特許第6806384号(P6806384)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社三葉電熔社の特許一覧

<>
  • 特許6806384-故障予測システム 図000002
  • 特許6806384-故障予測システム 図000003
  • 特許6806384-故障予測システム 図000004
  • 特許6806384-故障予測システム 図000005
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6806384
(24)【登録日】2020年12月8日
(45)【発行日】2021年1月6日
(54)【発明の名称】故障予測システム
(51)【国際特許分類】
   G06Q 10/04 20120101AFI20201221BHJP
   G06Q 10/00 20120101ALI20201221BHJP
   G06Q 30/02 20120101ALI20201221BHJP
【FI】
   G06Q10/04
   G06Q10/00 300
   G06Q30/02 480
【請求項の数】7
【全頁数】12
(21)【出願番号】特願2019-5088(P2019-5088)
(22)【出願日】2019年1月16日
(65)【公開番号】特開2020-113165(P2020-113165A)
(43)【公開日】2020年7月27日
【審査請求日】2019年12月24日
【早期審査対象出願】
(73)【特許権者】
【識別番号】594120261
【氏名又は名称】株式会社三葉電熔社
(74)【代理人】
【識別番号】100087745
【弁理士】
【氏名又は名称】清水 善廣
(74)【代理人】
【識別番号】100098545
【弁理士】
【氏名又は名称】阿部 伸一
(74)【代理人】
【識別番号】100106611
【弁理士】
【氏名又は名称】辻田 幸史
(74)【代理人】
【識別番号】100150968
【弁理士】
【氏名又は名称】小松 悠有子
(72)【発明者】
【氏名】尾崎 洋
【審査官】 久慈 渉
(56)【参考文献】
【文献】 特開2018−097494(JP,A)
【文献】 特開2017−010545(JP,A)
【文献】 特開2012−027759(JP,A)
【文献】 米国特許出願公開第2018/0136616(US,A1)
【文献】 特開2015−030000(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G06Q 10/00 − 99/00
(57)【特許請求の範囲】
【請求項1】
装置または部品を稼働し使用するユーザが使用するユーザ端末と、
稼働する前記装置または部品より稼働情報を取得するユーザ設備と、
前記ユーザに対し前記装置または部品を販売する販売者が使用する販売者端末と、
前記販売者が販売する前記装置または部品を製造し前記販売者に販売するメーカが使用するメーカ端末と、
ネットワークを介して接続され、前記販売者により管理される故障予測システムであって、
前記販売者端末より送信される前記ユーザに対する前記装置または部品の販売情報を記録する販売情報記憶部と、
前記装置または部品の稼働情報を前記ユーザ設備から収集する収集部と、
前記装置または部品の前記稼働情報を前記販売情報記憶部に記録された前記販売情報と関連付けて記録する稼働情報記憶部と、
前記販売情報および前記稼働情報に基づいて機械学習することにより前記装置または部品の故障時点を予測する予測部と、を備え
前記ユーザ端末および前記メーカ端末は、それぞれ開示対象となっている前記販売情報または前記稼働情報にアクセス可能である、故障予測システム。
【請求項2】
前記販売情報は、前記装置または部品の販売履歴、前記装置または部品のメンテナンス履歴、もしくは前記装置または部品の改造履歴に関する情報であり、
前記販売者は、前記装置または部品を前記ユーザに販売すること、前記装置または部品をメンテナンスすること、もしくは前記装置または部品を改造することを行う者である、請求項1記載の故障予測システム。
【請求項3】
前記販売情報記憶部は、前記装置または部品に対する代替品に関する代替品情報をさらに記録し、
前記販売情報、前記稼働情報および前記代替品情報に基づいて機械学習することにより、前記装置または部品の代替品を提案する提案部と、をさらに備える、請求項2記載の故障予測システム。
【請求項4】
前記提案部は、現在使用中の前記装置または部品を代替品に代替した場合の評価を行う推測モデルを生成し、前記推測モデルから得られる代替品の評価に基づいて、前記現在使用中の製品または部品よりも好ましい代替品があるかどうかを判定する、請求項3記載の故障予測システム。
【請求項5】
前記予測部は、複数の前記ユーザにより使用される同種の前記装置の前記販売情報および前記稼働情報に基づいて前記故障時点を予測する、請求項1から4の何れか一項記載の故障予測システム。
【請求項6】
前記故障予測システムは、クラウドコンピューティングを利用した前記販売者により管理される顧客関係管理システムである、請求項1から5の何れか一項記載の故障予測システム。
【請求項7】
前記装置は、溶接または加工システム、ロボット本体、治具、またはセンサ類である、請求項1から6の何れか一項記載の故障予測システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、装置または部品の故障予測システムに関する。
【背景技術】
【0002】
従来、例えば特許文献1には、装置を停止させることなく稼働を継続させるための、故障予測通知システムが知られている。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2009−217770号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
例えば、装置の一例としての溶接または加工システムは、溶接または加工のための装置やロボットなどから構成されている。溶接または加工システムは、故障により交換されたり、メンテナンスされたりする部品などの複数の要素からなる。一般的には、溶接または加工システムのユーザは、装置または部品の販売店から装置または部品を購入したり、メンテナンスを依頼したりする。このような販売やメンテナンスの履歴は、ユーザごとにクラウドコンピューティングなどを利用した顧客関係管理(CRM)システムで管理され、販売店は、顧客情報の管理・分析などに用いている。
【0005】
上述した従来の故障予測通知システムは、ユーザの観点から故障の予知を行うものであり、ユーザを顧客とする販売店の観点から故障の予測を行い、その情報を活用するものは知られていない。
【0006】
本発明はこのような事情を考慮してなされたもので、精度の高い故障予測が可能な故障予測システムを提供することを目的とする。
【課題を解決するための手段】
【0007】
本発明に係る故障予測システムは、上述した課題を解決するために、装置または部品を稼働し使用するユーザが使用するユーザ端末と、稼働する前記装置または部品より稼働情報を取得するユーザ設備と、前記ユーザに対し前記装置または部品を販売する販売者が使用する販売者端末と、前記販売者が販売する前記装置または部品を製造し前記販売者に販売するメーカが使用するメーカ端末と、ネットワークを介して接続され、前記販売者により管理される故障予測システムであって、前記販売者端末より送信される前記ユーザに対する前記装置または部品の販売情報を記録する販売情報記憶部と、前記装置または部品の稼働情報を前記ユーザ設備から収集する収集部と、前記装置または部品の前記稼働情報を前記販売情報記憶部に記録された前記販売情報と関連付けて記録する稼働情報記憶部と、前記販売情報および前記稼働情報に基づいて機械学習することにより前記装置または部品の故障時点を予測する予測部と、を備え、前記ユーザ端末および前記メーカ端末は、それぞれ開示対象となっている前記販売情報または前記稼働情報にアクセス可能である。
【発明の効果】
【0008】
本発明に係る故障予測システムにおいては、精度の高い故障予測を行うことができる。
【図面の簡単な説明】
【0009】
図1】本実施形態における故障予測システムの機能構成を示す概略的な機能ブロック図。
図2】本実施形態における故障予測システムにより実行される故障予測処理を説明するフローチャート。
図3】製造ラインおよび故障予測システムにおける処理を特に説明するシーケンス図。
図4】故障予測システムにより実行される代替品提案処理を説明するフローチャート
【発明を実施するための形態】
【0010】
本発明に係る故障予測システムの実施形態を添付図面に基づいて説明する。本実施形態においては、本発明に係る故障予測システムがアーク溶接などのための溶接や種々の加工・成形に用いられる、溶接または加工システムの故障予測に適用される場合を例に説明する。以下、単に溶接または加工システムを「溶接システム」という。また、単に溶接という場合には、「溶接または加工」を意味し得る。
【0011】
図1は、本実施形態における故障予測システム1の機能構成を示す概略的な機能ブロック図である。
【0012】
以下の説明において、「ユーザ」は、溶接システム35をはじめとするユーザ設備内の装置または部品を稼働し使用する者をいう。「販売者」は、装置または部品をユーザに対し販売すること、装置または部品をメンテナンスすること、もしくは装置または部品を改造することを行う者をいう。「メーカ」は、販売者がユーザに販売する装置や部品を製造し販売者に販売する者をいう。「装置」および「部品」は、セル31に含まれる溶接システム35、ロボット本体36、治具・センサ類37、およびロボットコントローラ38、演算用CPU39、またはこれらの部品、PLC32、PLC−GW33、および通信GW34またはこれらに含まれる部品を含む。
【0013】
故障予測システム1は、ネットワーク2に接続されている。故障予測システム1は、ネットワーク2を介して、製造ライン3、…3n、販売者端末4、メーカ端末5、およびユーザ端末6、…、6nと接続している。
【0014】
製造ライン3、…3nは、ユーザにより管理される、複数のセルからなる設備である。ネットワーク2には、複数のユーザにより管理される複数(異なるユーザ)のユーザ設備が接続されているが、各ユーザ設備はほぼ同様の構成を有するため、ここでは一のユーザ設備のみを図示して説明する。また、各製造ライン3、…3nはほぼ同様の構成を有するため、ここでは一の製造ライン3のみを詳細に説明する。
【0015】
製造ライン3は、セル31、PLC32、PLC−GW33、および通信GW34を有している。
【0016】
セル31は、溶接システム35、ロボット本体36、治具・センサ類37、およびロボットコントローラ38を有している。セル31は、製造ライン3に含まれる小区画を単位とした概念であり、図1に示すように、同一の製造ライン3には複数のセル31a、31b、31cが含まれ得る。
【0017】
溶接システム35は、溶接機、フィーダコントロールボックス、ワイヤー供給装置、溶接トーチ、トーチケーブルなどを含む。ロボット本体36は、溶接を自動的に行うためのロボットである。治具・センサ類37は、ポジショナなどの治具、位置センサ、温度センサ、振動計などのセンサ類、および撮像装置などを含む。
【0018】
溶接システム35およびロボット本体36は、ロボットコントローラ38に接続されている。ロボットコントローラ38は、PLC(Programmabl Logic Controller)32の制御に基づいて、溶接システム35、ロボット本体36を制御する。
【0019】
PLC32は、ロボットコントローラ38および治具・センサ類37と接続され、予めプログラムされた制御内容に基づいてこれらを制御することにより、溶接システム35、ロボット本体36および治具・センサ類37(セル31)を上位的に制御する。
【0020】
また、溶接システム35、ロボットコントローラ38、およびPLC32は、演算用CPU39と接続されている。演算用CPU(Central Processing Unit)39は、溶接システム35、ロボットコントローラ38、およびPLC32から各種溶接に関する物理量を取得する。
【0021】
溶接に関する物理量は、製造ライン3から得られる数値化可能な情報の全てが該当する。溶接に関する物理量は、例えば、ロボットコントローラ38より得られるロボット本体の軸を駆動するモータの運転情報、または溶接装置から得られる溶接条件を含む。モータの運転情報は、例えば、モータ電流指令値、実電流値、モータ速度指令値、実速度、またはエンコーダ位置情報を含む。溶接条件は、例えば、溶接手法、溶接電流、溶接電圧、溶接ワイヤー送給速度、溶接速度、溶接波形調整量、突き出し量、溶接トーチの前進角・後進角、狙い角、狙い位置、シールドガス流量、ウィービング条件、アークセンサ条件、多層盛溶接時の溶接位置オフセット量を含む。また、溶接に関する物理量は、これら溶接条件に基づいて動作する溶接システム35および治具・センサ類37から計測される各種値を含む。溶接条件の物理量は、それぞれ所定の計測装置により計測される。
【0022】
また、溶接に関する物理量は、例えば、撮像装置により撮像された溶接部の撮像データ、この撮像データを処理することにより得られる溶接ビードの外観、ビードの余盛り高さ、ビード幅、スパッタ発生量を含む。さらに、溶接に関する物理量は、溶け込み計測装置から得られる溶け込み量、集音装置から得られるアーク音波形を含む。
【0023】
PLC32aは、一例として図1に示すように、複数のセル31a、31bと接続されている。例えば、異なるセル31cには、別途のPLC32bが設けられており、このPLC32bも上記セル31aとほぼ同様の構成を有するセル31cと接続されている。
【0024】
PLC32および演算用CPU39は、PLC−GW(PLC-Gateway)33および通信GW(通信Gateway)34と順次接続されている。PLC−GW33は、装置に接続された複数のPLC32a、32b、および演算用CPU39の通信プロトコルを、故障予測システム1で利用可能な所定の形式に変換する。PLC−GW33は、通信GW34およびネットワーク2を介して、演算用CPU39から得られた上記溶接に関する物理量を故障予測システム1に送信する。PLC−GW33は、溶接条件などを一定周期で取得し、送信する。このとき、溶接に関する物理量とともに、PLC−GW33または通信GW34に関する運転情報も故障予測システム1に送信されてもよい。
【0025】
溶接システム35および治具・センサ類37などの故障予測システム1に情報を提供する各装置には、固有のIDが付与されている。また、溶接システム35および治具・センサ類37(以下、単に「装置」という場合がある。)を構成する部品(溶接トーチ、溶接ワイヤー、溶接チップなど)、および装置や部品で構成される要素(例えばロボット本体の軸)にも同様に、固有のIDが付されている。故障予測システム1に提供される情報は、IDと関連付けられて識別可能に送信される。
【0026】
なお、通信GW34からネットワーク2に送信されるまでの処理が、溶接システム35のユーザ側で行われる処理となり、故障予測システム1に送信された後は、販売者側で行われる処理となる。
【0027】
販売者端末4は、販売者が使用する端末(コンピュータ)である。販売者は、販売者端末4を利用して故障予測システム1にアクセスしたり、故障予測システム1より通知を受け取ったりする。
【0028】
メーカ端末5は、メーカが使用する端末である。メーカは、メーカ端末5を利用して、メーカ端末5に対して開示対象となっている故障予測システム1内の情報にアクセスしたり、故障予測システム1より通知を受け取ったりする。
【0029】
ユーザ端末6、…、6nは、各ユーザが使用する端末である。ネットワーク2には、複数のユーザにより管理される複数(異なるユーザ)のユーザ端末6、…6nが接続されているが、各ユーザ端末6、…6nはほぼ同様の構成を有するため、ユーザ端末6として説明する。ユーザは、ユーザ端末6を利用して、ユーザ端末6に対して開示対象となっている故障予測システム1内の情報にアクセスしたり、故障予測システム1より通知を受け取ったりする。また、ユーザ端末6は、例えば販売者により管理されるウェブサイトにアクセスし、このウェブサイトを介して、装置または部品の発注などを行い得る。
【0030】
故障予測システム1は、主に販売者により利用されるシステムであり、例えば、クラウドコンピューティングを利用した、SaaS(Software as a Service)を利用したシステムである。また、故障予測システム1は、販売者にとっての顧客関係管理(CRM)システムであり、顧客情報の管理・分析などに用いられる。
【0031】
故障予測システム1は、収集部11と、記憶部12と、演算部13と、通知部14と、発注部15と、を有している。
【0032】
収集部11は、ネットワーク2を介して製造ライン3より溶接に関する物理量などを取得する。収集部11は、取得した溶接に関する物理量などを、付与されたIDごとに分類し、製造ラインの単位工程ごとに時系列に集計することにより、各装置、部品の稼働サイクルに対応した情報を生成する。収集部11は、この情報を、稼働情報として稼働情報記憶部18に記録する。
【0033】
記憶部12は、販売情報記憶部17と、稼働情報記憶部18と、を有している。
【0034】
販売情報記憶部17は、ユーザに対する装置または部品の販売情報を記録する。販売情報は、販売者がユーザに対して行った製品または部品の販売履歴、装置または部品のメンテナンス履歴、もしくは装置または部品の改造履歴を含み得る。販売情報記憶部17は、例えば、ユーザ情報(ユーザ名など)を頂点とするツリー構造を有している。例えば、販売情報記憶部17は、ユーザ情報の下位に、製造ライン3(ユーザ設備)に関する情報、セル31に関する情報、セル31に含まれる装置に関する情報、装置に含まれる要素または部品に関する情報を順次記録している。販売情報記憶部17は、これら情報に上述した固有のIDを付与して記録している。
【0035】
販売情報記憶部17は、販売者がユーザに対して行った販売、メンテナンス、改造に関する情報を販売者端末4より取得し、記録する。販売情報記憶部17は、販売情報の他に、ユーザごとの各装置や部品の必要在庫数など、販売者が販売に必要な情報を保持している。販売情報記憶部17は、各装置や部品に対する代替品に関する代替品情報も保持している。これら情報は、販売者端末4より適宜送信され、販売情報記憶部17に記録(更新、追加、または修正)される。
【0036】
稼働情報記憶部18は、収集部11より得られる稼働情報を記録する。稼働情報は、販売情報記憶部17に記録された販売情報と関連付けて記録される。関連付けは、上述したIDによって行われる。
【0037】
演算部13は、予測部19と、提案部20と、を有している。
【0038】
予測部19は、販売情報および稼働情報に基づいて機械学習することにより、装置または部品の故障のタイミング(故障予測時点)を予測する。具体的には、予測部19は、販売情報記憶部17および稼働情報記憶部18に蓄積された、装置が稼働してから故障するまでの過去の販売情報および稼働情報を機械学習し、装置または部品の故障時点を推測するための推測モデルを生成する。例えば、予測部19は、故障時点までの稼働情報の変化を定性的(確率分布的)に評価し、機械学習する。予測部19は、得られた推測モデルから現在の装置または部品が故障するまでの稼働状態との差分を得て、故障予測時点までの曲線(推移)を得る。予測部19は、装置が稼働してから故障するまでの過去の販売情報および稼働情報が得られるたびにこの推測モデルを更新し、さらに他ユーザの製造ラインに関する情報も集積することにより、精度の高い故障時点の予測を行うようになっている。
【0039】
例えば、予測部19は、ロボット本体36のモータの故障予測について、モータに関する稼働情報を故障までのサイクルに関して機械学習し、応答性の鈍化、負荷率の変化、ならびに追加情報としての周囲温度および振動の周波数が、故障に与える影響を考慮した推測モデルを生成する。機械学習は、ディープラーニングなどの手法を用いることができ、さらには教師あり学習、教師なし学習、半教師あり学習、強化学習、トランスダクション、マルチタスク学習など、各種の手法を適用し得る。提案部20についても同様である。
【0040】
ここで、「故障」は、装置または部品が溶接に使用できない状態をいい、新しい装置または部品との交換が必要な状態を含む。また、「故障」は、装置または部品が溶接に使用できるが、所要の溶接品質を得ることができない状態を含む。
【0041】
提案部20は、販売情報、稼働情報および部品情報に基づいて機械学習することにより、装置または部品の代替品を提案する。具体的には、提案部20は、販売情報記憶部17および稼働情報記憶部18に蓄積された、過去の販売情報および稼働情報を機械学習し、現在使用中の装置または部品を代替品に代替した場合の評価を行うための推測モデルを生成する。提案部20は、この推測モデルから得られる代替品の評価に基づいて、現在使用中の製品または部品よりも好ましい代替品があるかどうかを判定する。
【0042】
通知部14は、予測部19および提案部20の推測結果に基づいて、ユーザ端末6に通知を行う。通知部14は、例えば、故障予測時点までの時間が、予め設定された通知を行う時間である通知時間未満である場合、ユーザ端末6にメールなどで通知を行う。また、通知部14は、ユーザに提案すべき代替品がある場合には、ユーザ端末6にメールなどで通知を行う。
【0043】
発注部15は、予測部19の推測結果に基づいて、故障が推測される装置または部品の発注処理を自動的に行う。例えば、故障予測時点までの時間が、予め設定された発注を行う時間である発注時間未満である場合、発注部15は、該当部品の情報を販売情報記憶部17に記録し、その内容を販売者端末4へ送信する。販売者は、この通知に基づいて、ユーザへ装置または部品を発送する。
【0044】
このような故障予測システム1は、すでに販売情報記憶部17に記録されている製造ライン3で使用されている装置または部品に関する詳細な情報、製造ラインに関する情報などと、製造ライン3から得られる稼働情報とを関連付けて記録する。このため、装置または部品から得られる稼働情報のみで機械学習するよりも、ユーザの使用環境をより反映させて機械学習を実行することができる。
【0045】
次に、本実施形態における故障予測システム1により実行される処理について、詳細に説明する。
【0046】
図2は、本実施形態における故障予測システム1により実行される故障予測処理を説明するフローチャートである。
【0047】
図3は、製造ライン3および故障予測システム1における処理を特に説明するシーケンス図である。
【0048】
図2のステップS1において、収集部11は、稼働情報を取得する。すなわち、収集部11は、製造ライン3が装置または部品より取得した溶接に関する物理量(図3のステップS11)を、ネットワーク2を介して取得する(ステップS12)。収集部11は、この溶接に関する物理量に対して上述した所要の処理を行うことにより、稼働情報を取得する(ステップS13)。
【0049】
ステップS2において、稼働情報記憶部18は、収集部11より稼働情報を取得し、記録する(ステップS14)。このとき、稼働情報記憶部18は、販売情報記憶部17に記憶された販売情報と関連付けて記録する(ステップS15)。
【0050】
ステップS3において、予測部19は、稼働情報記憶部18より稼働情報を取得する(ステップS16)。また、予測部19は、販売情報記憶部17より販売情報を取得する(ステップS17)。予測部19は、取得したこれら情報に基づいて機械学習し、故障予測を行うための推測モデルを更新する(ステップS18)。なお、推測モデルは、販売情報記憶部17に新たな販売情報が記録されるたびなど、種々のタイミングで更新されてもよい。
【0051】
ステップS4において、予測部19は、推測モデルに基づいて故障予測時点を取得する(ステップS19)。予測部19は、取得した故障予測時点を、通知部14および発注部15に出力する(ステップS20、S21)。
【0052】
ステップS5において、通知部14は、故障予測時点まで予め設定された通知時間未満であるか否かの判定を行う。通知部14は、通知時間未満であると判定した場合(ステップS5のYES)、ステップS6において、ユーザ端末6に装置または部品が故障することが予測される時点までの時間が、通知時間に相当する時間未満である旨を通知する(ステップS22)。ユーザは、この通知を受信することにより、必要なメンテナンスや、交換部品などの発注作業を行うことができる。これにより、意図しない故障による停止時間を低減することができる。
【0053】
ステップS7において、発注部15は、故障予測時点まで予め設定された発注時間未満であるか否かの判定を行う。発注部15は、発注時間未満であると判定した場合(ステップS7のYES)、ステップS8において、故障に伴い交換が必要な装置または部品の発注処理を行う(ステップS23)。この処理は、ユーザが発注処理を行うことなく、故障予測システム1が自動的に必要な装置または部品を判断することにより行われる。発注部15は、販売情報記憶部17に記録されているユーザの必要在庫数を参照することにより、発注数も決定することができる。これにより、ユーザは、発注作業を行う手間を省くことができ、在庫管理を自動化できる。また、販売者も、ユーザとのやりとりの手間を省くことができる。通知部14が通知時間未満ではないと判定した場合(ステップS5のNO)、発注部15が発注時間未満ではないと判定した場合(ステップS7のNO)、およびS8の後、ステップS1に戻り、この処理は製造ライン3が稼働中において繰り返し実行される。
【0054】
次に、故障予測システム1により実行される代替品提案処理を説明する。
【0055】
図4は、故障予測システム1により実行される代替品提案処理を説明するフローチャートである。この代替品提案処理は、一定周期で行われてもよいし、所定のタイミング(例えば装置または部品の故障のタイミング)で実行されてもよい。代替品提案処理に対応する処理は、上述した故障予測処理の説明に用いた図3のシーケンス図に続けて記載されているが、処理が実行されるタイミングはこれに限らない。
【0056】
ステップS31において、提案部20は、販売情報記憶部17より販売情報および代替品情報を適宜取得する(図3のステップS41)。販売情報および代替品情報は、例えば、販売者端末4より適宜入力され、販売情報記憶部17に記録されている(図3のステップS42)。
【0057】
ステップS32において、提案部20は、取得した情報に基づいて機械学習し、装置または部品に応じた故障予測時点を推測するための推測モデルを更新する(ステップS44)。ステップS33において提案部20は、推測モデルに基づいて、代替品を使用した場合の評価を行う(ステップS45)。なお、推測モデルは、販売情報記憶部17に新たな販売情報が記録されるたびなど、種々のタイミングで更新されてもよい。
【0058】
一例として、溶接チップの評価は、溶接電流および溶接電圧から判断可能な摩耗で評価することができる。提案部20は、推測モデルに基づいて、摩耗を小さくし生産性を向上させる、代替品としての溶接チップを選定する。提案部20は、例えば、現在使用されている溶接チップの交換周期および価格から一定期間における溶接チップのコストを算出する。また、提案部20は、代替品としての溶接チップを使用した場合に予測される溶接チップの交換周期および部品価格から一定期間における溶接チップのコストを算出する。提案部20は、これらのコストを比較し、代替品を使用した場合のコストが小さければ、代替品を使用すべきと評価することができる。
【0059】
また、他の例として、溶接ワイヤーの評価は、ワイヤーの送線モータの電流および電圧から判断可能な送線抵抗で評価することができる。提案部20は、推測モデルに基づいて、送線抵抗を小さくする代替品としての溶接ワイヤーを選定する。提案部20は、例えば交換頻度、歩留まり、ワイヤーに起因する一次的なトラブルによる停止または空転(いわゆるチョコ停)の回数を評価項目として、現在使用されている溶接ワイヤーと代替品としての溶接ワイヤーとを比較する。提案部20は、代替品の方が良い評価であれば、代替品を使用すべきと評価することができる。
【0060】
ステップS34において、提案部20は、現在使用されている装置または部品が使用される場合に比べて、代替品が使用される場合のほうが評価が改善されるか否かの判定を行う。提案部20は、改善されると判定した場合(ステップS34のYES)、評価情報を通知部14に出力する(ステップS46)。ステップS35において、通知部14は、評価情報に基づいて、代替品を提案する内容の通知をユーザ端末6に対して行う(ステップS47)。一方、提案部20は改善されないと判定した場合(ステップS34のNO)、処理を終了する。
【0061】
このような故障予測システム1は、販売者により管理され、顧客情報や販売情報を保持するCRMシステムのようなシステムに、製造ライン3より取得される稼働情報を関連付けて記憶する。これにより、販売者は、販売者自身が保有する販売履歴、メンテナンス履歴または改造履歴に関する販売情報と稼働情報とが関連付けられた情報を、入力や装置情報の収集や入力の手間をかけることなく得ることができる。故障予測システム1は、この情報に基づいて機械学習を行うことにより、より実態に即した精度の高い故障予測を行うことができる。
【0062】
また、故障予測システム1は、販売者が故障予測に関する情報を得ることができるため、販売者自身の販売予測や、販売者に対して製品や部品を販売するメーカの製造予測および販売予測にも情報を活用することができる。その結果、販売者またはメーカは、製品または部品の適正な供給タイミングや供給数量を予測することができ、在庫が無くなる前に補給を提案することもできるというメリットを享受することができる。さらに、メーカは、製品開発のターゲットを定量的に把握することもできる。
【0063】
故障予測システム1は、販売者のユーザに関する情報を管理するためのCRMシステムである場合、販売者に対する複数のユーザから得られる同種の装置または部品に関する情報を横断的に利用することができるため、得られる情報量が多く、より精度の高い予測ができる。故に、故障予測システム1は、複数社(複数のユーザ、販売者、メーカ)にまたがって生産情報を共有、最適化および改良方針の提供を実現することができるシステムである。
【0064】
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
【0065】
例えば、本発明に係る故障予測システムは、記憶部が保有する各種情報を用いて、溶接の品質を評価してもよい。得られた評価情報は、ユーザに適宜通知してもよい。例えば、故障予測システムは、装置または部品や溶接品質に不具合が発生した場合に、リアルタイムにユーザ端末などに通知してもよい。
【0066】
製造ラインの構成は一例であって、PLC、PLC−GWおよび演算用CPUは省略が可能であり、ロボットコントローラなどから直接ネットワークに溶接に関する物理量が送信されるようにしてもよい。
【0067】
故障予測システムが保有する情報のうち少なくとも一部が、ユーザ端末またはメーカ端末から閲覧可能であってもよい。これにより、故障予測システムが保有する情報を、販売者のみならずメーカ、ユーザが有効活用することができる。
【0068】
「販売店」は、ユーザに装置または部品を販売する者であり、メーカが直接ユーザにこれらを販売する場合には「販売店」にメーカが含まれる。
【0069】
図1においては、故障予測システム1の各部が同一のシステム内にある例が示されているが、一部がネットワーク2を介して異なるシステムに含まれていてもよい。例えば、収集部11や演算部13は、CRMシステムとは異なるSaaSを利用してもよい。
【符号の説明】
【0070】
1 故障予測システム
2 ネットワーク
3 製造ライン
4 販売者端末
5 メーカ端末
6 ユーザ端末
11 収集部
12 記憶部
13 演算部
14 通知部
15 発注部
17 販売情報記憶部
18 稼働情報記憶部
19 予測部
20 提案部
31、31a、31b、31c セル
32、32a、32b PLC
33 PLC−GW
34 通信GW
35 溶接システム
36 ロボット本体
37 センサ類
38 ロボットコントローラ
39 演算用CPU
図1
図2
図3
図4