(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0013】
以下、本発明の実施の形態に係る画像処理装置、画像処理方法およびプログラムについて、図面を参照しながら説明する。なお、これらの実施の形態によって本発明が限定されるものではない。また、各図面の記載において、同一の部分には同一の符号を付して示している。
【0014】
(実施の形態1)
〔画像処理装置の構成〕
図1は、本発明の実施の形態1に係る画像処理装置の構成を示すブロック図である。本実施の形態1に係る画像処理装置1は、一例として、内視鏡(軟性内視鏡や硬性内視鏡等の内視鏡スコープ)またはカプセル型内視鏡(以下、これらをまとめて単に「内視鏡」という)によって、生体の管腔を撮像することにより取得された管腔内画像の生体情報に基づいて、管腔内画像の色又は明るさを変化させた新たな画像(仮想画像や学習サンプル)を生成する画像処理を実行する装置である。ここで、管腔内画像は、通常、各画素位置において、R(赤)、G(緑)、B(青)の波長成分に対する画素レベル(画素値)を持つカラー画像である。
【0015】
図1に示す画像処理装置1は、内視鏡によって撮像された管腔内画像に対応する画像データを内視鏡または外部から出力する画像取得部2と、外部からの操作によって入力された入力信号を受け付ける入力部3と、管腔内画像や各種表示を行う表示部4と、画像取得部2によって取得された画像データや各種のプログラムを記録する記録部5と、画像処理装置1全体の動作を制御する制御部6と、画像データに対して所定の画像処理を行う演算部7と、を備える。
【0016】
画像取得部2は、内視鏡を含むシステムの態様に応じて適宜構成される。例えば、画像取得部2は、内視鏡との間の画像データの受け渡しに可搬型の記録媒体が使用される場合、この記録媒体を着脱自在に装着し、記録された画像データを読み出すリーダ装置として構成される。また、画像取得部2は、内視鏡によって撮像された画像データをサーバによって記録する場合、このサーバと双方向に通信可能な通信装置等で構成され、サーバとデータ通信を行うことによって画像データを取得する。さらにまた、画像取得部2は、内視鏡からケーブルを介して画像データが入力されるインターフェース装置等で構成してもよい。
【0017】
入力部3は、例えばキーボードやマウス、タッチパネル、各種スイッチ等の入力デバイスによって実現され、外部からの操作に応じて受け付けた入力信号を制御部6へ出力する。
【0018】
表示部4は、液晶や有機EL(Electro Luminescence)の表示パネル等の表示装置によって実現され、制御部6の制御のもと、管腔内画像を含む各種画面を表示する。
【0019】
記録部5は、フラッシュメモリ、ROM(Read Only Memory)およびRAM(Random Access Memory)といった各種ICメモリ、および内蔵若しくはデータ通信端子で接続されたハードディスク等によって実現される。記録部5は、画像取得部2によって取得された画像データの他、画像処理装置1を動作させるとともに、種々の機能を画像処理装置1に実行させるためのプログラム、このプログラムの実行中に使用されるデータ等を記録する。例えば、記録部5は、管腔内画像の色または明るさを変化させた新たな画像(学習サンプル)を生成するための画像処理プログラム51、後述する演算部7が管腔内画像の生体情報に基づいて、管腔内画像の色相および/または明るさを変化させた新たな画像を生成するために、管腔内画像の生体情報に基づく色相および/または明るさの範囲を設定した範囲情報、および、このプログラムの実行中に使用される種々の情報等を記録する。
【0020】
制御部6は、CPU(Central Processing Unit)等を用いて実現され、記録部5に記録された各種プログラムを読み込むことにより、画像取得部2から入力される画像データや入力部3から入力される入力信号等に従って、画像処理装置1を構成する各部への指示やデータの転送等を行い、画像処理装置1全体の動作を統括的に制御する。
【0021】
演算部7は、CPU等によって実現され、記録部5が記録する画像処理プログラム51を読み込むことによって管腔内画像の生体情報に基づいて、管腔内画像の色または明るさを変化させた新たな画像を生成する画像処理を実行する。
【0022】
〔演算部の構成〕
次に、演算部7の詳細な構成について説明する。演算部7は、画像生成部10を有する。画像生成部10は、管腔内画像の生体情報に基づいて、管腔内画像の色または明るさを変化させた新たな画像を生成する。
【0023】
〔画像処理装置の処理〕
次に、画像処理装置1が実行する画像処理方法について説明する。
図2は、画像処理装置1が実行する処理の概要を示すフローチャートである。
【0024】
図2に示すように、まず、画像生成部10は、画像取得部2を介して外部から内視鏡等によって撮像された画像データに対応する管腔内画像を取得する(ステップS101)。
【0025】
続いて、画像生成部10は、管腔内画像の生体情報に基づく色相および/または明るさの範囲を設定した範囲情報を取得する(ステップS102)。
【0026】
その後、画像生成部10は、ステップS101において取得した管腔内画像とステップS102において取得した範囲情報とに基づいて、管腔内画像の色または明るさを所定の間隔によって変化させて新たな複数の画像を生成し、この生成した複数の画像を記録部5に記録または表示部4に表示させる(ステップS103)。なお、画像生成部10は、新たに生成した複数の画像を、学習機能や識別機能を有する外部装置へ出力するようにしてもよい。ステップS103の後、画像処理装置1は、本処理を終了する。
【0027】
以上説明した本発明の実施の形態1によれば、管腔内画像において発生し得る色味を持った学習サンプルを生成することができる。
【0028】
(実施の形態2)
次に、本発明の実施の形態2について説明する。本実施の形態2に係る画像処理装置は、上述した実施の形態1に係る画像処理装置1における演算部7の構成と異なる。以下においては、本実施の形態2に係る演算部の構成について説明する。なお、上述した実施の形態1に係る画像処理装置1と同一の構成には同一の符号を付して説明を省略する。
【0029】
〔演算部の構成〕
図3は、本実施の形態2に係る演算部の構成を示すブロック図である。
図3に示す演算部7aは、画像生成部10と、範囲決定部20と、を備える。
【0030】
範囲決定部20は、生体情報に基づいて、色または明るさの範囲を決定する範囲情報を生成する。範囲決定部20は、生体内管腔における体液の情報を算出する管腔内体液情報算出部30を有する。
【0031】
管腔内体液情報算出部30は、血液色情報算出部301と、胆汁色情報算出部302と、体液有無色情報算出部303と、薬剤色情報算出部304と、を有する。
【0032】
血液色情報算出部301は、血液の色範囲に関する情報を決定する。具体的には、血液色情報算出部301は、赤色の色範囲を決定する。
【0033】
胆汁色情報算出部302は、胆汁の色範囲に関する情報を決定する。具体的には、胆汁色情報算出部302は、黄色の色範囲を決定する。
【0034】
体液有無色情報算出部303は、体液の有無による色範囲に関する情報を決定する。具体的には、体液の有無による色範囲に関する情報に基づいて、赤色の色範囲および明るさを決定する。
【0035】
薬剤色情報算出部304は、薬剤の色範囲に関する情報を決定する。具体的には、薬剤色情報算出部304は、下剤の種別情報に基づいて、白色の色範囲および明るさを決定する。
【0036】
〔画像処理装置の処理〕
次に、本実施の形態2に係る画像処理装置1が実行する画像処理方法について説明する。
図4は、画像処理装置1が実行する処理の概要を示すフローチャートである。
【0037】
図4に示すように、まず、画像生成部10は、画像取得部2を介して外部から内視鏡等によって撮像された画像データに対応する管腔内画像を取得し、取得した管腔内画像を記録部5に記録する(ステップS201)。
【0038】
続いて、画像生成部10は、管腔内画像を色変換する(ステップS202)。具体的には、画像生成部10は、管腔内画像をRGB画像からHSV画像に色変換する。なお、色変換の方法としては、HSVに限定されるものではなく、例えば色相および明るさを表現可能なLab、HLS、YUV等の他の色変換を用いてもよい。
【0039】
その後、範囲決定部20は、画像生成部10が管腔内画像に基づいて、色相および明るさを変化させた新たな画像を生成するための範囲情報を決定する範囲決定処理を実行する(ステップS203)。
【0040】
〔範囲決定処理〕
図5は、
図4のステップS203における範囲決定処理の詳細を示すフローチャートである。
【0041】
図5に示すように、血液色情報算出部301は、血液の色範囲に関する情報を算出する(ステップS301)。具体的には、血液の構成成分であるヘモグロビンの吸収波長は、G値またはB値を形成する中波長から短波長の帯域にあるため、体内管腔にある体液に血液が混じった場合、R値に対して、G値およびB値が低い赤色系の色となる。そこで、本実施の形態2では、生体内管腔における体液に血液が混在している画像を事前に収集しておき、血液が混在している場合のH(色相)範囲を推定する。即ち、血液色情報算出部301は、予め推定された血液が混在している場合のH範囲に基づいて、血液の色範囲を決定する。
【0042】
続いて、胆汁色情報算出部302は、胆汁の色範囲に関する情報を算出する(ステップS302)。具体的には、胆汁の構成成分であるビリルビンの吸収波長は、B値を形成する短波長の帯域にあるため、生体内管腔にある体液に胆汁が混じると、B値に対して、R値およびG値が高い黄色系の色になる。そこで、本実施の形態2では、生体内管腔における体液に胆汁が混在している画像を事前に収集しておき、胆汁が混在している場合のH(色相)範囲を推定する。即ち、胆汁色情報算出部302は、予め推定された胆汁が混在している場合のH範囲に基づいて、胆汁の色範囲を決定する。
【0043】
その後、体液有無色情報算出部303は、体液の有無による色範囲に関する情報を算出する(ステップS303)。カプセル型内視鏡では、多くの場合、生体内管腔に体液がある状態で画像が撮像されるが、軟性型内視鏡では、生体内管腔に体液がない状態で画像が撮像される。体液がない状態で撮像した画像は、生体内管腔を介して撮像した画像と比べて、赤黒い画像(赤くて、暗い画像)になる傾向がある。そこで、本実施の形態2では、体液がない状態で撮像した画像および体液を通して撮像した画像をそれぞれ事前に収集しておき、体液がない状態の場合のH(色相)範囲および体液がある状態の場合のH(色相)範囲およびV範囲(明るさ)それぞれを推定する。即ち、体液有無色情報算出部303は、予め推定された体液がない状態のH範囲およびV範囲に基づいて、体液がない状態の色範囲を決定し、かつ、予め推定された体液がある状態のH範囲およびV範囲に基づいて、体液がある状態の色範囲を決定する。
【0044】
続いて、薬剤色情報算出部304は、薬剤の色範囲に関する情報を算出する(ステップS304)。そこで、本実施の形態2では、検査対象者が服用する薬剤(例えば、下剤、蠕動促進剤およびブースタ等)が混在した画像を事前に収集しておき、薬剤が混在した場合のH(色相)範囲を推定する。即ち、薬剤色情報算出部304は、予め推定された薬剤が混入された状態のH(色相)範囲に基づいて、薬剤の色範囲を決定する。ステップS304の後、画像処理装置1は、
図4のメインルーチンへ戻る。
【0045】
続いて、画像生成部10は、ステップS201において取得した管腔内画像とステップS203において範囲決定部20が決定した色範囲情報とに基づいて、色相および明るさを変化させた新たな画像を生成する(ステップS204)。例えば、画像生成部10は、画像内全体、所定領域毎、所定画素毎に、色相および/または明るさを所定値毎に変化させた複数の画像を生成する。これにより、管腔内画像において発生し得る色味を加味しつつ、色または明るさを変化させた新たな画像を生成することができる。ステップS204の後、画像処理装置1は、本処理を終了する。
【0046】
以上説明した本発明の実施の形態2によれば、管腔内画像において発生し得る色味を持った学習サンプルを生成することができるので、適切な学習サンプルを生成することができる。
【0047】
(実施の形態3)
次に、本発明の実施の形態3について説明する。本実施の形態3に係る画像処理装置は、上述した実施の形態2に係る演算部7aの構成と異なる。以下においては、本実施の形態3に係る演算部の構成について説明する。なお、上述した実施の形態2に係る画像処理装置1と同一の構成には同一の符号を付して説明を省略する。
【0048】
〔演算部の構成〕
図6は、本実施の形態3に係る演算部の構成を示すブロック図である。
図6に示す演算部7bは、画像生成部10と、範囲決定部20bと、学習部50と、を備える。
【0049】
範囲決定部20bは、上述した実施の形態2に係る管腔内体液情報算出部30に加えて、管腔内画像の臓器種別を判別する臓器判別部40と、を有する。
【0050】
学習部50は、画像生成部10によって生成された新たな画像に基づいて、対象認識を行うための認識基準を学習する。
【0051】
〔画像処理装置の処理〕
次に、本実施の形態3に係る画像処理装置1が実行する画像処理方法について説明する。
図7は、画像処理装置1が実行する処理の概要を示すフローチャートである。
図7のステップS401〜ステップS403は、上述した
図4のステップS301〜ステップS303それぞれに対応する。
【0052】
ステップS404において、臓器判別部40は、管腔内画像の臓器種別を判別する。臓器種別の判別方法としては、例えば特開2006−288612号に記載されている管腔内画像のR値、G値およびB値それぞれの平均値に基づいて、臓器種別を判別する方法を用いる。具体的には、臓器判別部40は、まず、事前に胃、小腸および大腸それぞれの画像内におけるR値、G値およびB値の平均値の数値を決定する。その後、臓器判別部40は、管腔内画像におけるR値、G値およびB値それぞれの平均値が胃の数値範囲内であれば、判別対象の管腔内画像を胃と判別し、小腸の数値範囲内であれば、判別対象の管腔内画像を小腸と判別し、大腸の数値範囲内であれば、判別対象の管腔内画像を大腸と判別する。
【0053】
続いて、画像生成部10は、範囲決定部20bによって決定された色範囲に基づいて、色相および/または明るさを変化させた新たな画像を生成する(ステップS405)。具体的には、画像生成部10は、画像内全体、所定領域毎、所定画素毎に、色相および/または明るさを所定値毎に変化させた複数の画像を生成する。この場合、画像生成部10は、上述したステップS404において、臓器判別部40によって管腔内画像の臓器種別が胃であると判別したとき、管腔内画像に胆汁が存在しないので、胆汁を含む体液の色範囲については、新たな画像を生成する際に用いる色範囲の生成対象から除外する。
【0054】
その後、学習部50は、画像生成部10によって生成された新たな画像および画像取得部2を介して取得したオリジナルの管腔内画像に基づいて、特徴量算出を行い、公知のSVM(アドコム・メディア株式会社:コンピュータビジョン最先端ガイド3:P95〜P102参照)等により、認識基準を作成する(ステップS406)。ステップS406の後、画像処理装置1は、本処理を終了する。
【0055】
以上説明した本発明の実施の形態3によれば、管腔内画像において発生し得る色味を持った学習サンプルを生成することができるので、適切な学習結果を得ることができる。
【0056】
(実施の形態4)
次に、本発明の実施の形態4について説明する。本実施の形態4に係る画像処理装置は、上述した実施の形態3に係る演算部7bの構成と異なる。以下においては、本実施の形態4に係る演算部の構成について説明する。なお、上述した実施の形態3に係る画像処理装置1と同一の構成には同一の符号を付して説明を省略する。
【0057】
〔演算部の構成〕
図8は、本実施の形態4に係る演算部の構成を示すブロック図である。
図8に示す演算部7cは、上述した実施の形態3に係る演算部7bの構成に加えて、学習部50が学習した認識基準に基づいて、対象認識を行う認識部60と、領域分割を行う領域分割部70と、をさらに備える。このうち、領域分割部70は、体液の情報に基づいて、領域を分割する体液領域分割部80を有する。
【0058】
〔画像処理装置の処理〕
次に、本実施の形態4に係る画像処理装置1が実行する処理について説明する。
図9は、本実施の形態4に係る画像処理装置1が実行するフローチャートである。
図9において、ステップS501〜ステップS504は、上述した
図7のステップS401〜ステップS404それぞれに対応する。
【0059】
ステップS505において、領域分割部70は、体液の有無による領域分割を行う。具体的には、まず、領域分割部70は、事前に体液ありの管腔内画像のR値、G値およびB値それぞれを決定し、かつ、体液なしの管腔内画像のR値、G値およびB値それぞれを決定する。その後、領域分割部70は、管腔内画像における各画素のR値、G値およびB値が体液ありの数値範囲内であれば、体液ありと判別し、体液なしの数値範囲内であれば体液なしと判別する。そして、領域分割部70は、体液あり、体液なしの情報に基づいて、公知のラベリング処理を行うことによって、領域を分割する。
【0060】
続いて、画像生成部10は、ステップS503における範囲情報、ステップS504における臓器種別および上述したステップS505における領域分割結果に基づいて、色相および/または明るさを変化させた新たな画像を生成する(ステップS506)。具体的には、画像生成部10は、上述したステップS505における領域分割結果を利用して、体液ありの領域のみ色相を所定値毎に変化させた新たな複数の画像を生成する。この場合、画像生成部10は、ステップS504において、管腔内画像が胃であると判別されているとき、胆汁が存在しないので、胆汁を含む体液の色範囲について新たな画像の生成から除外する。
【0061】
その後、学習部50は、画像生成部10によって生成された新たな画像および画像取得部2を介して取得したオリジナルの管腔内画像に基づいて、特徴量算出を行い、公知のSVM等により、認識基準を作成する(ステップS507)。
【0062】
続いて、認識部60は、学習部50が作成した認識基準によって対象認識を行う(ステップS508)。ステップS508の後、画像処理装置1は、本処理を終了する。
【0063】
以上説明した本発明の実施の形態4によれば、管腔内画像において発生し得る色味を持った学習サンプルを生成することができるので、適切な学習結果を得ることができる。
【0064】
(その他の実施の形態)
本発明では、記録装置に記録された画像処理プログラムをパーソナルコンピュータやワークステーション等のコンピュータシステムで実行することによって実現することができる。また、このようなコンピュータシステムを、ローカルエリアネットワーク(LAN)、広域エリアネットワーク(WAN)、または、インターネット等の公衆回線を介して、他のコンピュータシステムやサーバ等の機器に接続して使用しても良い。この場合、実施の形態1〜3およびこれらの変形例に係る画像処理装置は、これらのネットワークを介して管腔内画像の画像データを取得したり、これらのネットワークを介して接続されたビュアーやプリンタ等の種々の出力機器に画像処理結果を出力したり、これらのネットワークを介して接続された記憶装置、例えばネットワークに接続された読取装置によって読み取り可能な記録媒体等に画像処理結果を格納するようにしても良い。
【0065】
なお、本発明は、実施の形態1〜4に限定されるものではなく、各実施の形態や変形例に開示されている複数の構成要素を適宜組み合わせることによって、種々の発明を形成できる。例えば、各実施の形態や変形例に示される全構成要素からいくつかの構成要素を除外して形成しても良いし、異なる実施の形態や変形例に示した構成要素を適宜組み合わせて形成しても良い。