特許第6805609号(P6805609)IP Force 特許公報掲載プロジェクト 2015.5.11 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ アイシン精機株式会社の特許一覧
<>
  • 特許6805609-車高調整装置 図000002
  • 特許6805609-車高調整装置 図000003
  • 特許6805609-車高調整装置 図000004
  • 特許6805609-車高調整装置 図000005
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6805609
(24)【登録日】2020年12月8日
(45)【発行日】2020年12月23日
(54)【発明の名称】車高調整装置
(51)【国際特許分類】
   B60G 17/016 20060101AFI20201214BHJP
   B60G 17/015 20060101ALI20201214BHJP
【FI】
   B60G17/016
   B60G17/015 C
【請求項の数】6
【全頁数】18
(21)【出願番号】特願2016-147583(P2016-147583)
(22)【出願日】2016年7月27日
(65)【公開番号】特開2018-16187(P2018-16187A)
(43)【公開日】2018年2月1日
【審査請求日】2019年6月10日
(73)【特許権者】
【識別番号】000000011
【氏名又は名称】アイシン精機株式会社
(74)【代理人】
【識別番号】110002147
【氏名又は名称】特許業務法人酒井国際特許事務所
(72)【発明者】
【氏名】近藤 佑介
(72)【発明者】
【氏名】荻野 淳人
【審査官】 高橋 武大
(56)【参考文献】
【文献】 独国特許出願公開第102012015791(DE,A1)
【文献】 特開2015−105006(JP,A)
【文献】 特開2002−337531(JP,A)
【文献】 特開2004−161259(JP,A)
【文献】 特開2009−040386(JP,A)
【文献】 特開2004−352056(JP,A)
【文献】 特開2000−322695(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B60G 1/00−99/00
(57)【特許請求の範囲】
【請求項1】
圧縮状態で空気を貯留可能な圧力タンクと、
車両の各車輪に対応して設けられて、前記圧力タンクから前記空気が供給されることにより、または前記圧力タンクに前記空気を戻すことにより前記各車輪における車高を個別に調整する複数の車高調整部と、
前記車両の走行中における旋回経路情報を取得する情報取得部と、
前記車両が旋回するときに前記旋回経路情報に基づく傾斜姿勢になるように旋回外側の前記車高調整部における車高を旋回内側の前記車高調整部における車高より高くする制御部と、
を備え
前記制御部は、前記車両の旋回中の車高調整を車高調整開始から所定期間経過した場合に終了し、その車高による前記傾斜姿勢を維持する車高調整装置。
【請求項2】
前記情報取得部は、前記車両の旋回開始位置と旋回終了位置を取得する請求項1に記載の車高調整装置。
【請求項3】
前記車両が旋回するときの地図上の位置とその位置における前記車両の傾斜姿勢とを対応付けて保持する記憶部を、さらに備え、
前記情報取得部は、前記車両の現在位置情報を取得し、当該現在位置情報から前記車両の走行経路上の旋回開始位置と旋回終了位置とを取得し、さらに前記現在位置情報に対応する前記傾斜姿勢を前記記憶部から取得する、請求項2に記載の車高調整装置。
【請求項4】
車両の各車輪に対応して設けられて、前記各車輪における車高を個別に調整する複数の車高調整部と、
前記車両の現在位置情報を取得する情報取得部と、
前記車両が旋回するときの地図上の位置とその位置における前記車両の傾斜姿勢とを対応付けて保持する記憶部と、
前記車両が旋回するときに前記現在位置情報に対応する前記傾斜姿勢を前記記憶部から取得し、前記傾斜姿勢になるように旋回外側の前記車高調整部における車高を旋回内側の前記車高調整部における車高より高くする制御部と、
を備え
前記制御部は、前記車両の旋回中の車高調整を車高調整開始から所定期間経過した場合に終了し、その車高による前記傾斜姿勢を維持する車高調整装置。
【請求項5】
前記制御部は、前記傾斜姿勢になるように前記複数の車高調整部のうち旋回外側の前記車高調整部における車高を旋回内側の前記車高調整部における車高より上昇させる請求項1から請求項のいずれか1項に記載の車高調整装置。
【請求項6】
前記制御部は、前記車両の旋回中の車高調整を前記傾斜姿勢に到達した場合に終了し、その車高による前記傾斜姿勢を維持する請求項1から請求項のいずれか1項に記載の車高調整装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明の実施形態は、車高調整装置に関する。
【背景技術】
【0002】
従来、空気ばね等を備えるサスペンションを有する車両がある。また、空気ばねを利用した車高調整装置を搭載する車両がある。車高調整装置は、一般的には、車両が停止中であることを条件に車高調整を行い、例えば、乗降動作や荷物の積み降ろし動作を容易にしている。また、走行路面の状態に応じて車高を調整する場合もある。また、旋回走行中に車高調整を実行することにより、より安定した旋回走行性を提供しようとする技術が提案されている。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2013−154834号公報
【特許文献2】特許第4111036号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、旋回時の車高制御については、車高の制御幅や応答速度等に加え、走行安定性や運転フィーリング等の向上に関して改善の余地がある。
【0005】
そこで、本発明の課題の一つは、旋回走行時の車高制御をよりスムーズに行うことができるとともに、走行安定性の向上や運転フィーリングの向上ができる車高調整装置を提供することにある。
【課題を解決するための手段】
【0006】
本発明の実施形態に係る車高調整装置は、例えば、圧縮状態で空気を貯留可能な圧力タンクと、車両の各車輪に対応して設けられて、上記圧力タンクから上記空気が供給されることにより、または上記圧力タンクに上記空気を戻すことにより上記各車輪における車高を個別に調整する複数の車高調整部と、上記車両の走行中における旋回経路情報を取得する情報取得部と、上記車両が旋回するときに上記旋回経路情報に基づく傾斜姿勢になるように旋回外側の上記車高調整部における車高を旋回内側の上記車高調整部における車高より高くする制御部と、を備え、上記制御部は、上記車両の旋回中の車高調整を車高調整開始から所定期間経過した場合に終了し、その車高による上記傾斜姿勢を維持する。この構成によれば、例えば、圧力タンクに貯留された空気により各車輪における車高調整部で個別に車高調整が迅速に実施可能になり、旋回外側の車高が旋回内側の車高より高くなる傾斜姿勢、つまり旋回内側が低くなるような車両の傾斜姿勢が迅速に実現できる。その結果、旋回時に旋回外側に向かい発生する横G(遠心力)の影響が緩和され、旋回時の走行安定性や運転フィーリングが改善できる。また、この傾斜姿勢によって、旋回時に外輪にかかる荷重が内輪に移るので、4輪の輪荷重バランスが改善され、コーナーリングフォースの低下が防げ、車両安定性や車両安全性の向上に寄与できる。また、各車輪における車高を個別に調整することで旋回内側が低くかつ前傾に傾斜姿勢をとることができる。その結果、セルフアライニングトルクが軽減可能となり、旋回操作時のステアリングの操舵角および操舵力が少なくて済み、運転者の操作負担が軽減できる。また、例えば、旋回経路に対応する傾斜姿勢を実現する場合に、所定期間が経過したら車高がその状態で固定される。その結果、車両は、車高制御が開始されて所定期間経過後には、所望の傾斜姿勢が実現されたか否かに拘わらず、路面の僅かな凹凸状態等による過剰な車高の微調整が回避される。つまり、旋回経路の路面状態に拘わらず、一定のタイミングで車高制御が終了し、旋回時の運転フィーリングが改善できる。
【0007】
また、実施形態に係る車高調整装置の上記情報取得部は、例えば、上記車両の旋回開始位置と旋回終了位置を取得してもよい。この構成によれば、例えば、車両を適切なタイミングで旋回走行に適した傾斜姿勢に変更できるとともに、適切なタイミングで元の姿勢、例えば水平姿勢に戻すことができる。その結果、走行経路の形状に応じて走行安定性の向上ができるとともに、運転フィーリングの向上ができる。
【0008】
また、本発明の実施形態に係る車高調整装置は、例えば、上記車両が旋回するときの地図上の位置とその位置における上記車両の傾斜姿勢とを対応付けて保持する記憶部を、さらに備え、上記情報取得部は、上記車両の現在位置情報を取得し、当該現在位置情報から上記車両の走行経路上の旋回開始位置と旋回終了位置とを取得し、さらに上記現在位置情報に対応する上記傾斜姿勢を上記記憶部から取得する。この構成によれば、例えば、車両を適切なタイミングで旋回走行に適した傾斜姿勢に変更できる。
本発明の実施形態に係る車高調整装置は、例えば、車両の各車輪に対応して設けられて、上記各車輪における車高を個別に調整する複数の車高調整部と、上記車両の現在位置情報を取得する情報取得部と、上記車両が旋回するときの地図上の位置とその位置における上記車両の傾斜姿勢とを対応付けて保持する記憶部と、上記車両が旋回するときに上記現在位置情報に対応する上記傾斜姿勢を上記記憶部から取得し、上記傾斜姿勢になるように旋回外側の上記車高調整部における車高を旋回内側の上記車高調整部における車高より高くする制御部と、を備え、上記制御部は、上記車両の旋回中の車高調整を車高調整開始から所定期間経過した場合に終了し、その車高による前記傾斜姿勢を維持する。この構成によれば、例えば、車両が旋回するときの地図上の位置に対応する傾斜姿勢を実現するように各車輪で個別に車高調整が行われ、旋回外側の車高が旋回内側の車高より高くなる傾斜姿勢、つまり旋回内側が低くなるような車両の傾斜姿勢が迅速に実現できる。その結果、旋回時に旋回外側に向かい発生する横G(遠心力)の影響が緩和され、旋回時の走行安定性や運転フィーリングが改善できる。また、この傾斜姿勢によって、旋回時に外輪にかかる荷重が内輪に移るので、4輪の輪荷重バランスが改善され、コーナーリングフォースの低下が防げ、車両安定性や車両安全性の向上に寄与できる。また、各車輪における車高を個別に調整することで旋回内側が低くかつ前傾に傾斜姿勢をとることができる。その結果、セルフアライニングトルクが軽減可能となり、旋回操作時のステアリングの操舵角および操舵力が少なくて済み、運転者の操作負担が軽減できる。また、例えば、旋回経路に対応する傾斜姿勢を実現する場合に、所定期間が経過したら車高がその状態で固定される。その結果、車両は、車高制御が開始されて所定期間経過後には、所望の傾斜姿勢が実現されたか否かに拘わらず、路面の僅かな凹凸状態等による過剰な車高の微調整が回避される。つまり、旋回経路の路面状態に拘わらず、一定のタイミングで車高制御が終了し、旋回時の運転フィーリングが改善できる。
【0009】
また、実施形態に係る車高調整装置の上記制御部は、上記傾斜姿勢になるように上記複数の車高調整部のうち旋回外側の上記車高調整部における車高を旋回内側の上記車高調整部における車高より上昇させてもよい。この構成によれば、例えば、車高を下げる場合に比べて車高を上げる場合の方がより速い車高調整ができるとともに、車高調整範囲を広くすることができる。その結果、車両のより正確な傾斜姿勢を得ることができる。
【0010】
また、実施形態に係る車高調整装置の上記制御部は、例えば、上記車両の旋回中の車高調整を上記傾斜姿勢に到達した場合に終了し、その車高による上記傾斜姿勢を維持してもよい。この構成によれば、例えば、路面の旋回経路に対応する傾斜姿勢を実現する車高に到達した場合、車高がその状態で固定される。その結果、車両は、旋回経路に対応する傾斜姿勢が確実に実現できるとともに、その傾斜姿勢が実現できた後は路面の僅かな凹凸状態等による過剰な車高の微調整が回避され、旋回時の運転フィーリングが改善できる。
【図面の簡単な説明】
【0012】
図1図1は、実施形態に係る車高調整装置を含む車高調整システムの一例が示されたブロック図である。
図2図2は、実施形態に係る車高調整装置の車高調整ECUのCPUで実現されるモジュールの一例を示すブロック図である。
図3図3は、実施形態に係る車高調整装置による車高調整処理の手順の一例を説明するフローチャートである。
図4図4は、実施形態に係る車高調整装置を搭載する車両が非旋回領域と旋回領域を含む走行経路を走行する場合の車高制御状態の一例を説明する図である。
【発明を実施するための形態】
【0013】
以下、本発明の例示的な実施形態が開示される。以下に示される実施形態の構成、ならびに当該構成によってもたらされる作用および結果(効果)は、あくまで一例である。本発明は、以下の実施形態に開示される構成以外によっても実現可能であるとともに、基本的な構成によって得られる種々の効果(派生的な効果も含む)を得ることが可能である。
【0014】
図1は、実施形態に係る車高調整装置を含む車高調整システム10の構成を説明する図である。なお、本実施形態の車高調整システム10は、車両が旋回走行時に自動的に走行安定性や運転フィーリングを改善するような車高調整を行うことができる。また、車高調整システム10は、車両の停止時に乗員の乗り降りや荷物の積み降ろしを容易にしたり、これから走行する領域の路面状態(整地路または不整地路等)に適した車高にしたりする車高調整を例えばスイッチ操作等により行うことができる。
【0015】
図示を省略した車両の各車輪には、それぞれ車高調整部として機能する空気ばね12FR,12FL,12RR,12RL(以下、各空気ばねを区別しない場合は単に「空気ばね12」と示す場合もある)が接続されている。各空気ばね12は、作動流体(例えば、空気)の給排にしたがって車両の車体に対して車輪の懸架状態を変化させる。また、空気ばね12内に圧縮状態で封入された空気による弾性により車両の振動を吸収する機能を有する。なお、空気ばね12FR,12FLは、前輪車高調整部という場合もある。また、空気ばね12RR,12RLは、後輪車高調整部という場合もある。空気ばね12は、公知の構造が利用可能である。空気ばね12は、空気の弾性を利用するため金属ばねに比べて細かい振動を吸収しやすい。また、空気圧を制御することにより車高を一定に保つ、または所望の車高に調整したり、ばね定数を所望の値に変更したりすることができる。
【0016】
前輪車高調整部である空気ばね12FR,12FLは、車高調整バルブ14FR,14FLを介して空気が流れる主流路16に接続されている。同様に、後輪車高調整部である空気ばね12RR,12RLは、車高調整バルブ14RR,14RLを介して空気が流れる主流路16に接続されている。車高調整バルブ14FR,14FL,14RR,14RLを区別しない場合は単に「車高調整バルブ14」と示す場合もある。また、本実施形態において、空気ばね12と車高調整バルブ14とを併せて車高調整部という場合もある。
【0017】
本実施形態においては、車高調整バルブ14FR,14FLは、例えば金属や樹脂で形成される流路ブロック内に埋め込み配置されて、前輪バルブユニット18aを構成している。同様に、車高調整バルブ14RR,14RLは、流路ブロック内に埋め込み配置されて後輪バルブユニット18bを構成している。なお、別の実施形態では、各車高調整バルブ14を個別に配置してもよい。この場合、各車高調整バルブ14のレイアウトの自由度が向上する。また、4個の車高調整バルブ14を纏めてユニット化してもよい。この場合、ユニット化による部品点数の削減に寄与できる。
【0018】
図1に示すように、前輪バルブユニット18aと後輪バルブユニット18bを別々のユニットで構成することで、前輪バルブユニット18aを前輪側に配置可能になる。その結果、前輪バルブユニット18aから前輪側の各空気ばね12への流路配管の長さを、全ての車高調整バルブ14を纏めてユニット化する場合に比べて短くすることができる。同様に、後輪バルブユニット18bを後輪側に配置可能となり、後輪バルブユニット18bから後輪側の各空気ばね12への流路配管の長さを、全ての車高調整バルブ14を纏めてユニット化する場合に比べて短くすることができる。その結果、流路配管の配索が容易になるとともに、流路配管の長さが短くなることで当該流路配管の破損等のリスクも軽減できる。
【0019】
前輪バルブユニット18aの一端面には、主流路16が接続される第1ポート18a1が形成され、前輪バルブユニット18aの内部には、当該第1ポート18a1を一端とし、他端を第2ポート18a2とする主流路チャネル20が貫通形成されている。前輪バルブユニット18aの内部において、主流路チャネル20から副流路チャネル22が2本分岐形成されている。そして、車高調整バルブ14FRの一端は、副流路チャネル22のうち1本に接続され、車高調整バルブ14FRの他端は、第3ポート18a3を介して空気ばね12FRに接続されている。同様に、車高調整バルブ14FLの一端は、副流路チャネル22のもう1本に接続され、車高調整バルブ14FLの他端は、第4ポート18a4を介して空気ばね12FLに接続されている。
【0020】
第2ポート18a2には、連通用主流路16a(主流路16)が接続されている。この連通用主流路16aは、後輪バルブユニット18bの第1ポート18b1に接続されている。後輪バルブユニット18bの内部には、第1ポート18b1を一端とする主流路チャネル20が形成されている。後輪バルブユニット18bの内部にも、主流路チャネル20から副流路チャネル22が2本分岐形成されている。そして、車高調整バルブ14RRの一端は、副流路チャネル22のうち1本に接続され、車高調整バルブ14RRの他端は、第2ポート18b2を介して空気ばね12RRに接続されている。車高調整バルブ14RLの一端は、副流路チャネル22のもう1本に接続され、車高調整バルブ14RLの他端は、第3ポート18b3を介して空気ばね12RLに接続されている。
【0021】
なお、図1の場合、前輪バルブユニット18aは4ポートタイプを用い、後輪バルブユニット18bは3ポートタイプを用いた例を示したが、例えば、前輪側と後輪側とで、同じ4ポートタイプのバルブユニットを用いることも可能である。後輪バルブユニット18bとして前輪バルブユニット18aと同じ4ポートタイプを用いる場合は、第2ポート18a2に対応するポートをプラグキャップ(メクラ栓)で封止する。この場合、バルブユニットの共通化による部品種類の低減、設計コストの低減等に寄与することができる。
【0022】
各車高調整バルブ14(14FR,14FL,14RR,14RL)は、同一タイプの開閉バルブが利用可能であり、例えばON/OFF制御されるソレノイドおよびスプリングを有している。何れの制御バルブもソレノイドが非通電状態にある場合に閉弁状態とされる常閉型電磁制御バルブとすることができる。
【0023】
主流路16は、回路バルブブロック24及びタンク接続主流路16bを介して圧縮状態の空気の貯留が可能な圧力タンク26に接続されている。回路バルブブロック24は、コンプレッサ流出流路28aを介してコンプレッサユニット30の流出側に接続されている。また、回路バルブブロック24は、コンプレッサ流入流路28bを介してコンプレッサユニット30の流入側に接続されている。回路バルブブロック24は、複数の開閉バルブ、例えば4個の開閉バルブを含む弁体ブロックとして構成されている。具体的に回路バルブブロック24は、第1開閉バルブ24a、第2開閉バルブ24b、第3開閉バルブ24c、第4開閉バルブ24dで構成されている。第1開閉バルブ24a及び第2開閉バルブ24bは、一端側がタンク接続主流路16b(主流路16)を介して圧力タンク26に接続される。第3開閉バルブ24cは、一端側がコンプレッサ流出流路28aを介してコンプレッサユニット30の流出側と接続されるとともに第2開閉バルブ24bの他端側に接続される。また、第3開閉バルブ24cの他端側が空気ばね12側(車高調整部側、前輪バルブユニット18a側)に接続されている。第4開閉バルブ24dは、一端側がコンプレッサ流入流路28bを介してコンプレッサユニット30の流入側に接続されるとともに第1開閉バルブ24aの他端側に接続される。また、第4開閉バルブ24dの他端側が空気ばね12側(車高調整部側、前輪バルブユニット18a側)と接続されている。
【0024】
回路バルブブロック24に含まれる第1開閉バルブ24a、第2開閉バルブ24b、第3開閉バルブ24c、第4開閉バルブ24dは、同一タイプの開閉バルブが利用可能であり、例えばON/OFF制御されるソレノイドおよびスプリングを有している。何れの開閉バルブもソレノイドが非通電状態にある場合に閉弁状態とされる常閉型電磁制御バルブとすることができる。
【0025】
回路バルブブロック24は、圧力タンク26側の圧力を検出する第1圧力センサ32a及び空気ばね12側(車高調整部側、前輪バルブユニット18a側)の圧力を検出する第2圧力センサ32bを含む。第1圧力センサ32aは、例えば、第1開閉バルブ24a及び第2開閉バルブ24bが閉弁状態の場合、圧力タンク26側の静的圧力を正確に検出できる。また、第1開閉バルブ24aと第2開閉バルブ24bの少なくとも一方が開弁して空気が流動している場合は圧力タンク26側の動的圧力を検出できる。同様に、第2圧力センサ32bは、第3開閉バルブ24c及び第4開閉バルブ24dを閉弁状態にして、少なくとも前輪側の車高調整バルブ14FRまたは車高調整バルブ14FLを開弁状態にすれば、空気ばね12側の静的圧力を測定できる。また、第2圧力センサ32bは、第3開閉バルブ24c及び第4開閉バルブ24dを閉弁状態にするとともに、車高調整バルブ14RR及び車高調整バルブ14RLを閉弁状態にして、車高調整バルブ14FRまたは車高調整バルブ14FLの一方を開弁状態にする。その結果、前輪側の空気ばね12FRまたは空気ばね12FLのいずれか一方の静的圧力が検出できる。また車高調整バルブ14FR及び車高調整バルブ14FLの両方を開弁状態にすることで空気ばね12FR,12FL両方の平均静的圧力が検出できる。また、第2圧力センサ32bは、第3開閉バルブ24c及び第4開閉バルブ24dを閉弁状態にするとともに、車高調整バルブ14FR及び車高調整バルブ14FLを閉弁状態にして、車高調整バルブ14RRまたは車高調整バルブ14RLの一方を開弁状態にする。その結果、後輪側の空気ばね12RRまたは空気ばね12RLのいずれか一方の静的圧力が検出できる。また車高調整バルブ14RR及び車高調整バルブ14RLの両方を開弁状態にすることで空気ばね12RR,12RL両方の平均静的圧力が検出できる。さらに、第2圧力センサ32bは、第3開閉バルブ24c及び第4開閉バルブ24dを閉弁状態にするとともに、車高調整バルブ14FR、車高調整バルブ14FL、車高調整バルブ14RR、車高調整バルブ14RLを開弁状態にする。その結果、全ての車輪に対応する空気ばね12FR,12FL,12RR,12RLの全体としての静的圧力が検出できる。また、第2圧力センサ32bは、第3開閉バルブ24cや第4開閉バルブ24dが開弁状態の場合、空気ばね12側(車高調整部側、前輪バルブユニット18a及び後輪バルブユニット18b側)の動的圧力の測定が可能である。
【0026】
このように、第1圧力センサ32aは、回路バルブブロック24の上流側(例えば圧力タンク26側)の圧力(静的圧力または動的圧力)を検出可能であり、第2圧力センサ32bは、回路バルブブロック24の下流側(例えば空気ばね12側)の圧力(静的圧力または動的圧力)を検出可能である。後述するが、圧力タンク26側の圧力と空気ばね12側の圧力の圧力差(差圧)により空気を圧力タンク26側から空気ばね12側へ流動させることで車高調整ができる。なお、圧力タンク26側と空気ばね12側の圧力差が小さい場合は車高調整のための空気の流動が十分に行えなくなる場合がある。この場合、コンプレッサユニット30の駆動により強制的に空気を流動させて、各空気ばね12の駆動制御を行うことができる。
【0027】
圧力タンク26は、例えば、金属製または樹脂製で、空気ばね12による車高調整制御時及び非制御時を含め流路系内で発生する圧力に十分に耐え得る耐圧性と容量を有している。また、圧力タンク26は、タンク本体26aの内圧が何らかの原因により設定圧(予め試験等により設定した圧力)以上になった場合に減圧するためのリリーフバルブ26bを有する。
【0028】
コンプレッサユニット30は、モータ34により駆動するコンプレッサ36、ドライヤ38、オリフィス40a及び逆止弁40bで構成される絞り機構40を主要構成としている。図1の場合、この他、リリーフバルブ42、逆止弁44,46,48、フィルタ50,52等を含む例を示している。
【0029】
コンプレッサユニット30は、車高上昇制御時に圧力タンク26側と空気ばね12側との圧力差が所定値(予め試験等により設定した値)以下になった場合や、車高下降制御時に空気ばね12側から圧力タンク26へ空気を汲み上げる(戻す)場合にモータ34によりコンプレッサ36を動作させて空気を圧送する。なお、本実施形態の車高調整システム10は、経路内の空気(当初から封入された空気)を圧力タンク26側と空気ばね12側との間で移動させることで車高調整を行うクローズドタイプのシステム(閉鎖型急速車高調整タイプの車高調整システム)である。したがって、空気ばね12を急速に伸長させることが可能であり、走行中でもその状況に応じて迅速な車高制御が実現できる。また、クローズドタイプの装置の場合、基本的には、システム内に外気を取り込む必要がなく、湿度変動等の環境変化はないと見なせる。したがって、クローズドタイプのシステムの場合、基本的には、ドライヤ38や絞り機構40は省略することができる。ただし、何らかの原因によりシステム内の空気が外部に漏れてしまう場合がある。そのような場合は、フィルタ52及び逆止弁48を介して外部から雰囲気(外気)を取り込み、システム内の空気を補充する。この場合、雰囲気(外気)は車高調整システム10内の構成部品に不利となる水分(湿気)を含んでいる場合がある。そのため、図1に示す車高調整システム10は、コンプレッサ36の下流側に、取り込んだ雰囲気の湿気を所定量取り除くドライヤ38や当該ドライヤ38における雰囲気の通過速度を調整するための絞り機構40が設けられている。なお、車高調整システム10内の圧力が何らかの原因で制限圧を超えた場合に減圧するために、コンプレッサユニット30はリリーフバルブ42を有している。このリリーフバルブ42は、例えばON/OFF制御されるソレノイドおよびスプリングを有し、ソレノイドが非通電状態にある場合に閉弁状態とされる常閉型電磁制御バルブとすることができる。なお、本実施形態のリリーフバルブ42は、非通電時の閉弁状態をいかなる場合も維持するものではなく、車高調整システム10内の圧力が制限圧(予め試験等により設定した圧力)を超えた場合に大気開放方向に空気の流動を許容する逆止弁54を含む。例えば、何らかの不具合が生じて車高調整システム10の内部圧力が制限圧を超えた場合は、逆止弁54の付勢力に逆らい開弁状態となり、自動的に制限圧以下になるように減圧が行われる。なお、リリーフバルブ42は、後述する車高調整ECUからの制御信号に基づいて開弁状態に移行することも可能で、制限圧に拘わらず、車高調整システム10の内部圧力を減圧することができる。
【0030】
このように構成される前輪バルブユニット18a、後輪バルブユニット18b、回路バルブブロック24、コンプレッサユニット30等は、車内ネットワーク60を介して電気的に接続された車高調整ECU62(electronic control unit)から送られる制御信号によって制御される。車内ネットワーク60は、例えば、CAN(controller area network)として構成されている。車内ネットワーク60には、車高調整ECU62の他、ナビゲーションECU64、表示ECU66等の制御ユニットやモニタ装置68等が電気的に接続され、相互に制御信号やデータ(情報)の送受を行っている。
【0031】
車高調整ECU62は、車内ネットワーク60を介して取得した車高調整要求や各空気ばね12の伸縮(車高)状態を検出する車高センサ70の検出結果や第1圧力センサ32a及び第2圧力センサ32bの検出結果等に基づいて、車高調整バルブ14FR,14FL,14RR,14RL、第1開閉バルブ24a、第2開閉バルブ24b、第3開閉バルブ24c、第4開閉バルブ24d、リリーフバルブ42等の開閉制御やモータ34の駆動制御を行う。車高調整ECU62は、CPU62a(central processing unit)や、ROM62b(read only memory)、RAM62c(random access memory)、SSD62d(solid state drive、フラッシュメモリ)等の記憶装置(記憶部)を有する。CPU62aは、例えば、ROM62b等の不揮発性の記憶装置にインストールされ記憶されたプログラムを読み出し、当該プログラムにしたがって演算処理を実行することで、上述した各バルブやモータの制御量を決定するとともに、その制御量に基づいて、各空気ばね12の伸縮制御を行い各車輪における車高制御を実行する。CPU62aの詳細な構成と機能については後述する。RAM62cは、CPU62aでの演算で用いられる各種のデータを一時的に記憶する。また、SSD62dは、書き換え可能な不揮発性の記憶部であって、車高調整ECU62の電源がオフされた場合にあってもデータを記憶することができる。なお、操作部62eを操作することにより、手動で車高調整を実行することができる。操作部62eは、例えば、押しボタンやトグルスイッチ、ロータリスイッチ等であり、整地路と不整地路とで車高を手動で切り替えたり、乗員の好みに応じて車高の調整を行ったり、乗降や荷物の積み降ろしに適した車高にする場合に用いる。また、車高の手動調整と自動調整の切り替えも操作部62eを用いて行ってもよい。
【0032】
ナビゲーションECU64は、CPU64aや、ROM64b、RAM64c、SSD64d等の記憶装置(記憶部)を有する。CPU64aは、例えば、ROM64b等の不揮発性の記憶装置にインストールされ記憶されたプログラムを読み出し、当該プログラムにしたがって演算処理を実行することで、GPS受信部64eを介して取得したGPS信号に基づく自車の現在位置の取得、現在位置から目的地までの移動経路の算出、移動経路周辺の施設の案内、および目的地までの誘導等を実行する。RAM64cは、CPU64aでの演算で用いられる各種のデータを一時的に記憶する。また、SSD64dは、書き換え可能な不揮発性の記憶部であって、ナビゲーションECU64の電源がオフされた場合にあってもデータを記憶することができる。ナビゲーションに用いる地図情報は、例えばSSD64dに保持され、ナビゲーション処理の過程や経路表示の際に読み出されて利用されるとともに、適宜更新され適切な地図情報が提供されるようになっている。また、後述するが、ナビゲーションECU64が取得する自車の現在位置と地図情報とを用いて、車高調整ECU62は、旋回走行時の車高制御の開始位置と終了位置とを取得することができる。
【0033】
表示ECU66は、モニタ装置68の表示装置68aで表示される画像処理を実行する。表示装置68aは、車室内の運転席の周辺、例えばダッシュボード等に配置された、例えば、LCD(liquid crystal display)や、OELD(organic electroluminescent display)等である。表示装置68aは、例えば、タッチパネル等、透明な操作入力部68bで覆われている。乗員は、操作入力部68bを介して表示装置68aの表示画面に表示される画像を視認することができる。また、乗員は、表示装置68aの表示画面に表示される画像に対応した位置で手指等により操作入力部68bを触れたり押したり動かしたりして操作することで、操作入力を実行することができる。音声出力装置68cは、例えば、スピーカである。
【0034】
表示ECU66は、CPU66a、ROM66b、RAM66c、SSD66d、表示制御部66e、音声制御部66f等を有する。CPU66aは、例えば、表示装置68aで表示される画像に関連した画像処理を実行する。また、後述するが車高調整ECU62が撮像部66gで取得した撮像画像データに基づいて車高調整の開始や終了を決定する場合は、車高調整ECU62で利用可能な情報を生成する。CPU66aは、ROM66b等の不揮発性の記憶装置にインストールされ記憶されたプログラムを読み出し、当該プログラムにしたがって演算処理を実行することができる。RAM66cは、CPU66aでの演算で用いられる各種のデータを一時的に記憶する。SSD66dは、書き換え可能な不揮発性の記憶部であって、表示ECU66の電源がオフされた場合にあってもデータを記憶することができる。また、表示制御部66eは、表示ECU66での演算処理のうち、主として、表示装置68aで表示される画像データの合成等を実行する。また、音声制御部66fは、表示ECU66での演算処理のうち、主として、音声出力装置68cで出力される音声データの処理を実行する。なお、モニタ装置68は、例えば、ナビゲーションシステムやオーディオシステムと兼用されうる。
【0035】
車高調整ECU62、ナビゲーションECU64、表示ECU66において、CPU62a,64a,66aや、ROM62b,64b,66b、RAM62c,64c,66c等は、同一パッケージ内に集積されうる。また、各ECUは、CPUに替えて、DSP(digital signal processor)等の他の論理演算プロセッサや論理回路等が用いられる構成であってもよい。また、SSD62d,64d,66dに替えてHDD(hard disk drive)が設けられてもよいし、SSDやHDDは、ECUとは別に設けられてもよい。
【0036】
車内ネットワーク60には、この他、車高センサ70、車輪速センサ72、加速度センサ74、舵角センサ76等の各種センサが電気的に接続され信号の送受が行われている。
【0037】
車高センサ70(70a,70b,70c,70d)は、図示を省略した車体と車輪とを接続するサスペンションを構成するサスペンションアーム(ロアアームなど)に車輪ごとに接続され、サスペンションアームと車体との上下変位量を検出する。また、車高センサ70として、路面との距離を超音波やレーザで直接計測するタイプのものを用いてもよい。車高調整ECU62は、車高センサ70の検出値に基づき、前輪バルブユニット18a、後輪バルブユニット18b、回路バルブブロック24、コンプレッサユニット30等を制御して、各空気ばね12(12FR,12FL,12RR,12RL)の伸縮動作を制御する。例えば、車両の積載量や乗員数が変化した場合、その重量により車高が変化するが、空気ばね12の伸縮状態を制御すれば車両の車高をほぼ一定の高さに制御できる。また、空気ばね12は、車両の車速によって車高を変化させることが可能で、車速に応じた安定した走行を実現できる。さらに、空気ばね12は、乗員が乗降するときに車高を下げたり、荷物の積み降ろしのために荷台の高さを調節したりすることが可能であり、乗降動作や積み降ろし作業を容易に行わせることができる。また、路面に凹凸(例えば、岩や縁石、窪み等)が存在する場合、空気ばね12は、各車輪の車高を適宜変化させて、車両が極端に傾いたり、車体底部が路面に接触して走行不能になってしまったりすることを回避することができる。さらに、旋回走行中に旋回外側の空気ばね12を伸長させることにより、車両を旋回内側が低くなるように傾斜させて旋回走行に適した姿勢にすることができる。
【0038】
車輪速センサ72(72a,72b,72c,72d)は、各車輪に設けられ各車輪の回転量や単位時間当たりの回転数を検出するセンサであり、検出した回転数を示す車輪速パルス数を検出値として出力する。車高調整ECU62は、車輪速センサ72から取得した検出値に基づき、車両の車速や移動量などを演算し、各種制御を実行する。なお、車高調整ECU62は、車輪速センサ72(72a,72b,72c,72d)の検出値に基づいて車両の車速を算出する場合、4輪のうち最も小さな検出値の車輪の速度に基づき車両の車速を決定し、各種制御を実行する。また、車高調整ECU62は、4輪の中で他の車輪に比べて検出値が大きな車輪が存在する場合、例えば、他の車輪に比べて単位期間(単位時間や単位距離)の回転数が所定数以上多い車輪が存在する場合、その車輪はスリップ状態(空転状態)であると見なし、各種制御を実行する。
【0039】
本実施形態の車高調整システム10は、2個の加速度センサ74(74a,74b)を備える。加速度センサ74aは、例えば、車両の左右方向の加速度を検出するセンサであり、加速度センサ74bは、例えば、車両の前後方向の加速度を検出するセンサである。車高調整ECU62は、加速度センサ74a,74bの検出値に基づき、車両の左右方向の傾き(ロール角)や前後方向の傾き(ピッチ角)を算出する。
【0040】
舵角センサ76は、例えば、ステアリングホイールの操舵量を検出するセンサである。車高調整ECU62は、運転者によるステアリングの操舵量と操舵方向を舵角センサ76から取得して各種制御を実行する。なお、上述の説明では、各種センサの検出値に基づく演算を便宜上車高調整ECU62で行う例を示したが、これに限定されるものではない。例えば、センサの種類や検出値の用途に応じて他のECUで演算するようにしてもよい。
【0041】
車高調整ECU62に含まれるCPU62aは、車両の旋回走行時に自動的に最適な傾斜姿勢を実現するために、図2に示すように、情報取得部80、車高管理部82、計測部84、車速取得部86、車高制御部88等を含む。また、情報取得部80は、旋回開始位置取得部80a、旋回終了位置取得部80b等を含む。車高制御部88は、傾斜姿勢取得部88a、車高決定部88b、バルブ制御部88c等を含む。
【0042】
情報取得部80は、車両の走行中における旋回経路情報を取得する。例えば、地図情報を用いて旋回経路情報を取得することができる。情報取得部80は、ナビゲーションECU64がGPS受信部64eを介して取得した自車の現在位置情報と、SSD64dが保持する地図情報とを取得し、これから自車が走行すると予測される道路の形状(線形の形状、大きさ、曲率、曲線区間の長さ等)を取得する。また、旋回開始位置取得部80aは、自車の現在位置情報から走行経路の前方、例えば、ナビゲーションECU64が経路案内をしている経路の前方に旋回走行を必要とする道路が存在することを検出した場合、その経路上の旋回開始位置を地図情報から取得する。同様に、旋回終了位置取得部80bは、旋回開始位置取得部80aにより旋回開始位置を取得したときやその後の旋回走行が終了する前のタイミングで、旋回終了位置を走行経路の前方、例えば、経路案内されている経路の前方で旋回走行が終了すると見なせる旋回終了位置を地図情報から取得する。
【0043】
別の実施形態において、情報取得部80は、表示ECU66が撮像部66gから取得した撮像画像データに基づく画像情報を用いて旋回経路情報、すなわち道路の形状を取得することができる。表示ECU66のCPU66aは、撮像部66gが撮像した撮像画像データに基づく画像に対して、例えば、周知の白線認識処理等を施し、センターラインや車道外側線等を検出する。情報取得部80は、白線検出情報を取得するとともに、検出した白線の情報に基づき道路の形状(線形の形状、大きさ、曲率、曲線区間の長さ等)を取得する。また、旋回開始位置取得部80aは、自車前方の道路の形状(旋回経路)を取得し、白線の湾曲程度を予めSSD62d等に保持した閾値を比較し、湾曲程度が閾値以上の場合に湾曲の開始位置を旋回開始位置(制御開始位置)として取得する。同様に、旋回終了位置取得部80bは、旋回走行中に認識されている白線の湾曲状態が、閾値との比較に基づき解消されたと見なされる場合、その解消位置を旋回終了位置(制御終了位置)として取得する。なお、旋回経路情報の取得は、白線検出による取得に限定されるものではなく、種々の画像処理により取得することができる。例えば、道路の形状検出により湾曲状態を検出してもよいし、前方の道路形状を示す道路標識を検出することにより湾曲状態を検出してもよい。
【0044】
なお、GPS信号に基づく自車の現在位置と地図情報とを用いて、制御開始位置や制御終了位置を取得する場合、撮像画像データに基づく画像処理を用いる場合に比べて、より早いタイミングで制御開始位置や制御終了位置を取得することが可能になる。その結果、車高制御部88における演算時間に余裕を持たせることが可能になり、CPU62aの処理負荷を緩和できる。また、CPUの性能を引き下げても同じ処理が可能になり、部品コストの低減に寄与できる。また、別の例において、情報取得部80は、現在位置情報と地図情報とに基づく旋回経路情報の取得と、撮像画像データに基づく画像の画像処理による旋回経路情報の取得との両方を実行してもよい。この場合、制御開始位置や制御終了位置の精度をより向上させることができる。
【0045】
車高管理部82は、車高センサ70からの検出値に基づき、各車輪における現在の車高を取得し、車高制御部88に提供する。
【0046】
計測部84は、旋回走行が行われ、車高制御部88により自車を傾斜姿勢にするための車高調整が開始されてからの期間、例えば時間を計測する。つまり、旋回開始位置取得部80aが取得した旋回開始位置を自車が通過してからの時間を計測する。例えば、旋回走行時の傾斜姿勢を実現するために車高調整を行う場合、一例として各車輪における車高が目標車高に到達したか否かで傾斜姿勢が実現されたか否か(車高制御の終了)を判定することができる。ただし、この場合、路面の状況(例えば僅かな凹凸状態)によっては、車高が変化し空気ばね12の伸縮の収束に時間がかかる場合がある。その結果、なかなか車高制御が完了しないことがある。この場合の車高制御は、旋回走行時の傾斜姿勢を実現するための車高制御が概ね完了した後の微調整と見なすことができる。そこで、傾斜姿勢を実現する目標車高に到達したか否かを検出することに併せて、傾斜姿勢を実現するための車高調整が開始されてからの時間を計測し、所定時間(所定期間)が経過した場合には、所望の傾斜姿勢が実現できたと見なし、車高制御を終了させる。このような2通りの車高制御終了の判定基準を設けることにより、過剰な制御の継続を回避することが可能になる。例えば、いつまでも車高制御が終了しないという不具合を回避することができる。なお、車高制御を終了させるための所定期間とは、空気ばね12の伸縮制御速度に基づき予め決定することが可能で、例えば、空気ばね12が最短状態から最長状態に変化するのに必要となる時間、例えば5秒とすることができる。
【0047】
車速取得部86は、各車輪速センサ72の検出値に基づき、自車の現在の速度を取得する。本実施形態の車高制御は、主として、旋回走行時の走行安定性の向上や運転フィーリングの向上を目的として実行される。この場合、自車の車速が遅い場合、例えば30km/h未満の場合、その速度のまま旋回走行に移行した場合でもその旋回走行が原因で搭乗者に違和感を抱かせるような走行安定性の低下や、運転フィーリングの低下が発生する可能性は低いと考えられる。そして、搭乗者が必要性をあまり感じない場面で過剰に車高制御が実行された場合、バルブの動作音や空気ばね12の動作音が搭乗者に別の違和感を与えてしまう場合もある。したがって、車速取得部86が取得した車速が所定速度未満の場合、車高制御部88は走行中に傾斜姿勢にするための車高制御を非実行とすることで、過剰な制御を回避するとともに、過剰な制御による違和感を回避するようにすることができる。
【0048】
傾斜姿勢取得部88aは、自車が旋回走行を実施する場合に、情報取得部80が取得した情報に基づき傾斜姿勢(自車の傾斜角度)を取得する。例えば、道路の形状(線形の形状、大きさ、曲率、曲線区間の長さ等)と旋回時に最適に走行できる車両の傾斜姿勢との関係を予め試験等により決定しておき、SSD62d等の記憶装置に保持しておく。傾斜姿勢取得部88aは、SSD62dを参照し、情報取得部80が取得した道路の形状に対応する最適な旋回走行時の傾斜姿勢を取得する。
【0049】
車高決定部88bは、車高管理部82が取得している各車輪における現在の車高と傾斜姿勢取得部88aが取得した傾斜姿勢とに基づき、その傾斜姿勢を実現するための各車輪における車高を決定する。車高決定部88bは、例えば、旋回外輪側の前後の空気ばね12を伸長させて車両を傾斜させる。例えば、道路の形状が右カーブの場合、車高決定部88bは、旋回外側の空気ばね12FL,12RLの伸長量(車高)を空気ばね12FR,12RRの伸長状態を基準に決定する。空気ばね12は空気を排出して圧縮するより空気を供給して伸長させる場合の方がより速い車高調整が可能となり、旋回内側の空気ばね12の状態を維持し、旋回外側の空気ばね12を制御することにより車高調整範囲を広くすることができる。なお、実現すべき傾斜姿勢が大きい場合、例えば、旋回外側の空気ばね12を大きく伸長させる必要があり制御時間が長くなったり、現在の伸長状態からの変化幅では要求される傾斜姿勢が実現できなかったりすることがある。この場合、旋回外側の空気ばね12を伸長させるのと同時に旋回内側の空気ばね12を短縮させて、要求される傾斜姿勢を実現してもよい。
【0050】
バルブ制御部88cは、車高決定部88bが決定した各空気ばね12の伸長状態を実現するように、各バルブの開閉制御を行うタイミングや制御期間を決定して、各バルブを制御する。
【0051】
上述のように構成される車高調整システム10に実行される旋回走行時の車高制御の一例を図3のフローチャートおよび図4の旋回走行例を用いて説明する。なお、図3図4の説明では、一例として情報取得部80がナビゲーションECU64から自車位置を示すGPS座標を取得して、車高制御の開始位置および終了位置を決定する場合を説明する。また、図3に示すフローチャートは、所定の制御周期で繰り返し実行されるものとする。
【0052】
車高調整ECU62のCPU62aは、車両走行中、車速取得部86を介して自車の車速を継続的に取得するとともに(S100)、ナビゲーションECU64を介して、自車位置を示すGPS座標(GPS信号)を取得する(S102)。続いて、CPU62aは、車速取得部86を介して、現在の自車の車速が車高調整速を許可する車速(制御許可速度)か否かを確認する(S104)。車速が、例えば30km/h未満の場合、前述したように、その速度のまま旋回走行に移行した場合でも旋回走行が原因で搭乗者に違和感を抱かせるような走行安定性の低下や、運転フィーリングの低下が発生する可能性は低いと考えられる。そのため、車高制御部88は、現在の車速が制御許可車速(例えば、30km/h)以上の場合に限り、走行安定性の低下や、運転フィーリングの低下を回避するための走行時の車高調整制御を許可する(S104のYes)。
【0053】
車速が車高制御の許可速度以上の場合、車高制御部88は、情報取得部80が取得している自車の現在位置情報と、旋回開始位置取得部80aが取得した旋回経路情報、すなわち旋回開始位置(制御開始位置)とを比較する(S106)。そして、制御開始位置を自車が通過している場合(S106のYes)、車高制御部88は、旋回終了位置取得部80bが取得している旋回終了位置(制御終了位置)と自車の現在位置情報とを比較する(S108)。そして、制御終了位置をまだ自車が通過していない場合(S108のNo)、旋回走行時の車高調整を実行し、旋回走行に適した傾斜姿勢にするための傾斜制御をONするとともに(S110)、計測部84により制御開始からの経過時間の計測を行う(S112)。この時点で、傾斜姿勢取得部88aは、自車の現在位置情報と旋回経路情報、すなわちナビゲーションECU64が保持する地図情報とから、旋回走行する場合の道路の形状(線形の形状、大きさ、曲率、曲線区間の長さ等)に基づく自車の傾斜姿勢を取得し、車高決定部88bは、その傾斜姿勢を実現するための各車輪における車高(制御量)を取得する(S114)。
【0054】
車高制御部88は、計測部84を介して傾斜制御がONされてからの制御経過時間を取得し、制御時間T1(所定制御時間)が経過したか否かを確認する。また、車高管理部82は、現在の各車輪における車高を車高センサ70からの検出値に基づき取得し、傾斜姿勢を実現するための目標車高H1に到達したか否かを確認する(S116)。制御時間T1を経過していない、かつ目標車高H1に到達していない場合(S116のNo)、車高制御部88は、自車の旋回外側の車輪の車高が目標車高H1になるようにバルブ制御部88cを制御して当該旋回外輪側の車高の上昇制御を実行する(S118)。そして、このフローを一旦終了し、次の制御周期のときにS100からの処理を実行する。
【0055】
一方、S116において、制御時間T1を経過したか、目標車高H1に到達した場合(S116のYes)、車高制御部88は、現在の車高制御状態を保持する(S120)。つまり、旋回姿勢(傾斜姿勢)を保持するように、バルブ制御部88cは、各バルブを閉状態にして、このフローを一旦終了し、次の制御周期のときにS100からの処理を実行する。
【0056】
図4は、非旋回領域Lと旋回領域Rを含む走行経路90を車両92が走行する場合の各車輪94における車高制御状態の一例を説明する図であり、図3のフローチャートに対応してCPU62aの制御内容を説明する図である。非旋回領域Lを走行する車両92の各車輪94における車高は標準車高であり、本実施形態の旋回時の車高制御が実行されていない状態である。なお、標準車高とは、道路の状態に適した車高であり、予め設定された車高または、運転者の設定操作により決定されたデフォルトの車高である。なお、標準車高は、一般道路等での走行に適した第1標準車高と、高速道路等での走行に適した第1標準車高より低車高の第2標準車高等のように複数種類を準備してもよい。
【0057】
CPU62aは、車両92が非旋回領域Lにおいて制限許可速度以上で走行していることを検出している場合(S104のYes)、車両92が制御開始位置SLを通過し(S106のYes)、制御終了位置ELを通過していない場合(S108のNo)、傾斜制御を開始する(S110)。なお、CPU62aは、車両92が制御開始位置SL(制御終了位置EL)を通過したか否かは、例えば、自車位置を地図座標上で示す車両基準位置G(例えば車輪94a,94c(前輪)の車軸上の特定位置)が制御開始位置SL(制御終了位置EL)を通過したか否かで判定することができる。CPU62aは、車両92(車両基準位置G)が制御開始位置SLを通過した場合、旋回領域Rに進入したと見なし、旋回外輪(車輪94a,94b)における車高を上昇させて、傾斜姿勢取得部88aが取得した傾斜姿勢を実現するように車高調整を行う(S118)。この場合の車高の上昇制御は、車両92が、制御開始位置SLを通過後、制御時間T1が経過するか傾斜姿勢を実現するための目標車高H1に到達するまで継続される(S116のNo)。
【0058】
このように、旋回走行時に、車両92の傾斜姿勢を旋回外輪側の車高を上昇させて旋回内輪側が低くなるようにすることにより、重力の横力成分が旋回内側に向くように発生する。その結果、旋回時に旋回内側に向く横力成分が、旋回外側に向かい発生する横G(遠心力、横力)の一部を打ち消し、横Gの影響が緩和され、旋回時の運転フィーリングが改善できる。本実施形態の制御が行われない場合、旋回時に通常旋回外側の車高が低くなるように傾く。この場合、重力の横力成分が旋回外側に向くように発生し、旋回時に旋回外側に向かい発生する横Gに加算され、より大きな横G(遠心力、横力)が発生する。一方、本実施形態の制御により旋回内側が低くなるように傾けることにより制御を行わない場合に比べて、横Gに基づき搭乗者にかかる負担を軽減できたり、旋回時の走行安定性、運転フィーリングの改善ができたりする。また、旋回中(コーナーリング)中は旋回外側のコーナーリングフォースが頭打ちとなり、内外輪平均のコーナーリングフォースが落ち込む傾向がある。一方、本実際形態のように、旋回時に旋回外側の車高を旋回内側の車高より高くなるような傾斜姿勢を積極的に形成することにより、旋回時に外輪にかかる荷重が内輪に移る。その結果、4輪の輪荷重バランスが改善され、コーナーリングフォースの低下が防げ、車両安定性や車両安全性の向上に寄与できる。
【0059】
また、本実施形態の車高調整システム10の場合、各車輪における車高を個別に調整することが可能なので、旋回時に、旋回内側を低くかつ前傾に傾斜姿勢をとることができる。このとき、車両姿勢は旋回方向に向くことからセルフアライニングトルクが軽減され、それに伴い、旋回時のステアリングの操舵角および操舵力が少なく済ますことが可能になり、運転者の操作負担が軽減できる。
【0060】
なお、本実施形態の車高調整システム10の場合、旋回外輪側の車高上昇を旋回内輪側の車高調整に対して優先的に行うことにより、より速い車高調整ができるとともに、車高調整範囲を広くすることができる。
【0061】
なお、図4では、旋回走行中の傾斜姿勢を実現する車高調整の対象車輪94を黒塗りで示している。そして、制御時間T1を経過した、または目標車高H1に到達した場合(S116のYes)、バルブ制御部88cは、その時点での車高状態を維持するため各バルブを閉状態にする。つまり、制御時間T1を経過した場合、または目標車高H1に到達した場合は、それ以降、旋回走行時の傾斜姿勢の実現のための車高制御が非実行となり、路面の僅かな凹凸状態等による過剰な車高の微調整が行われなくなり、旋回時の運転フィーリングが改善できる。
【0062】
図3のフローチャートに戻り、S108で、車高制御部88は、旋回終了位置取得部80bが取得した旋回終了位置と自車(車両92)の現在位置情報とを比較し、制御終了位置を自車が通過したと見なした場合(S108のYes)、車高制御部88は、旋回走行時の傾斜制御をOFFするとともに(S122)、各車輪94における車高を旋回領域Rに進入する前の状態、つまり標準車高に戻し(S124)、このフローを一旦終了する。この場合、例えば、旋回外輪側の空気ばね12の伸縮状態を旋回内輪側の空気ばね12の伸縮状態に合わせるように制御され、次の制御周期のときにS100からの処理が継続的に実行される。その結果、車両92の車高は、非旋回領域Lの走行に適した水平車高とするように制御される。また、S106の処理で、制御開始位置を自車が通過していない場合(S106のNo)は、S122に移行して傾斜制御をOFFする。同様に、S104の処理で、現在の自車の車速が走行時の車高調整速を許可する車速(制御許可速度)未満の場合(S104のNo)、例えば30km/h未満の場合、S122に移行して傾斜制御をOFFする。
【0063】
図4に示すように、旋回外輪側の車高を上昇させて旋回走行している車両92が制御終了位置ELを通過したことを車高制御部88が確認した場合(S108のYes)、すなわち、車両92の車両基準位置Gが制御終了位置ELを通過した場合、車高制御部88は傾斜制御をOFFして(S122)、今まで上昇させていた旋回外輪における車高を、例えば、制御前の状態に戻す(S124)。その結果、車両92は、非旋回領域Lの道路を走行するのに適した車高で走行を継続することができる。
【0064】
このように、車両が旋回走行する場合に、旋回外側の車輪における車高を上昇させることで、車両が旋回内側の車高が相対的に低くなるような傾斜姿勢にすることが可能となり、旋回時に旋回外側に向かい発生する横G(遠心力)の影響が緩和され、旋回時の運転フィーリングが改善できる。また、この傾斜姿勢によって、旋回時に外輪にかかる荷重が内輪に移るので、4輪の輪荷重バランスが改善され、コーナーリングフォースの低下が防げ、車両安定性や車両安全性の向上に寄与できる。また、各車輪における車高を個別に調整することで旋回内側が低くかつ前傾に傾斜姿勢をとることができる。その結果、セルフアライニングトルクが軽減可能となり、旋回操作時のステアリングの操舵角および操舵力が少なくて済み、運転者の操作負担が軽減できる。また、車高調整を行う場合に、圧力タンク26に貯留した空気を用いるため、空気ばね12の伸縮を迅速に行うことができる。その結果、旋回走行時の傾斜姿勢の実現を迅速に行い、早急な走行安定性の向上および運転フィーリングの向上が可能になる。また、圧力タンク26に貯留した空気を用いるため、空気ばね12の伸縮幅の自由度、つまり傾斜姿勢の傾斜角度の自由度が向上し、種々の旋回経路に対応可能であり、走行安定性の向上および運転フィーリングの向上が容易に実現できる。また、本実施形態の車高調整システム10は、空気圧を用いたシステムなので、作動流体の配管として、樹脂管を用いることが可能となり、システムコストの低減やシステム重量の低減にも寄与できる。
【0065】
上述した実施形態では、計測部84は、車高調整が開始されてからの期間の計測の一例として、時間を計測する例を示したが、例えば、車高調整が開始されてからの移動距離(所定距離Pの位置)を計測してもよく同様の効果を得ることができる。
【0066】
また、上述した実施形態では、圧力タンク26に貯留した圧縮状態の空気を用いて、空気ばね12の伸縮制御を行う例を示したが、制御速度の確保ができる場合は、例えば、圧力タンク26を省略し、コンプレッサユニット30を用いて外気を取り入れて車高調整を行う、いわゆるオープンタイプのシステムを用いても同様の効果を得ることができる。
【0067】
本発明において実施形態及び変形例を説明したが、これらは、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
【符号の説明】
【0068】
10…車高調整システム(車高調整装置)、12…空気ばね、14,14FR,14FL,14RR,14RL…車高調整バルブ、18a…前輪バルブユニット、18b…後輪バルブユニット、24…回路バルブブロック、24a…第1開閉バルブ、24b…第2開閉バルブ、24c…第3開閉バルブ、24d…第4開閉バルブ、26…圧力タンク、60…車内ネットワーク、62…車高調整ECU、62a…CPU、62b…ROM、62c…RAM、62d…SSD、64…ナビゲーションECU、66…表示ECU、68…モニタ装置、70…車高センサ、72…車輪速センサ、80…情報取得部、80a…旋回開始位置取得部、80b…旋回終了位置取得部、82…車高管理部、84…計測部、86…車速取得部、88…車高制御部、88a…傾斜姿勢取得部、88b…車高決定部、88c…バルブ制御部。
図1
図2
図3
図4