【実施例】
【0030】
以下、本発明による複合めっき材およびその製造方法の実施例について詳細に説明する。
【0031】
[実施例1]
素材として厚さ0.2mmのCu−Ni−Sn−P合金からなる板材(1.0質量%のNiと0.9質量%のSnと0.05質量%のPを含み、残部がCuである銅合金の板材)(DOWAメタルテック株式会社製のNB109EH)を用意し、この素材をカソード、Ag電極板をアノードとして使用して、錯化剤としてスルホン酸を含むスルホン酸系Agストライクめっき液(大和化成株式会社製のダインシルバーGPE−ST)中において、電流密度3A/dm
2で10秒間電気めっき(Agストライクめっき)を行った。
【0032】
また、炭素粒子として平均粒径5.0μmの鱗片状(板状)の黒鉛粒子を用意した。なお、実施例および比較例において、炭素粒子の平均粒径は、炭素粒子0.5gを0.2重量%のヘキサメタリン酸ナトリウム溶液50gに分散させ、さらに超音波により分散させた後、レーザー光散乱粒度分布測定装置を用いて体積基準分布の粒径を測定し、累積分布で50%の粒径を平均粒径とすることにより求めた。
【0033】
次に、上記の黒鉛粒子80gを純水1350g中に投入して50℃まで加熱した後、酸化剤として過硫酸カリウム27gを純水600gに溶かした液を添加し、60分間撹拌して湿式酸化処理を行った。このように湿式酸化処理を行った炭素粒子を、吸引ろ過により分離し、水で洗浄した後、乾燥した。
【0034】
次に、錯化剤としてスルホン酸を含むAg濃度30g/Lのスルホン酸系銀めっき液(大和化成株式会社製のダインシルバーGPE−PL(無光沢))中に、上記の酸化処理を行った炭素粒子を30g/Lになるように添加し、攪拌して分散させた。
【0035】
次に、上記のAgストライクめっきした素材をカソード、Ag電極板をアノードとして使用して、上記の酸化処理を行った炭素粒子を添加した銀めっき液中において、スターラにより500rpmで撹拌しながら、温度25℃、電流密度3A/dm
2で150秒間電気めっきを行い、銀めっき層中に炭素粒子を含有する複合めっき皮膜が素材上に形成された複合めっき材を作製した。この複合めっき材の複合めっき皮膜(の中央部分の直径1.0mmの範囲)の厚さを蛍光X線膜厚計(株式会社日立ハイテクサイエンス製のFT9450)で測定したところ、4.8μmであった。
【0036】
このようにして得られた複合めっき材から切り出した試験片の表面を観察することにより、複合めっき皮膜の表面の炭素粒子が占める割合(面積率(面積%))を算出した。この複合めっき皮膜の表面の炭素粒子の面積率は、試験片の表面に電子プローブマイクロアナライザ(EPMA)(日本電子株式会社製のJXA8100)により照射電流3×10
−7A、加速電圧15kVで電子線を照射して反射電子検出器から得られた(倍率1000倍の)反射電子組成(COMPO)像(この実施例で得られたCOMPO像を
図1に示す)を、画像解析アプリケーション(画像編集・加工ソフトGIMP2.10.6)を使用して、(全ピクセルのうち最も高い輝度を255、最も低い輝度を0とすると、輝度が127以下のピクセルが黒、輝度が127を超えるピクセルが白になるように)階調を二値化し、銀の部分(白い部分)と炭素粒子の部分(黒い部分)に分離して、画像全体のピクセル数Xに対する炭素粒子の部分のピクセル数Yの比Y/Xとして算出した。その結果、複合めっき皮膜の表面の炭素粒子が占める割合(面積率)は、72面積%であった。また、複合めっき皮膜の表面は、ムラもなく、外観が良好であった。
【0037】
また、得られた複合めっき材について、レーザー顕微鏡(株式会社キーエンス製のVKX−110)により倍率100倍で撮影した複合めっき皮膜の表面の画像を解析アプリケーション(株式会社キーエンス製のVK−HIXAバージョン3.8.0.0)によりJIS B0601(2001年)に基づいて(銅合金板材の圧延方向に垂直な方向における)表面粗さを表すパラメータである算術平均粗さRaを算出したところ、1.1μmであった。
【0038】
また、得られた複合めっき材について、X線回折装置(XRD)(株式会社リガク製のRINT2100)を使用し、Co管球を用いて、管電圧20kV、管電流20mAの条件で、2θ法により得られたX線回折パターンから、複合めっき皮膜の表面におけるAgの{200}面のX線回折ピークの積分強度I{200}と{220}面のX線回折ピークの積分強度I{220}を測定し、これらの測定値を用いて、X線回折強度比I{200}/I{220}を求めたところ、2.4であった。
【0039】
また、厚さ0.2mmのCu−Ni−Sn−P合金からなる板材(1.0質量%のNiと0.9質量%のSnと0.05質量%のPを含み、残部がCuである銅合金の板材)(DOWAメタルテック株式会社製のNB109EH)に硬質Agめっき皮膜(株式会社サン工業製の(Sb3質量%含有する)硬質Agめっき皮膜(厚さ30μm、ビッカース硬さ180HV)を形成した硬質Agめっき材をインデント加工(内側R=1.0mm)して圧子として使用し、平板状の複合めっき材を評価試料として使用し、摺動摩耗試験機(株式会社山崎精機研究所製)により、評価試料に圧子を一定の加重(2N)で押し当てながら、素材が露出するまで往復摺動動作(摺動距離10mm、摺動速度3mm/s)を継続して、複合めっき材の磨耗状態を確認する磨耗試験を行うことにより、耐摩耗性の評価を行った。その結果、10,000回の往復摺動動作後に、マイクロスコープ(株式会社キーエンス製のVHX−1000)により複合めっき材の摺動痕の中心部を倍率200倍で観察したところ、(茶色の)素材が露出ていないことが確認され、また、複合めっき皮膜(の摺動痕中央部分の直径0.1mmの範囲)の厚さを蛍光X線膜厚計(株式会社日立ハイテクサイエンス製のFT9450)で測定したところ、4.1μmであり、耐摩耗性に優れていることがわかった。また、この摺動摩耗試験中に接触抵抗を測定したところ、接触抵抗の最大値は1.6mΩであった。
【0040】
[実施例2]
電流密度を1A/dm
2、電気めっき時間を450秒間とした以外は、実施例1と同様の方法により、複合めっき材を作製した。この複合めっき材の複合めっき皮膜の厚さを実施例1と同様の方法により測定したところ、4.9μmであった。
【0041】
このようにして得られた複合めっき材について、実施例1と同様の方法により、複合めっき皮膜の表面の炭素粒子が占める割合(面積率)を算出したところ、68面積%であった。また、複合めっき皮膜の表面は、ムラもなく、外観が良好であった。
【0042】
また、得られた複合めっき材について、実施例1と同様の方法により、算術平均粗さRaを算出したところ、1.2μmであった。また、得られた複合めっき材について、実施例1と同様の方法により、X線回折強度比I{200}/I{220}を求めたところ、6.1であった。さらに、得られた複合めっき材について、実施例1と同様の方法により、摺動摩耗試験を行って耐摩耗性の評価を行ったところ、10,000回の往復摺動動作後に、素材が露出することはなく、複合めっき皮膜の厚さは3.7μmであり、耐摩耗性に優れていることがわかった。また、この摺動摩耗試験中に接触抵抗を測定したところ、接触抵抗の最大値は1.2mΩであった。
【0043】
[実施例3]
実施例1と同様の素材を用意し、この素材をカソード、Ni電極板をアノードとして使用して、80g/Lのスルファミン酸ニッケルと45g/Lのホウ酸からなるニッケルめっき浴中において、液温45℃、電流密度4A/dm
2で攪拌しながら30秒間電気めっき(Niめっき)を行って、素材上に厚さ0.2μmのNiめっき皮膜を形成した後、実施例1と同様の方法により、Agストライクめっきを行った。
【0044】
次に、スルホン酸系銀めっき液中のAg濃度を80g/Lとし、電流密度を7A/dm
2、電気めっき時間を75秒間とした以外は、実施例1と同様の方法により、複合めっき材を作製した。この複合めっき材の複合めっき皮膜の厚さを実施例1と同様の方法により測定したところ、5.2μmであった。
【0045】
このようにして得られた複合めっき材について、実施例1と同様の方法により、複合めっき皮膜の表面の炭素粒子が占める割合(面積率)を算出したところ、69面積%であった。また、複合めっき皮膜の表面は、ムラもなく、外観が良好であった。
【0046】
また、得られた複合めっき材について、実施例1と同様の方法により、算術平均粗さRaを算出したところ、0.7μmであった。また、得られた複合めっき材について、実施例1と同様の方法により、X線回折強度比I{200}/I{220}を求めたところ、4.4であった。さらに、得られた複合めっき材について、実施例1と同様の方法により、摺動摩耗試験を行って耐摩耗性の評価を行ったところ、10,000回の往復摺動動作後に、素材が露出することはなく、複合めっき皮膜の厚さは3.3μmであり、耐摩耗性に優れていることがわかった。また、この摺動摩耗試験中に接触抵抗を測定したところ、接触抵抗の最大値は1.3mΩであった。
【0047】
[実施例4]
素材として厚さ0.3mmのタフピッチ銅(C1100R−1/2H)からなる板材を使用した以外は、実施例1と同様の方法により、複合めっき材を作製した。この複合めっき材の複合めっき皮膜の厚さを実施例1と同様の方法により測定したところ、5.0μmであった。
【0048】
このようにして得られた複合めっき材について、実施例1と同様の方法により、複合めっき皮膜の表面の炭素粒子が占める割合(面積率)を算出したところ、67面積%であった。また、複合めっき皮膜の表面は、ムラもなく、外観が良好であった。
【0049】
また、得られた複合めっき材について、実施例1と同様の方法により、算術平均粗さRaを算出したところ、0.9μmであった。また、得られた複合めっき材について、実施例1と同様の方法により、X線回折強度比I{200}/I{220}を求めたところ、2.2であった。さらに、得られた複合めっき材について、実施例1と同様の方法により、摺動摩耗試験を行って耐摩耗性の評価を行ったところ、10,000回の往復摺動動作後に、素材が露出することはなく、複合めっき皮膜の厚さは3.8μmであり、耐摩耗性に優れていることがわかった。また、この摺動摩耗試験中に接触抵抗を測定したところ、接触抵抗の最大値は1.4mΩであった。
【0050】
[実施例5]
実施例1と同様の素材を用意し、この素材をカソード、Ni電極板をアノードとして使用して、80g/Lのスルファミン酸ニッケルと45g/Lのホウ酸からなるニッケルめっき浴中において、液温45℃、電流密度4A/dm
2で攪拌しながら120秒間電気めっき(Niめっき)を行って、素材上に厚さ1.1μmのNiめっき皮膜を形成した後、実施例1と同様の方法により、Agストライクめっきを行い、その後、実施例1と同様の方法により、複合めっき材を作製した。この複合めっき材の複合めっき皮膜の厚さを実施例1と同様の方法により測定したところ、5.2μmであった。
【0051】
このようにして得られた複合めっき材について、実施例1と同様の方法により、複合めっき皮膜の表面の炭素粒子が占める割合(面積率)を算出したところ、71面積%であった。また、複合めっき皮膜の表面は、ムラもなく、外観が良好であった。
【0052】
また、得られた複合めっき材について、実施例1と同様の方法により、算術平均粗さRaを算出したところ、1.0μmであった。また、得られた複合めっき材について、実施例1と同様の方法により、X線回折強度比I{200}/I{220}を求めたところ、2.3であった。さらに、得られた複合めっき材について、実施例1と同様の方法により、摺動摩耗試験を行って耐摩耗性の評価を行ったところ、10,000回の往復摺動動作後に、素材が露出することはなく、複合めっき皮膜の厚さは3.9μmであり、耐摩耗性に優れていることがわかった。また、この摺動摩耗試験中に接触抵抗を測定したところ、接触抵抗の最大値は1.5mΩであった。
【0053】
[比較例1]
実施例1と同様の素材を用意し、この素材をカソード、白金で被覆したチタン電極板をアノードとして使用して、3g/Lのシアン銀カリウムと100g/Lのシアン化カリウムを含む水溶液からなるシアン系Agストライクめっき液中において、液温25℃、電流密度3A/dm
2で10秒間電気めっき(Agストライクめっき)を行った。
【0054】
次に、実施例1の酸化処理を行った炭素粒子を、100g/Lのシアン銀カリウムと120g/Lのシアン化カリウムと光沢剤として4mg/Lのシアン化セレン酸カリウムとを含む水溶液からなるシアン系銀めっき液に添加して、複合めっき液として使用した以外は、実施例1と同様の方法により、複合めっき材を作製した。この複合めっき材の複合めっき皮膜の厚さを実施例1と同様の方法により測定したところ、4.9μmであった。
【0055】
このようにして得られた複合めっき材について、実施例1と同様の方法により、複合めっき皮膜の表面の炭素粒子が占める割合(面積率)を算出したところ、43面積%であった。また、複合めっき皮膜の表面は、ムラもなく、外観が良好であった。なお、この比較例で得られたCOMPO像を
図2に示す
【0056】
また、得られた複合めっき材について、実施例1と同様の方法により、算術平均粗さRaを算出したところ、0.7μmであった。また、得られた複合めっき材について、実施例1と同様の方法により、X線回折強度比I{200}/I{220}を求めたところ、13.1であった。さらに、得られた複合めっき材について、実施例1と同様の方法により、摺動摩耗試験を行って耐摩耗性の評価を行ったところ、10,000回の往復摺動動作後に、素材が露出し、複合めっき皮膜の厚さは0.3μmであり、耐摩耗性が悪いことがわかった。また、この摺動摩耗試験中に接触抵抗を測定したところ、接触抵抗の最大値は1.4mΩであった。
【0057】
[比較例2]
炭素粒子の酸化処理を行わなかった以外は、実施例1と同様の方法により、複合めっき材を作製した。この複合めっき材の複合めっき皮膜の厚さを実施例1と同様の方法により測定したところ、5.1μmであった。
【0058】
このようにして得られた複合めっき材について、実施例1と同様の方法により、複合めっき皮膜の表面の炭素粒子が占める割合(面積率)を算出したところ、20面積%であった。また、複合めっき皮膜の表面は、ムラもなく、外観が良好であった。
【0059】
また、得られた複合めっき材について、実施例1と同様の方法により、算術平均粗さRaを算出したところ、0.8μmであった。また、得られた複合めっき材について、実施例1と同様の方法により、X線回折強度比I{200}/I{220}を求めたところ、3.1であった。さらに、得られた複合めっき材について、実施例1と同様の方法により、摺動摩耗試験を行って耐摩耗性の評価を行ったところ、10,000回の往復摺動動作で素材が露出し、複合めっき皮膜の厚さは0.2μmであり、耐摩耗性が悪いことがわかった。また、この摺動摩耗試験中に接触抵抗を測定したところ、接触抵抗の最大値は2.0mΩであった。
【0060】
これらの実施例および比較例の複合めっき材の製造条件および特性を表1〜表2に示す。
【0061】
【表1】
【0062】
【表2】