化還元反応から起電力が生じるように一対の電極が配置されたものの総称である。本発明に係る電気化学セルとしては、例えば、水酸化物イオンをキャリアとする二次電池(ニッケル亜鉛二次電池、亜鉛空気二次電池など)や、水蒸気から水素と酸素を生成する電解セルなどが挙げられる。
【実施例】
【0079】
以下、本発明の実施例について説明する。以下の実施例では、上記実施形態にて説明した固体アルカリ形燃料電池10が備える電解質16の水酸化物イオン伝導度のpH依存性が固体アルカリ形燃料電池10の出力に与える影響を評価した。
【0080】
(固体アルカリ形燃料電池の作製)
実施例1〜5及び比較例1に係る固体アルカリ形燃料電池を次の通り作製した。
【0081】
(1)多孔質基材の作製
ジルコニア粉末(東ソー社製、TZ−8YS)100重量部に対して、分散媒(キシレン:ブタノール=1:1)70重量部、バインダー(ポリビニルブチラール:積水化学工業株式会社製BM−2)11.1重量部、可塑剤(DOP:黒金化成株式会社製)5.5重量部、及び分散剤(花王株式会社製レオドールSP−O30)2.9重量部を混合し、この混合物を減圧下で攪拌して脱泡することによりスラリーを得た。
【0082】
次に、テープ成型機を用いて、PETフィルム上にスラリーを塗布して、シート状の成形体を得た。得られた成形体を1100℃で2時間焼成することによって、ジルコニア製の多孔質基材(5.0cm×5.0cm×厚み1.0mm)を得た。
【0083】
(2)多孔質基材へのコート
実施例1,2及び比較例1では、無定形アルミナ溶液(Al−ML15、多木化学株式会社製)に多孔質基材を含浸させ、スピンコートにより余剰の無定形アルミナ溶液を除去した後、電気炉にて150℃で10分間熱処理を行った。こうして多孔質基材の内表面に形成された無定形アルミナ層の厚さは1μm程度であった。
【0084】
実施例3では、無定形アルミナ溶液(Al−ML15、多木化学株式会社製)と酸化チタンゾル溶液(M−6、多木化学株式会社製)を溶液のモル比が1:1となるように混合した混合ゾルに多孔質基材を含浸させ、スピンコートにより余剰の混合ゾルを除去した後、電気炉にて150℃で10分間熱処理を行った。こうして多孔質基材の内表面に形成された無定形アルミナ・チタニア層の厚さは1μm程度であった。
【0085】
実施例4では、無定形アルミナ溶液(Al−ML15、多木化学株式会社製)に多孔質基材を含浸させ、スピンコートにより余剰の無定形アルミナ溶液を除去した後、酸化チタンゾル溶液(M−6、多木化学株式会社製)をスピンコートにより多孔質基材の両主面に塗布した。そして、電気炉にて150℃で10分間熱処理を行った。こうして多孔質基材の内表面に厚さ1μm程度のアルミナ層を形成するとともに、多孔質基材の両主面にチタニアを付着させた。
【0086】
実施例5では、無定形アルミナ溶液(Al−ML15、多木化学株式会社製)と酸化チタンゾル溶液(M−6、多木化学株式会社製)を溶液のモル比が1:1となるように混合した混合ゾルに多孔質基材を含浸させ、スピンコートにより余剰の混合ゾルを除去した後、酸化チタンゾル溶液(M−6、多木化学株式会社製)をスピンコートにより多孔質基材の両主面に塗布した。そして、電気炉にて150℃で10分間熱処理を行った。こうして多孔質基材の内表面に厚さ1μm程度のアルミナ・チタニア層を形成するとともに、多孔質基材の両主面にチタニアを付着させた。
【0087】
(3)原料水溶液の作製
実施例1では、硝酸ニッケル六水和物(Ni(NO・6HO、関東化学株式会社製)と硝酸マンガン六水和物(Mn(NO・6HO、関東化学株式会社製)と硝酸アルミニウム九水和物(Al(NO・9HO、関東化学株式会社製)と尿素((NHCO、シグマアルドリッチ製)とを準備した。次に、硝酸ニッケル六水和物、硝酸マンガン六水和物及び硝酸アルミニウム九水和物をビーカーに入れ、そこにイオン交換水を加えて全量を75mlとした。次に、得られた溶液を攪拌した後、溶液中に尿素/NO(モル比)=32の割合で秤量した尿素を加え、更に攪拌して原料水溶液を得た。
【0088】
実施例2,3,5では、硝酸ニッケル六水和物(Ni(NO・6HO、関東化学株式会社製)と尿素((NHCO、シグマアルドリッチ製)とを準備した。次に、硝酸ニッケル六水和物をビーカーに入れ、そこにイオン交換水を加えて全量を75mlとした。次に、得られた溶液を攪拌した後、溶液中に尿素/NO(モル比)=32の割合で秤量した尿素を加え、更に攪拌して原料水溶液を得た。
【0089】
実施例4及び比較例1では、硝酸マグネシウム六水和物(Mg(NO・6HO、関東化学株式会社製)と硝酸アルミニウム九水和物(Al(NO・9HO、関東化学株式会社製)と尿素((NHCO、シグマアルドリッチ製)とを準備した。次に、硝酸マグネシウム六水和物と硝酸アルミニウム九水和物とをビーカーに入れ、そこにイオン交換水を加えて全量を70mlとした。次に、得られた溶液を攪拌した後、溶液中に尿素/NO(モル比)=4の割合で秤量した尿素を加え、更に攪拌して原料水溶液を得た。
【0090】
(4)水熱処理による成膜
テフロン(登録商標)製密閉容器(オートクレーブ容器、内容量100ml、外側がステンレス製ジャケット)に上述した各原料水溶液と多孔質基材とを封入した。このとき、多孔質基材はテフロン(登録商標)製密閉容器の底から浮かせて固定し、多孔質基材両面に溶液が接するように水平に設置した。
【0091】
次に、水熱温度120℃で8時間水熱処理を施すことにより、多孔質基材表面と内部にLDHの形成を行った。所定時間の経過後、多孔質基材を密閉容器から取り出し、イオン交換水で洗浄した。続いて、室温で12時間放置した後に乾燥させて、LDHが多孔質基材中に含浸された電解質を得た。
【0092】
上述したとおり、実施例1では、多孔質基材の内表面に無定形アルミナ層を形成したうえで、Ni及びMnを含有する原料水溶液を用いたため、遷移金属であるNi及びMnを含有するLDHが形成された。実施例2では、多孔質基材の内表面に無定形アルミナ層を形成したうえで、Niを含有する原料水溶液を用いたため、遷移金属であるNiを含有するLDHが形成された。実施例3では、多孔質基材の内表面にアルミナ・チタニア層を形成したうえで、Niを含有する原料水溶液を用いたため、遷移金属であるNi及びTiを含有するLDHが形成された。実施例4では、多孔質基材の両主面にチタニアを付着させたため、電解質の両主面にチタニアが析出したLDHが形成された。実施例5では、多孔質基材の内表面にアルミナ・チタニア層を形成し、かつ、多孔質基材の両主面にチタニアを付着させたうえで、Niを含有する原料水溶液を用いたため、遷移金属であるNi及びTiを含有し、かつ、電解質の両主面にチタニアが析出したLDHが形成された。比較例1では、多孔質基材の内表面に無定形アルミナ層を形成したうえで、マグネシウムを含有する原料水溶液を用いたため、典型金属であるMg及びAlによって構成されるLDHが形成された。
【0093】
(5)カソード及びアノードの作製
カソード触媒であるPt担持量50wt%カーボン(Pt/C:田中貴金属工業(株)社製TEC10E50E)と、アノード触媒であるPt−Ru担持量54wt%カーボン(Pt−Ru/C:田中貴金属工業(株)社製TEC61E54)と、バインダーであるPVDF粉末(以下、「PVDFバインダー」という。)とを準備した。
【0094】
次に、(Pt/C):(PVDFバインダー):(水)の重量比が9wt%:0.9wt%:90wt%の比率となるように混合してカソード用ペーストを調製した。また、(Pt−Ru/C):(PVDFバインダー):(水)の重量比が9wt%:0.9wt%:90wt%の比率となるように混合してアノード用ペーストを調製した。
【0095】
次に、カソード用ペーストを電解質の一方の面に印刷してカソードとし、アノード用ペーストを電解質の他方の面に印刷してアノードとした。そして、N雰囲気中において150℃で10分間熱処理することによって、カソード/電解質/アノードの接合体を得た。
【0096】
(水酸化物イオン伝導度の測定)
pH値6に調整した炭酸ガス飽和イオン交換水と、pH値8.2に調整した0.1M NaHCO水溶液と、pH値13.5に調整した0.1M KOH水溶液とを準備し、各水溶液を後述する作動温度(80℃)まで加熱した。
【0097】
そして、実施例1〜5及び比較例1について、接合体のカソード及びアノードにリード付きの端子を接続した後、炭酸ガス飽和イオン交換水(pH値6、80℃)に接合体を浸漬した状態でバッテリーハイテスタBT3562を使用して抵抗値を測定した。そして、測定した抵抗値からpH値6における水酸化物イオン伝導度を算出した。
【0098】
また、実施例1〜5及び比較例1について、接合体のカソード及びアノードにリード付きの端子を接続した後、NaHCO水溶液に接合体(pH値8.2、80℃)を浸漬した状態でバッテリーハイテスタBT3562を使用して抵抗値を測定した。そして、測定した抵抗値からpH値8.2における水酸化物イオン伝導度を算出した。
【0099】
さらに、実施例1,3〜5及び比較例1について、接合体のカソード及びアノードにリード付きの端子を接続した後、KOH水溶液(pH値13.5、80℃)に接合体を浸漬した状態でバッテリーハイテスタBT3562を使用して抵抗値を測定した。そして、測定した抵抗値からpH値13.5における水酸化物イオン伝導度を算出した。
【0100】
表1では、実施例1〜5及び比較例1について、pH値13.5における水酸化物イオン伝導度に対するpH値6における水酸化物イオン伝導度の倍率と、pH値8.2における水酸化物イオン伝導度に対するpH値6における水酸化物イオン伝導度の倍率とを示した。また、表1では、実施例2について、pH値8.2における水酸化物イオン伝導度に対するpH値6における水酸化物イオン伝導度の倍率を示した。
【0101】
(出力試験)
以下のように、実施例1〜5及び比較例1に係るアルカリ形燃料電池の24時間運転後の出力値と720時間運転後の出力値とを測定した。
【0102】
まず、固体アルカリ形燃料電池を作動温度(80℃)まで加熱した。
【0103】
次に、アノード14側に加湿水素(水素利用率90%)を供給し、かつ、カソード12側に加湿空気を供給しながら24時間運転した後、電流密度0.1A/cmの条件にて運転しながら電圧値を読みとり、それを電力量に換算して24時間運転後の出力値を算出した。
【0104】
続いて、アノード14側に加湿水素(水素利用率90%)を供給し、かつ、カソード12側に加湿空気を供給しながら残り696時間運転した後、電流密度0.1A/cmの条件にて運転しながら電圧値を読みとり、それを電力量に換算して24時間運転後の出力値を算出した。
【0105】
24時間運転後の出力値に対する720時間運転後の出力値の維持率を表1に示す。表1では、720時間運転後の出力維持率が75%未満の場合を×と評価し、75%以上90%未満の場合を○と評価し、90%以上の場合を◎と評価した。
【0106】
【表1】
【0107】
表1に示すように、pH値6における水酸化物イオン伝導度がpH値8.2における水酸化物イオン伝導度の0.80倍以下であった実施例1〜5では、比較例1に比べて出力維持率を向上させることができた。このような結果が得られたのは、電解質のうち水酸化物イオンの流れやすい領域に水酸化物イオンが過剰に集中して電解質が局所的に劣化してしまうことを抑制できたからである。
【0108】
また、pH値6における水酸化物イオン伝導度がpH値8.2における水酸化物イオン伝導度の0.70倍であった実施例5では、出力維持率をより向上させることができた。
【0109】
同様に、pH値6における水酸化物イオン伝導度がpH値13.5における水酸化物イオン伝導度の0.40倍以下であった実施例1,3〜5では、比較例1に比べて出力維持率を向上させることができた。このような結果が得られたのは、電解質のうち水酸化物イオンの流れやすい領域に水酸化物イオンが過剰に集中して電解質が局所的に劣化してしまうことを抑制できたからである。
【0110】
また、pH値6における水酸化物イオン伝導度がpH値13.5における水酸化物イオン伝導度の0.10倍であった実施例5では、出力維持率をより向上させることができた。
【0111】
以上より、pH値6における水酸化物イオン伝導度をpH値8.2における水酸化物イオン伝導度の0.80倍以下、さらに0.70倍以下とすることによって、出力維持率を向上させられることが分かった。同様に、pH値6における水酸化物イオン伝導度がpH値13.5における水酸化物イオン伝導度の0.40倍以下、さらに0.10倍以下とすることによって、出力維持率を向上させられることが分かった。
【符号の説明】
【0112】
10 固体アルカリ形燃料電池
12 カソード
14 アノード
16 電解質
20 多孔質基材
22 無機固体電解質体
22a 複合部
22b 第1膜状部
22c 第2膜状部
図1
図2