【実施例】
【0023】
実験結果:
図1に作製した磁気抵抗素子の膜構成を示す。膜構成はMgO(001)基板/Cr(10nm)/Ag(100nm)/CFGG(10nm)/CIGS(2nm)/CFGG(10nm)/Ru(8nm)である。成膜はすべて室温で行った。
【0024】
製造工程としては、MgO(001)単結晶基板は、膜を成膜する前にスパッタチャンバー内で550℃・1時間の熱洗浄を行った。Agを成膜した後に、300℃で熱処理を行うことにより、Agの表面平坦性を改善した。下部CFGGを成膜した後、L2
1構造に規則化させるために500℃で、全体を成膜した後に上部CFGGの規則化のために300℃で熱処理を行った。
【0025】
多層膜の構造測定については、透過電子顕微鏡(TEM)で、輸送特性は4端子法で測定を行った。磁気抵抗素子は、電子ビームリソグラフィー・Arイオンミリング・リフトオフによる微細加工により作製した。作製したピラーは楕円形で、サイズは200*100nm
2から400*200nm
2の範囲で複数用意した。
【0026】
図2に作製した多層膜のHAADF−STEM像、ナノビーム電子回折像を示す。
図2(a)のHAADF-STEM像からは、層構造が明瞭に観察できる。また
図2(b)〜
図2(d)のナノビーム電子回折像から、上部CFGGはB2構造、下部CFGGはL2
1構造、CIGSはカルコパイライト構造をもつことがわかる。またこれらの層はエピタキシャル成長をしており、CFGG(001)[110]//CIGS(001)[110]の方位関係を持つ。
図2(e)には、高分解能HAADF−STEM像を示す。上下CFGG層はB2およびL2
1構造に対応する周期的なコントラストが観察できる。また、CFGG/CIGS界面にはミスフィット転位は観測されず、格子整合が非常によいことがわかる。
【0027】
図3に典型的な磁気抵抗曲線を示す。白丸表記がCIGS2nmのスペーサ、白抜き四角表記がAg5nmのスペーサのものである。Agのスペーサは参考のために示している。Agスペーサの素子では、MR比=20%であるのに対し、CIGSスペーサではMR比=40%と非常に大きな値が得られている。
【0028】
図4に、MR比、RA、ΔRAをピラー面積の逆数(A
−1)に対してまとめたグラフを示す。測定は室温で行った。RAが0.1〜3[Ωμm
2]とばらついているものの、MR比は約40%を示す。RAのばらつきの原因は明らかではないが、HDDの再生素子やMRAMへの応用において好ましいRAが得られていることがわかる。
【0029】
図5にMR比、RA、ΔRAの温度依存性を示す。8Kでは、MR比は100%を超えている。RAは低温で10−20%程度増加しており、MR比の低温での増加はΔRAの増加によるものであることがわかる。温度の減少に伴うRAの減少は、CIGSスペーサの電子の伝導機構がトンネル的であることを示しており、CPP−GMR素子における電子の伝導機構とは異なっていると考えられる。
【0030】
図6は、本発明の磁気抵抗素子が搭載される磁気ヘッドを搭載可能な磁気記録再生装置の概略構成を例示する要部斜視図である。
図6において、磁気記録再生装置100は、ロータリーアクチュエータを用いた形式の装置である。同図において、記録用媒体ディスク110は、スピンドル140に装着され、図示しない駆動装置制御部からの制御信号に応答する図示しないモータにより矢印Aの方向に回転する。磁気記録再生装置100は、複数の媒体ディスク110を備えたものとしてもよい。
【0031】
図7に、本発明の磁気抵抗素子が搭載される磁気ヘッドアッセンブリの一例を表す概略図を示す。
図7は、アクチュエータアーム154から先の磁気ヘッドアセンブリをディスク側から眺めた拡大斜視図である。すなわち、磁気ヘッドアッセンブリ150は、例えば駆動コイルを保持するボビン部などを有するアクチュエータアーム154を有し、アクチュエータアーム154の一端にはサスペンション152が接続されている。
【0032】
図6に示す媒体ディスク110に格納する情報の記録再生を行うヘッドスライダー120は、
図7に示す薄膜状のサスペンション152の先端に取り付けられている。ここで、ヘッドスライダー120は、例えば、本発明の磁気抵抗素子が搭載される磁気ヘッドをその先端付近に搭載している。
【0033】
媒体ディスク110が回転すると、ヘッドスライダー120の媒体対向面(ABS)は媒体ディスク110の表面から所定の浮上量をもって保持される。あるいはスライダが媒体ディスク110と接触するいわゆる「接触走行型」であってもよい。
【0034】
サスペンション152は、駆動コイルを保持するボビン部(図示せず)などを有するアクチュエータアーム154の一端に接続されている。アクチュエータアーム154の他端には、リニアモータの一種であるボイスコイルモータ130が設けられている。ボイスコイルモータ130は、アクチュエータアーム154のボビン部に巻き上げられた駆動コイル(図示せず)と、このコイルを挟み込むように対向して配置された永久磁石および対向ヨークからなる磁気回路(図示せず)とから構成される。
【0035】
アクチュエータアーム154は、スピンドル140に設けられたボールベアリング(図示せず)によって保持され、ボイスコイルモータ130により回転摺動が自在にできるようになっている。
【0036】
また、サスペンション152は信号の書き込みおよび読み取り用のリード線158を有し、このリード線158とヘッドスライダー120に組み込まれた磁気ヘッドの各電極とが電気的に接続されている。図中156は磁気ヘッドアッセンブリ150の電極パッドである。
【0037】
図8は、主磁極および高周波発振子(スピントルク発振子)を模式的に示す斜視図である。
図8に示すように、スピントルク発振子180は、主磁極160の先端部162と補助磁極170のリーディング側端面174との間に設けられている。スピントルク発振子180は、非磁性導電層からなる下地層182、スピン注入層(第1磁性層)184、中間層186(非磁性層)、発振層(第2磁性層)188、非磁性導電層からなるキャップ層190を、主磁極160側から補助磁極170側に順に積層して構成されている。発振層188は、軟磁性かつ飽和磁束密度が2Tと大きなFeCoNiにより形成され、中間層186はスピン拡散長が長いCuにより形成され、更に、スピン注入層184は、保磁力が高くかつスピン偏極率が高いCo/Ni人工格子により形成されている。なお、
図8では、スピン注入層184、中間層186、発振層188の順に積層した例を示したが、発振層、中間層、スピン注入層の順に積層してもよい。
【0038】
中間層186には、例えば、Au、Agなどのスピン透過率の高い材料を用いることもできる。中間層186の層厚は、1原子層から3nmとすることが望ましい。これによりスピン注入層184と発振層188の交換結合を最適な値に調節することが可能となる。
【0039】
また、スピン注入層184には、例えば、膜面直方向に磁化配向したCoCrPt、CoCrTa、CoCrTaPt、CoCrTaNb等のCoCr系磁性
層、TbFeCo等のRE−TM系アモルファス合金磁性層、Co/Pd、Co/Pt、CoCrTa/Pd、FeCo/Pt、FeCo/Ni等の人工格子磁性層、CoPt系やFePt系の合金磁性層、SmCo系合金磁性
層など、垂直配向性に優れた材料、CoFe、CoNiFe、NiFe、CoZrNb、FeN、FeSi、FeAlSi等の比較的、飽和磁束密度の大きく膜面内方向に磁気異方性を有する軟磁性層や、CoFeSi、CoMnSi、CoMnAl等のグループから選択されるホイスラー合金、膜面内方向に磁化が配向したCoCr系の磁性合金膜も適宜用いることができる。さらに、複数の上記材料を積層したものを用いてもよい。
【0040】
さらに、発振層188には、Fe、Co、Niまたは、これらを組み合わせた合金もしくは、これらを組み合わせた人工格子と、上記スピン注入層184に用いることができる各種の材料とを積層したものを用いてもよい。なお、発振層188には、FeCo系合金に、さらにAl、Si、Ge、Ga、Mn、Cr、Bの少なくともいずれか1つ以上を添加した材料も用いても良い。これにより、例えば、発振層188とスピン注入層184との飽和磁束密度、異方性磁界、及びスピントルク伝達効率を調整することができる。
なお、発振層188の層厚は、5ないし20nmとすることが望ましく、スピン注入層184の層厚は、2ないし60nmとすることが望ましい。
【0041】
スピントルク発振子180は、その下端面192がディスク対向面(図示せず)に露出し、磁気ディスク(図示せず)の表面に対して、主磁極160の先端面とほぼ同一の高さ位置に設けられている。すなわち、スピントルク発振子180の下端面192は、スライダのディスク対向面と面一に、かつ、磁気ディスクの表面とほぼ平行に位置している。また、スピントルク発振子180は、ディスク対向面から最も離れ、下端面192とほぼ平行に延びる上端面194と、下端面から上端面まで延びる両側面196、198とを有している。
少なくとも一方の側面、ここでは、両側面196、198は、ディスク対向面に垂直な方向に対してトラック中心側、つまり、内側に傾斜している。また、主磁極160に対向する面のスピントルク発振子180の形状は、トラック幅方向に対称な台形となっている。
【0042】
スピントルク発振子180は、制御回路基板による制御信号に従って、電源(図示せず)から主磁極160、補助磁極170に電圧を印加することにより、スピントルク発振子180の膜厚方向に直流電流が印加される。通電することにより、スピントルク発振子180の発振層188の磁化が回転し、高周波磁界を発生させることが可能となる。これにより、スピントルク発振子180は、磁気ディスクの記録層に高周波磁界を印加する。このように、補助磁極170と主磁極160はスピントルク発振子180に垂直通電する電極として働くことになる。
【0043】
なお、上記の実施例では、基板上に第1の強磁性層、非磁性層、第2の強磁性層を積層した構造を有するトンネル磁気抵抗素子において、非磁性層にはCu(In
0.8Ga
0.2)Se
2を用い、第1及び第2の強磁性層にCo
2Fe(Ga
0.5Ge
0.5)を用いたものを示しているが、本発明はこれに限定されるものではなく、非磁性層には他のI−III−VI
2型カルコパイライト型化合物半導体を用いても良く、また第1及び第2の強磁性層には他のホイスラー合金や他の強磁性材料を用いても良いことは言うまでもない。