特許第6807924号(P6807924)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ オーディオ インベンションズ リミテッドの特許一覧

<>
  • 特許6807924-リード楽器用装置 図000002
  • 特許6807924-リード楽器用装置 図000003
  • 特許6807924-リード楽器用装置 図000004
  • 特許6807924-リード楽器用装置 図000005
  • 特許6807924-リード楽器用装置 図000006
  • 特許6807924-リード楽器用装置 図000007
  • 特許6807924-リード楽器用装置 図000008
  • 特許6807924-リード楽器用装置 図000009
  • 特許6807924-リード楽器用装置 図000010
  • 特許6807924-リード楽器用装置 図000011
  • 特許6807924-リード楽器用装置 図000012
  • 特許6807924-リード楽器用装置 図000013
  • 特許6807924-リード楽器用装置 図000014
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6807924
(24)【登録日】2020年12月10日
(45)【発行日】2021年1月6日
(54)【発明の名称】リード楽器用装置
(51)【国際特許分類】
   G10H 1/00 20060101AFI20201221BHJP
   G10H 3/16 20060101ALI20201221BHJP
   G10H 1/32 20060101ALI20201221BHJP
【FI】
   G10H1/00 A
   G10H3/16
   G10H1/00 Z
   G10H1/32 Z
【請求項の数】15
【全頁数】25
(21)【出願番号】特願2018-522883(P2018-522883)
(86)(22)【出願日】2016年7月25日
(65)【公表番号】特表2018-521367(P2018-521367A)
(43)【公表日】2018年8月2日
(86)【国際出願番号】GB2016052267
(87)【国際公開番号】WO2017013455
(87)【国際公開日】20170126
【審査請求日】2019年7月8日
(31)【優先権主張番号】1513036.2
(32)【優先日】2015年7月23日
(33)【優先権主張国】GB
(73)【特許権者】
【識別番号】518024666
【氏名又は名称】オーディオ インベンションズ リミテッド
(74)【代理人】
【識別番号】100086380
【弁理士】
【氏名又は名称】吉田 稔
(74)【代理人】
【識別番号】100103078
【弁理士】
【氏名又は名称】田中 達也
(74)【代理人】
【識別番号】100130650
【弁理士】
【氏名又は名称】鈴木 泰光
(74)【代理人】
【識別番号】100135389
【弁理士】
【氏名又は名称】臼井 尚
(74)【代理人】
【識別番号】100161274
【弁理士】
【氏名又は名称】土居 史明
(74)【代理人】
【識別番号】100168044
【弁理士】
【氏名又は名称】小淵 景太
(74)【代理人】
【識別番号】100168099
【弁理士】
【氏名又は名称】鈴木 伸太郎
(74)【代理人】
【識別番号】100200609
【弁理士】
【氏名又は名称】齊藤 智和
(72)【発明者】
【氏名】スミス、ブライアン
(72)【発明者】
【氏名】デイヴィー、ポール
【審査官】 菊池 智紀
(56)【参考文献】
【文献】 特開2014−232154(JP,A)
【文献】 特開2014−232153(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G10H 1/00− 7/12
G10D 7/00− 9/11
(57)【特許請求の範囲】
【請求項1】
リード楽器の音を表現するためのシステムであって、前記システムは、
出力手段と、
加振ユニットによって音を生成するように駆動されるスピーカであって、前記リード楽器の空気室に音を送達するように構成された前記スピーカと、
前記空気室の音を受信し、かつ測定信号を提供するように構成されたマイクロホンと、
前記測定信号を受信するように構成された処理ユニットと、
を備え、
前記システムは、
前記処理ユニットが前記測定信号から、どの楽音が前記リード楽器によって演奏されているかを示す出力信号を発生し、かつ
前記出力手段が前記出力信号を出力する、
動作モードを有し、
前記システムは、前記マイクロホンとは別個の独立した圧力センサをさらに備え、この圧力センサは、前記リード楽器のユーザが前記リード楽器のマウスピースを介して息を吹き込んでいるときにそれを示すために、前記処理ユニットに信号を送信するものであり、前記処理ユニットは、前記出力信号の発生のタイミングを制御する際に、感知された空気圧を使用するものであり、
前記スピーカおよびマイクロホンは筐体に装着され、前記筐体は、前記スピーカおよびマイクロホンが前記空気室と連通するように、前記リード楽器に取り付けられるように適応されおり、
前記筐体は、前記リード楽器のマウスピースに取り付けられるように構成され、かつ
前記筐体は、前記マウスピースと前記空気室との間の障壁を形成するように構成された、システム。
【請求項2】
前記圧力センサは、前記マウスピースと連通するように前記筐体に装着される、請求項1に記載のシステム。
【請求項3】
前記圧力センサによって前記処理ユニットに送信される前記信号は、前記ユーザが前記マウスピースを介してどれだけ強く息を吹き付けているかをさらに示し、前記処理ユニットは、前記圧力センサによって送信される前記信号を用いて前記出力信号の振幅を制御す
る、請求項1又は2に記載のシステム。
【請求項4】
前記処理ユニットは前記測定信号から、前記スピーカによって生成された音と前記マイクロホンによって受信された音との間の差を特徴付ける時系列のデータを含む差信号を発生する、請求項1ないし3のいずれかに記載のシステム。
【請求項5】
前記動作モードで、前記加振ユニットは、20Hzから200Hzの間の最低周波数を含む周波数範囲の音を生成するように前記スピーカを駆動するように構成された、請求項1ないし4のいずれかに記載のシステム。
【請求項6】
前記加振ユニットは指数チャープで前記スピーカを駆動するように構成された、請求項1ないし5のいずれかに記載のシステム。
【請求項7】
周囲ノイズの測定を行うための手段をさらに備え、前記動作モードで、前記加振ユニットは、周囲ノイズの測定に基づいて選択された出力で音を生成するように前記スピーカを駆動するように構成された、請求項1ないし6のいずれかに記載のシステム。
【請求項8】
周囲ノイズの前記測定は、前記マイクロホンによって、または別個の独立した周囲ノイズマイクロホンによって行われる、請求項7に記載のシステム。
【請求項9】
前記加振ユニットは、連続出力音または一連の反復チャープを生成するように前記スピーカを駆動するように構成された、請求項1ないし5のいずれかに記載のシステム。
【請求項10】
前記加振ユニットは、一組のトーンまたは反復される複数組のトーンを生成するように前記スピーカを駆動するように構成された、請求項1ないし5のいずれかに記載のシステム。
【請求項11】
一組のトーンを保存するメモリをさらに備え、
各トーンは、前記リード楽器によって生成される音に関連付けられ、かつ
前記加振ユニットは、前記保存されたトーンの各々のシーケンスを生成するように前記スピーカを駆動するように構成された、請求項1ないし10のいずれかに記載のシステム。
【請求項12】
前記処理ユニットは、リード楽器の音を合成することによって前記出力信号を生成するように構成され、かつ前記出力手段は、スピーカ、ヘッドホン、および/またはイヤホンのうちの一つ以上である、請求項1ないし11のいずれかに記載のシステム。
【請求項13】
前記出力手段は、コンピュータ用のインタフェース、MIDI接続、短波長UHF電波を用いて短距離でデータを交換するための無線装置、および/または送信器のうちの一つ以上である、請求項1ないし12のいずれかに記載のシステム。
【請求項14】
前記処理ユニットは、前記測定信号の周波数成分および/またはタイミングに基づいて前記出力信号を発生する、請求項1ないし13のいずれかに記載のシステム。
【請求項15】
前記処理ユニットは、リード楽器の音を合成することによって前記出力信号を発生し、前記合成音の周波数は前記測定信号の周波数成分に基づくと共に、前記空気圧力センサによって感知された前記空気圧にも基づき、前記合成音の振幅は前記空気圧力センサによって感知された前記空気圧に基づく、請求項14に記載のシステム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、演奏者が、例えば練習の間、リード楽器を静かに演奏することを可能にする装置に関する。
【背景技術】
【0002】
リード楽器(例えばクラリネット、オーボエ、サクソフォン、バスーン)の通常の演奏方法はよく知られている。ユーザはリードが振動するように息を吹き込み、こうして複雑な一連の音色を楽器に導入する。複数のキーを有する共振空洞が設けられる。どのキーが押し下げられるかによって、空洞の共振と一致する定在音響波が形成されるように、共振が発生する。このようにして、伝統的に知られる音が形成される。
【0003】
一般的に、練習時には、近隣の人々に対する礼儀上、リード楽器のノイズ出力を低減することが望ましい。
【0004】
米国特許出願公開第2014/0224100A1号明細書は、通常のリードがスピーカとマイクロホンとを備えた変換装置に置き替えられた、バグパイプ用のシステムを記載している。スピーカはバグパイプの空気室に音を送達し、スピーカは線形チャープから成る周期信号を含む試験信号によって駆動され、各線形チャープは、16Khzより高い周波数すなわち可聴範囲外の周波数だけを含む。マイクロホンは空気室に送出された音を検知し、次いでスピーカによって再生された信号はマイクロホンによって検知された信号と相関されて、音響システムの応答関数がもたらされ、それによって楽音が楽器によって演奏される。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】米国特許出願公開第2014/0224100A1号
【発明の概要】
【0006】
本発明では、請求項1に係るリード楽器の音を表現するためのシステムを提供する。
【0007】
圧力センサの使用は、例えばマイクロホンによる空気室への音の出力または合成楽音の出力における、システムの動作のタイミングを制御することを可能にする。
【0008】
圧力センサによって処理ユニットに送られる信号はさらに、ユーザがマウスピースを介してどれだけ強く吹いているかを示すことが好ましい。これは、合成楽音出力の音量を変化させるため、あるいは一部のリード楽器で演奏者が強く吹くことによって達成することのできるオクターブシフトを認識するために使用することができる。また、空気圧の変動は、合成音を変調させるため、例えば演奏者がビブラートブレス入力をリード楽器に加えているときにそれを認識し、それに応答して合成音にビブラートを導入するために使用されてよい。
【0009】
本発明のシステムの他の好適な特徴は、請求項3ないし23に記載される。
【0010】
加振ユニットは、スピーカを駆動させて、周囲ノイズの量に基づいて選択される音量で音を生成するために配設されることが好ましい。例えば、音量は周囲ノイズを所定の量だけ超えるように選択されてよい。周囲ノイズのレベルは任意の公知のセンサを用いて測定されてよいが、マイクロホンを用いて、または楽器の外部のノイズを測定する別個の周囲ノイズマイクロホンによって測定されることが好ましい。一実施形態では、ユーザは、加振手段によって生成される音量を手動で選択することのできる動作モードを選択することができる。
【0011】
本発明は、ミュージシャンが、該システムをリード楽器に取り付けることにより、近隣の人々の迷惑になる大きなノイズを発生することなく練習することを可能にする。
【0012】
出力手段は、コンピュータ用インタフェース、短波長UHF電波を用いて短距離でデータを交換するための無線装置、MIDI(楽器データインタフェース)接続、HDプロトコルインタフェース、および/または送信器の一つ以上であってよい。
【0013】
スピーカおよびマイクロホンは筐体に装着されてよく、筐体は、スピーカおよびマイクロホンが空気室と連通するように、リード楽器の空気室に取り付けられるように適応される。これは、システムをミュージシャンの楽器に容易に組み込むことを可能にする。スピーカおよびマイクロホンは、筐体内に形成された空洞と連通して筐体の内面に装着されてよく、筐体は、スピーカおよびマイクロホンが空気室と連通するように、リード楽器の空気室に取り付けられるように適応される。好ましくは、筐体はリード楽器のマウスピースに取り付けられるように適応され、筐体は、マウスピースと空気室との間の障壁を形成するように配設される。
【0014】
別の好適な実施形態では、スピーカおよびマイクロホンは筐体に装着されてよく、筐体は、スピーカおよびマイクロホンが空気室と連通するように、リード楽器の空気室に取り付けるように適応され、筐体はマウスピースを形成し、ボアはマウスピースを貫通し、ボアは空洞から分離される。
【0015】
さらに別の好適な実施形態では、マウスピースは、そのボアと連通する開口を持つ先端を含んでよい。マウスピースは、マウスピースに沿って延びかつ任意選択的にマウスピースの先端を閉じるように配設された擬似リードを(通常のリードの代わりに)含む(が、これは不可欠ではない)。擬似リードは、ユーザが吹いたときに振動しないように剛性であってよい。擬似リードは、擬似リードに形成されたブリード穴まで延びる空気圧溝または空気圧逃し通路をそこに形成している。これは既存の楽器に組み込むことができ、空気圧逃し溝または通路は凝縮した水分の排出を可能にすることができる。
【0016】
空気圧力センサはボア内または空気圧逃し溝もしくは通路内に設けられてよい。これによりシステムは、ユーザが吹いているときにそれを検知し、これらの時間にだけ音を鳴らすことが可能になる。加えて、上述の通り、吹込みの強さは、出力信号の生成かつ/または認識されるビブラート入力ブレスおよび合成楽音に組み込まれるビブラート要素に、一因として含めることができる。
【0017】
処理ユニットは、測定信号を受信し、測定信号から鳴らされた音を認識し、次いで対応する楽音を合成するように配設されてよく、合成は、ボア内の空気圧、およびスピーカによって生成される音とマイクロホンによって受信される音との間の差の特性の両方を考慮する。
【0018】
プロセッサは、リード楽器の音を合成することによって出力信号を生成してよく、合成音の周波数は測定信号の周波数成分に基づくと共に、空気圧力センサによって感知される空気圧にも基づき、合成音の振幅は空気圧力センサによって感知される空気圧に基づく。
【0019】
本発明はまた、請求項24に記載する方法、および請求項25に記載する、そのような方法で使用される装置をも提供する。
【0020】
本発明はさらに、請求項26に記載する変換装置をも提供する。そのような変換装置は、リードに代わってリード楽器に簡便に取付け可能なユニットを提供し、それは、近隣の他者に迷惑をかける大きいノイズを発生することなく、演奏者がリード楽器の演奏を練習することを可能にする。変換装置の好適な特徴は請求項27ないし34に記載されている。変換装置は、請求項35および36に記載される練習システムの一部を形成することができる。変換装置とラップトップ、タブレット、もしくはパーソナルコンピュータ、またはスマートフォンとの間の通信は、リード楽器の演奏を練習する演奏者のより優れた学習経験を可能にする。例えば演奏された楽音のグラフィカル表現は、「理想的な」演奏楽音のグラフィカル表現と比較することができる。また譜面および練習問題を演奏者に提示することができる。
【0021】
本発明は、請求項37に記載する、リード楽器によって演奏された楽音を決定するための電子システムを提供し、このシステムの好適な特徴は請求項38に記載される。両請求項のシステムは、周囲ノイズが測定信号から除去されるので、スピーカによって送出される音をほとんど聞き取れない低いレベルにすることを可能にする。
【0022】
本発明は、請求項39に記載する、リード楽器によって演奏される楽音を決定するための電子システムを提供し、このシステムの好適な特徴は請求項40、41、および42に記載される。三つの請求項全てのシステムは、リード楽器によって演奏可能な最低楽音に少なくとも略対応する、可聴範囲で最も低い周波数を有する指数チャープを使用する。対照的に、米国特許出願公開第2014/0224100A1号明細書のシステムは、指数チャープではなく線形チャープであって、16Khzより高い周波数すなわち可聴範囲の周波数より高い周波数だけを含むチャープを使用する。線形チャープを使用することは、より小さい範囲の周波数しかチャープに含めることができないことを意味し、これは、リード楽器で、例えばレジスタシフトキーを使用することによって、引き起こされる周波数のシフトを認識することをできなくする。この先行技術は可聴範囲外の高エネルギ信号を使用するが、本発明は可聴範囲内の周波数を含む低音量信号を使用する。これにより、確実な楽音の認識を達成しながら、近無音楽器の演奏効果をもたらすことができる。
【0023】
本発明は、請求項43に記載する、リード楽器によって演奏された楽音を決定するための電子システムを提供し、このシステムの好適な特徴は請求項44、45、および46に記載される。演奏された音に対応する成分を持つ加振信号の選択は、測定信号からの確実な楽音の検知を可能にし、かつフィルタを関連楽音に同調させたフィルタバンクの使用を可能にする。これにより、確実な楽音の検知を達成しながら、近無音楽器の演奏効果をもたらすことができる。
【0024】
本発明は、請求項47に記載する、リード楽器によって演奏された楽音を決定するための電子システムを提供し、このシステムの好適な特徴は請求項48および49に記載される。記載されたシステムは、演奏された楽音の最初の検知の後、測定信号における演奏された楽音の検知により適した周波数を含むように加振信号が適応される、フィードバック構成を採用する。これにより、確実な楽音の検知を達成しながら、近無音楽器の演奏効果をもたらすことができる。
【0025】
本発明は、請求項50に記載する、リード楽器の演奏を練習する方法を提供し、この方法の好適な変形例は請求項51ないし58に記載される。請求項59および60に記載する、リード楽器の演奏を練習するさらなる方法が提供される。これらの方法は、演奏者が彼/彼女自身のリード楽器を容易かつ迅速に、近無音練習を可能にするバージョンに変化させることを可能にする。
【図面の簡単な説明】
【0026】
本発明の理解を深めるために、かつ本発明がどのように実施されるかを示すために、単なる実施例として、以下で添付の図面に関連して説明する。
【0027】
図1】従来のクラリネットの簡易断面図である。
図2】本発明の実施形態に係るクラリネットのバレル部の断面図である。
図3】本発明の別の実施形態に係るクラリネット用のマウスピースの断面図である。
図4】本発明の上記実施形態のいずれかによって使用される電子制御ユニットの構成図である。
図5a】本発明の別の実施形態を示す。
図5b図5aの好適な変形例を示す。
図6図5aおよび図5bの実施形態で使用するための擬似リードを示す。
図7a-7b】両方とも本発明の実施形態に係るリード楽器で使用するための変換装置の斜視図を示す。
図8図7aおよび図7bの変換装置の底面斜視図である。
図9図7a、図7b、および図8の変換装置の第一端面図である。
図10図7aないし図9の変換装置の第二端面図である。
図11図7aないし図10の変換装置の構成部品の片側の側面図である。
【発明を実施するための形態】
【0028】
詳細な説明はクラリネットに関連して行われるが、これは単なる例であって、本発明は任意の適切な管楽器(特にリード楽器)に使用することができることは理解されるであろう。
【0029】
リード楽器、例えばクラリネット、オーボエ、サクソフォン、バスーンの音響はよく知られている。演奏者は、リードが振動し、こうして様々な音色を楽器に導入するように、呼気エネルギを提供する。どのキーが押し下げられるかによって、空洞の共振と一致する定在音響波が発生するように、楽器の空気室に共振空洞が生じ、その結果、演奏された楽音として聴覚的に認識される音になる。第一高調波および基音という用語は、演奏される楽音すなわち聴覚的に知覚される周波数で最も低い周波数成分を表す代替用語としてしばしば使用される。
【0030】
図1を参照すると、典型的なクラリネット10の一部分の簡易断面図が示されている。図に示されているのは、略円筒形で中空のマウスピース11である。マウスピースの近位端では、リード12がリガチャ(図示せず)によりマウスピース11に取り付けられる。遠位端では、マウスピース11は、外径が低減された切欠き部を有する。この部分に、低減された直径部分の外周に延びるテノンコルク13が埋め込まれる。
【0031】
クラリネット10はまた、再び円筒形で中空のバレル14(ソケットとしても知られる)をも含む。バレル14は、マウスピース11の外径および内径より実質的に同様の外径および内径を有する。バレル14の内径部分は、マウスピース11のテノンコルク13により密閉されるように、その近位端で取り外される。
【0032】
バレル14の遠位端は、クラリネット10の上接合部16と係合する。再びバレル14の内径部分は、上接合部16のテノンコルク19により密閉されるように、その遠位端で取り外される。上接合部16には複数の音孔が設けられ、そのうちの二つだけが17A、17Bに図示されており、その上に音孔リングおよびキー18A、18Bが装着される。キーは、孔17A、17Bをそれぞれ露出するかあるいは被覆するように、非押下げ状態18Aまたは押下げ状態18Bのいずれかとすることができる。次いで、上接合部16は下接合部およびベル(図示せず)に取り付けられ、完成したクラリネットを形成する。これらの構成部品は、クラリネット10全体に延びる円筒状の空気室15を画定する。
【0033】
クラリネット10を演奏するために、ユーザはマウスピース11に息を吹き込み、リード12を振動させる。空気室15に定在波が形成され、それは、これらが一般的に知られる音階に対応するように形成される。孔17A、17Bの開閉は生成される定在波の形状を変化させ、したがって楽音が生成される。
【0034】
本発明の第一実施形態では、図1のバレル14は図2のバレル20に置換される。このバレル20は、両方とも空気室15に設けられたスピーカ28およびマイクロホン26を含む。図4に示す通り、スピーカ28は、音を生成するために加振ユニット101(電子処理ユニット100の一部分)によって駆動される。音は特に静かであってよく、あるいはヒトの聴覚の周波数範囲外であってよい。音は、押し下げられたキー18A、18Bの組合せの特徴である音響波を空気室15内で形成するのに適していなければならない。スピーカ28によって空気室15に送出される音は、空気室15の音響伝達関数によって変更される。空気室15内の音(スピーカ28によって空気室に送出された音を含む)は、マイクロホン26によって測定され、マイクロホンは、測定された音を表す測定信号を出力する。空気室15の音響伝達関数は、後でさらに説明するように、楽器の長さに沿って配置されかつ空気室15の長さに沿って配置された複数の異なる位置で楽器の空気室15を楽器の外部に接続する音孔(例えば17A、17B)を開閉することによって、リード楽器の演奏者によって設定される。これらの音孔(例えば17A、17B)は、リード楽器の演奏者の指によって直接、またはリード楽器の演奏者によって手動制御されるキーに接続された音孔リングによって、開閉されてよい。演奏者によって選択される開閉される音孔(例えば17A、17B)の組合せは、どの楽音が楽器によって鳴らされるかを決定する。リード楽器の通常の使用では、演奏者がリード12を吹くことによるリード12の振動が音を発生させ、それは次いで空気室15の音響伝達関数によって変更され、典型的にはリード楽器のマウスピース11とは反対側の空気室15の端部におけるベル部を介して、リード楽器から出力される楽音を生成する。生成される音のタイミング、音色、および音量もまた、リード楽器の演奏者が楽器10のマウスピース11内にいつ、どれだけ強く息を吹き込むかによって影響される。
【0035】
本発明は、リード楽器の演奏者が他者に不当に迷惑をかけることなく練習することがしばしば難しいことを認識し、したがって演奏者がそれでもなおマウスピース11に息を吹き込み、かつ音孔(例えば17A、17B)を通常の仕方で開閉することができるが、他者に迷惑をかける音を発生することなくそれをできるようにする構成を提供する。代わりに、スピーカ28はほとんどまたは全く聞き取れない音を楽器10の空気室15に送出し、それは音孔(例えば17A、17B)の開閉により演奏者によって選択される空気室15の音響関数によって変更され、変更された音は次いで空気室15内の音の一部を形成し、それはマイクロホン16によって受信され、それは測定信号を出力し、そこから、音孔17A、17Bの開閉により楽器の演奏者によってどの楽音が選択されたかを決定することができる。測定信号は次いで、楽器が他者の迷惑になる音を生じることなく演奏した楽音を演奏者が聞くことができるように、システムが例えばヘッドホンによって演奏者に送達される音を生成するために使用することができる。下述するように、マイクロホンから分離しかつ独立している圧力センサは、いつ、どれだけ強く演奏者がマウスピース11(これは機能するリードを持たない)に息を吹き込んでいるかを決定するために使用することができるので、例えばヘッドホンを介して演奏者に音として送達される楽音のタイミングおよび音量をそれに応じて変化させることができる。
【0036】
第一実施形態の装置は、実質的に聞き取れないように楽器を演奏するための動作モードを有する。例えば装置は、スピーカ28を駆動させる加振ユニット101(図4参照)の出力を制限して、低音量の音を生じるように構成されてよい。低音量は周囲音の測定に基づいて選択されてよい。周囲音の測定はマイクロホン26によって行われてよい。代替的に、追加のマイクロホンを設けることができ、それは空気室15内には向けられず、楽器10の外側の周囲音を直接測定するために楽器10の外側に向けられる。
【0037】
例えばスピーカ28の出力は、測定された周囲音レベルより所定の量だけ、または所定の倍数だけ、大きくまたは小さくなるように選択されてよい。
【0038】
周囲音の測定がマイクロホン26によって(または第二の周囲ノイズマイクロホンによって)行われる場合、スピーカ28の出力は、測定された周囲音レベルより所定の量だけ、または所定の倍数だけ大きくなるように選択されることが好ましい。そのような実施形態では、スピーカ28の出力は、マイクロホン26(または第二の周囲ノイズマイクロホン)によって受信される周囲ノイズの大きさの二倍以上であってよい。
【0039】
このようにして、出力の選択は、スピーカ28によって生成される音が、周囲ノイズの音に隠れて聞き取ることができないように、静かに楽器を演奏することを効果的に可能にするレベルでリード楽器によって表現されるように、(所与の楽器用に)構成することができる。
【0040】
好適な実施形態では、装置は、スピーカ28によって生成される音の周波数が20Hzから20KHzの間になるように、スピーカ28を加振するように構成される。スピーカ28に送られる加振信号は、一連の指数チャープを含むことが好ましい。チャープは選択された範囲の可聴周波数を均等に加振することが好ましい。各チャープは、時には指数関数的スキャンチャープまたは幾何チャープとも呼ばれる指数チャープであることが好ましいが、慎重に選択された周波数の一組の連結された正弦波とすることもできる。指数チャープでは、信号の周波数は時間の関数としてf(t)=f0tで指数関数的に変化する。ここでf0は開始周波数(t=0)であり、kは周波数の指数関数的変化率である。線形チャープとは異なり、指数チャープは指数関数的な周波数増加率を有する。指数チャープは楽器の各楽音に均等な周波数弁別をもたらし、したがって、対処しなければ楽音の認識低下を導き得る周囲ノイズの存在のため、一部の楽音では信号対雑音比が高くなり得るという問題に対処する。
【0041】
マイクロホン26は次いで空気室15で音響波形をピックアップし、それは空気室15の音響伝達関数によって変更されたスピーカ28による波形出力を含み、そのような音響伝達関数は、リード楽器の演奏者による音孔の開閉によって選択される。この信号はプロセッサ102(図4参照)に受け渡される。プロセッサ102はこの信号を解析してどの楽音が鳴らされたかを検知する。プロセッサ102は、測定信号の周波数領域解析を、各々がリード楽器によって鳴らされた楽音と相関する一組の保存された周波数領域解析と比較する。プロセッサ102は、測定信号毎に、測定信号と一組の保存された信号との間のピアソン相関係数を決定し、測定信号に最もよく相関する保存信号を選択する。このようにして選択された保存信号は、リード楽器によって鳴らされた楽音と相関する。プロセッサ102は、この楽音を具現化する信号を出力手段103に発生する合成器(図8の220)を組み込む。出力手段103は次いで、ヘッドホン112を装着しているユーザに合成された楽音を再生するために、増幅器111を介してヘッドホン112に接続される。代替的に、または追加的に、短距離でデータを交換するためにBluetooth(登録商標)無線技術標準を使用する(例えば2.4〜2.485GHzのISM(工業、科学、および医療用)無線帯域の短波長UHF電波を使用する)無線送信手段のような、無線送信手段116、118は装置に組み込まれてよい。無線送信手段はヘッドホン112で使用される信号を送信する。
【0042】
本発明は、従来リードを依然として所定の位置に着けたまま、ユーザが吹くことを控える状態で実現し使用することが可能であるが、本発明を実現するために、リード楽器のマウスピースは、本発明の装置の一部である変更されたマウスピースに置換されることがより一般的であり、あるいは、後でさらに詳しく記載するように、楽器の通常のマウスピースは、通常のリードを取り外し、これを本発明に係るリード代用品に置き換えることによって変更されることが、より好ましい。このようにして、ユーザは、呼べば聞こえる所にいる他者に迷惑をかけることなく、楽器を非常に静かに練習することができる。任意選択的に、ユーザが通常のマウスピースで感じるのと同じ吹込み抵抗を感じることを確実にするために、変更されたマウスピースまたは代用リードに通気孔が設けられる。
【0043】
図6は、代用リード212が設けられる一つのやり方を示す。リード楽器の通常のマウスピース11の先端は、マウスピースのボアと連通する開口を含む。代用リード212は、通常のリード12の代わりにマウスピースに適用される。それは剛性の非振動リードである。代用リード212は任意選択的に、マウスピース11の先端の開口を閉鎖するように構成されてよい。代用リード212には、代用リード212の表面に沿って空気逃し溝213が、あるいは代用リード212内を第一位置からブリード穴214まで延びる空気逃し通路が形成されることが有利である。第一位置はユーザからの呼気の流れを受け取るように選択される。
【0044】
溝213が(図6に示すように)設けられる場合、これはマウスピースと協働して、集合的に空気逃し通路を形成することができる。これは演奏者に彼/彼女が楽器を通常通りに演奏している印象を与えることができるが、空気室の加振は行われない。圧力センサ37は、(例えば、図5aおよび図5bにおけるセンサ37の位置に代わるものとして)通路213に装着することができる。
【0045】
圧力センサ37は、いつ、および/またはどれだけの強さで、および/またはどのように(例えばビブラート)演奏者が通路213に息を吹き込んでいるかを示す信号を送ってよい。図6の代用リード212は通常、図5Aまたは図5Bの装置と共に使用される。代用リード212の使用は、図5Aおよび図5Bの装置における通路313の必要性を取り除く。
【0046】
図4の実施形態はヘッドホン112に送信される出力信号を示すが、信号はスピーカ、インターネット接続、ミキシングコンソール、またはゲームコンソールのような、しかしそれらに限定されないいずれかの適切な装置に送られてよい。生成される信号は必ずしも、演奏されているリード楽器の出力を模倣するように装置によって使用される必要はない。それは例えば、ユーザが正しい音を正しい時に演奏した場合に褒賞されるコンピュータゲームの一部として使用することができ、あるいは演奏されているものとは異なる楽器を合成することができる。
【0047】
図3は本発明の代替的実施形態を示す。この実施形態では、新しいマウスピース30が提供される。このマウスピース30は、前の実施形態と同様に働くスピーカ28およびマイクロホン26を含む。この実施形態では、ボア35はマウスピースの近位端に開口を持たないので、空気室はそのマウスピース端を封止される。代わりに、マウスピース30の外部への出口を有する小さいボア32が、マウスピース30に設けられる。このボア32は、演奏されているときにクラリネット10の通常の空気圧特性を模倣するように形成されてよい。ボア32は空気室35と連通しない。
【0048】
ボア32には圧力センサ37が設けられ、それは、いつ、および/またはどれだけ強くユーザがマウスピース30を介して息を吹き込んでいるかを示す信号をプロセッサ102(図4参照)に送る。次いでプロセッサ102はこのデータを使用して、スピーカ28および/またはマイクロホン26、および/または合成器220(図8参照)による楽音出力信号の発生、および/または出力手段103の動作をいつ起動させるかを決定する。信号は、例えば高い圧力が感知されたときに、より高いピッチを表現し、あるいは合成楽音にビブラート要素を導入するなど、合成楽音信号の特性を変化させるためにも使用されてよい。
【0049】
さらなる代替例は図5aに示される。図5aは、マウスピース11と楽器の本体(例えばクラリネットの上接合部)との間の連結のための変換装置を示す。図5aでは、変換装置は、クラリネットのバレル14の形状に、かつそれに代わるものとして形成される。図5aの変換装置は、マウスピース11を楽器の本体における空気室15から隔離する障壁を含む。スピーカ28およびマイクロホン26は楽器の本体における空気室15と連通するように配設される一方、圧力センサ37はマウスピース11と連通するように配設される。例えばスピーカ28およびマイクロホン26は、障壁を挟んで圧力センサ37が装着される側とは反対側に装着されてよい。
【0050】
本発明に係る変換装置のさらなる変形例は図5bに示される。この変形例では、マウスピースと楽器の残部との間の障壁は、変換装置および装置の電子処理ユニット100(加振ユニット101、プロセッサ102、出力手段103、およびメモリ104の一つ以上を含む)にも電力を供給するバッテリを包含する筐体を含む。加えて、筐体内または筐体上には、出力手段103の一部であるかもしくはそれに追加される充電および/または通信接続点(例えばマイクロUSBコネクタなど)、ヘッドホン用のソケット、装置もしくはその様々な機能を作動させるための制御装置、および/または状態表示装置(例えば一つ以上のLEDなど)が設けられてよい。
【0051】
図5aに示す変換装置は二つの雌コネクタ(本体およびマウスピースの雄コネクタへの接続用)を有し、図5bの変換装置は一つの雄コネクタおよび一つの雌コネクタを有する。図示する変換装置は各々、所望のリード楽器と嵌合するために必要な雄および/または雌コネクタの任意の組合せを有するように構成されてよい。図5aの変換装置はクラリネットのバレルに置き換わるように設計される一方、図5bの変換装置はクラリネットのバレルに追加して(好ましくは、サイズが通常標準化されているバレルとマウスピースとの間に)設けることができる。
【0052】
図5aおよび図5bの変換装置は各々、そこにマウスピース側からブリード穴214までの通路313が形成されてよい。これは演奏者に、彼らが楽器を通常通りに演奏している印象を与えることができるが、彼らが空気室15自体を加振させることはない。圧力センサは通路313に装着することができる。
【0053】
図4は、リード楽器の音を合成するためのシステムの構成図を示す。図4のシステムは、上述した構造的配置のいずれか、または以下で示す実施形態のいずれかと共に使用されてよい。共振空洞を解析してその共振を測定または推定するための様々な周知の技術が存在する。これらは最長系列の適用、時間領域反射測定法、掃引正弦解析、チャープ解析、および混合正弦解析を含むが、それらに限定されない。実施形態または処理方法に関係なく、スピーカ28およびマイクロホン26は5cm未満の距離だけ離すことが有利であることが明らかになった。
【0054】
本発明の一部の実施形態では、単純な正弦トーンの適用に基づく方法が使用される。刺激フレームは、クラリネット10(または他のリード楽器)の可能な音の各々に選択されたトーンを含む。トーンは離散的に、または次から次に連続して適用することができる。各トーンは二つ以上の周波数成分から形成されてよい。刺激フレームは既知の順序に配置されたトーンを含む。
【0055】
刺激フレームはラウドスピーカ28への加振として適用される。加振は周期的に実行されてよく、あるいは事象(例えばユーザがマウスピースに息を吹き込んだことを圧力センサ37が感知したとき)の後に開始してよい。マイクロホン26は刺激フレームおよび発生した共振をピックアップし、この情報をプロセッサ102に受け渡す。プロセッサは、様々な周波数の受信音信号の強度を測定するために、フィルタバンクまたは高速フーリエ変換を適用する。強度の測定から、リード楽器の演奏者によって演奏される楽音を識別することが可能である。
【0056】
プロセッサ102は圧力センサ37からのデータを使用して、スピーカ28および/またはマイクロホン26、および/または出力信号の発生、および/または出力手段103の動作を起動させるときを決定する。信号はまた、例えば高い圧力が感知されたときにより高いピッチを表現するなど、プロセッサ102に組み込まれた合成器220(図8参照)によって発生する出力信号の特性を変化させるためにも使用されてよい。好適な実施形態では、スピーカ28は動作中、連続的に作動してよい。例えばスピーカ28は、反復される音のシーケンスを生成するように駆動されてよい。この場合、プロセッサ102は圧力センサ37からの信号を使用して、シーケンスを再始動することができる。また、圧力センサ37によって測定される空気圧の変動は、合成器(図8の220)によって生成される合成楽音を変調させるため、例えば演奏者がビブラートブレス入力をリード楽器に加えているときにそれを認識し、かつそれに応答して合成楽音にビブラートを取り込むために、使用されてよい。
【0057】
所定の組の刺激フレームはメモリ104に保存されてよい。
【0058】
システムは、刺激フレーム内の一つのトーンまたは各トーンに対する楽器10の応答を学習するようにプログラムされてよい。例えば、ユーザは、楽器10の共振を特徴付けるために、一つ以上の音(おそらく全ての可能な音)を演奏するために必要なキー18を押し下げるように、ユーザインタフェースによって指示してよい。各キー18が押し下げられる間、加振ユニット101はラウドスピーカ28を刺激フレームにより加振し、応答はマイクロホン26を用いて受信される。プロセッサ102は受信した応答を解析し、これを使用して、演奏された楽音の表現をメモリ104に保存することができる。このようにして、システムはそれが適用される特定の楽器10に適応することができる。
【0059】
代替的に、または追加的に、学習プロセスは刺激フレームを適応させるために使用することができる。例えばマイクロホン26が、スピーカ28によって送信されたトーンより高い一次基本周波数(例えば最も低い受信周波数)の音エネルギを受信した場合、プロセッサは、刺激フレームのそのトーンの周波数、または刺激フレームの全てのトーンの周波数を、スピーカ28によって送信されたトーンに対するマイクロホン26によって受信された一次基本周波数の比率に等しい倍率で増大してよい。
【0060】
代替的に、加振ユニット101、プロセッサ102、出力手段103、およびメモリ104を含む処理ユニット100は、マイクロホン26によってプロセッサ102に送られた測定信号から、加振ユニット101によって駆動されるスピーカ28によって生成される音と、マイクロホン26によって受信された音との間の差を特徴付ける時系列データを含む出力信号を発生することができる。加振ユニット101によって生成される加振信号は、プロセッサ102がマイクロホン26から受信した測定信号と直接比較することを可能にするため、プロセッサ102に中継することができる。この差は空気室15の音響伝達関数を示しており、これは次に、演奏者によって演奏された楽音を示す。こうして、プロセッサ103は、例えば指示された音響伝達関数をメモリ104に保存された(各々特定の楽音に関連付けられた)一連の音響伝達関数と比較することによって、演奏された楽音を選択することができる。プロセッサ102の合成器220(図8参照)は次いで、出力手段103によって例えばヘッドホン112に出力されるように選択された楽音を合成することができる。
【0061】
演奏者が図2の実施形態の楽器10を演奏するときに、演奏者は通常の姿勢を取ってよいが、楽器に息を吹き込む必要はない。代替的に、演奏者が鳴り響くことのできる音を形成することなく吹くことができるように、マウスピースのリードは取り外されてよい。この場合、楽音の合成は、キー押し(楽器のキー18、またはこの目的のために設けられた別個のキーのいずれか)によってトリガされてよい。マイクロスイッチは、これを可能にするために、一つ以上のキーに関連付けることができ、マイクロスイッチはキー位置信号を、処理ユニット100によって使用されるようにこのユニットに送信する。
【0062】
ユーザが図3の実施形態の楽器10を演奏するときに、ユーザは楽器に息を吹き込むが、空気の流れは空気室15に到達しない。空気圧力センサ37は圧力の変化を感知し、プロセッサ102に圧力信号を提供する。圧力信号102は、音をいつ合成すべきかを示すために使用することができる。例えば、音の合成は、空気圧力センサ37が閾値を超える圧力を感知したときに開始され、かつ圧力が閾値未満に下がったときに停止されてよい。
【0063】
圧力信号102はまた、ラウドスピーカ28の加振をトリガするためにも使用することができる。例えば加振は、空気圧力センサ37が閾値を超える圧力を感知したときにトリガされ、かつ圧力が閾値未満に下がるまで続けられてよい。刺激フレーム方法が使用される場合、刺激フレームは加振中反復されてよい。スピーカ28が反復される音のシーケンスを連続的に生成する実施形態では、プロセッサ102は圧力センサ37からの信号を使用して、シーケンスを再始動することができる。
【0064】
圧力信号は、ユーザによって演奏されるように意図された楽音の音量をも表す。プロセッサ102は、感知された圧力に応じた音量を有する音を合成するように、出力手段103に指示する。
【0065】
一部の楽器10の場合、ユーザによってもたらされる空気の圧力もまた、演奏される楽音に影響を及ぼし得る。一部の実施形態では、プロセッサ102における合成器(図8の220)は、感知された圧力に応じたピッチを有する音を合成する。さらに、圧力信号は、演奏者がリード楽器にビブラートをかけているときにそれを示すことができ、これが検知されたときに、合成器(図8における220)はビブラート要素を組み込んだ楽音信号を発生する。
【0066】
マイクロホン26、スピーカ28、およびオプショナル空気圧力センサ37がどのように装着されるかに関係なく(すなわち図2図3図5、または図6の場合のように)、システムは同じように働いてよい。システムは以下を含め、様々なやり方で適用することができる。
【0067】
静音演奏:システムは、加振ユニット101が、周囲音の測定に基づいて選択された音量で音を生成させるようにスピーカ28を駆動するように構成された、静音動作モードが設けられてよい。周囲音の測定は、マイクロホン26(または別個の独立した周囲ノイズマイクロホン)によって行われてよい。このようにして、楽器は、通常のように楽器を介して音を発生させることなく、しかし出力手段103が合成音をユーザに向けて再生するためにヘッドホンなどを駆動させることのできる出力信号を生成するように、ユーザによって(息を吹き込むことなく、または図3図5、および図6にあるように息の方向を変えて)「演奏する」ことができる。こうしてユーザは静かに練習することができる。
【0068】
ゲームインタフェース:出力手段103は、ユーザに特定の曲を演奏させるようにプログラムされたコンピュータに信号を提供するように適応されてよい。コンピュータは演奏される楽音を実時間で表示し、かつ/またはマイクロホン26によって生成される信号のタイミングおよび/または周波数に基づいて、ユーザが曲を演奏する能力を採点する。これは任意選択的に、静音動作モードを適用してよい。
【0069】
仮想オーケストラ:出力手段103は、通信装置(例えばインターネット接続)に信号を提供するように適応されてよい。通信装置は、他のそのような装置および/または他の種類の楽器から信号を受信し、同時に演奏する複数の楽器の音を合成する。再び、これは任意選択的に静音動作モードを適用してよい。
【0070】
図7a〜図11は、本発明のさらなる実施形態に係る変換装置200を示す。変換装置200は、リード楽器、例えばクラリネットのマウスピース201に、楽器のリードの代わりに取付け可能に構成される。典型的には、リード楽器は、リードをマウスピース201上の所定の位置に解放可能に固定するために使用されるリガチャを有する。変換器組立体200を使用するために、演奏者はリガチャを緩め、マウスピース201からリードを(おそらくリガチャと一緒に)解放し、取り外す。次いで変換装置200は、図7aおよび図7bに示すように、リードの代わりにマウスピース201に固定される。変換装置は、典型的にはプラスチック材から成形されるカラー202を有し、それは装置のリード置換部203に取り付けられる。リード置換部203もまた典型的にはプラスチック材から成形され、図9および図10に示されるように、端部から見るとU字状である。図9および図10では、装置を端部から見たときに、カラー202もまたU字状であることが分かる。変換装置200がマウスピース201に装着されたとき、カラー202およびリード置換部203はマウスピース201を取り囲み、カラー202は、マウスピース201の「上方」外面上に延びてそれと係合し(「上方」とは、リード楽器が従来の方法で演奏されるときに、この表面が上方向を向くという意味である)、カラー202はそれによって、通常マウスピース201に固定されるリードの代わりに、リード置換部203をマウスピースに固定する。リード置換部203は、所定の位置に固定されたとき、マウスピースが通常リードによって占有される部分を占有する。リード置換部の内側を向いた表面(内側にマウスピースの方を向く)は、マウスピース201の「下方」外面と係合かつ当接する。
【0071】
変換装置200は、一緒になって処理ユニット(図7a〜図10における217、図4における100)をもたらす様々な電子部品が実装されたプリント基板204を有し、その機能については上述したし、さらに後述する。プリント基板204は、使用時にマウスピース201とは反対の方を向くリード置換部203の外面に取り付けられる。
【0072】
図9および図10に示される通り、変換装置200には、リード置換部203に取り付けられ、かつそこから離れるようにカラー202に向かって延びるアーム205が設けられる。使用時に、変換装置200がマウスピース201に固定されるとき、アーム205はマウスピース201の下方外面のアパーチャを介して、リード楽器の空気室15内に延びる。図9は、使用中に演奏者の唇によって係合されるマウスピース201の端部を向くアーム205の面206を示す。図10は、使用中に演奏者の唇によって係合されるマウスピース201の端部とは反対側を向くアーム205の面207、例えばクラリネットのベルの方を向く面207を示す。
【0073】
アーム205は、図10に示されるように、両方ともアーム205の面207の方を向いたスピーカ208およびマイクロホン209のための筐体を提供する。スピーカ208は使用中、マウスピース201の円形断面ボアの略中央に位置する。マイクロホン209はスピーカ208とリード置換部との間に位置する。スピーカ208およびマイクロホン209は両方とも、アーム205を介して延びるワイヤによって処理ユニット217に電気的に接続される。U字状の障壁210は面207から外に延び、マイクロホン209をスピーカ208から遮蔽して、マイクロホン209に直接「短絡」したスピーカ208から出力される音の量を低減させる。
【0074】
リード置換部203は、図9に示された入口211から、リード置換部203の下方外面を示す図11に示された出口213まで延びる空気通路を有する。使用中に、リード楽器の演奏者は入口211を介して息を吹き込む。入口211と出口213との間の通路は、楽器の演奏者がリードを取り付けた状態で楽器を演奏するときに経験するのと同様の抵抗を空気流にもたらすような形状および大きさに形成される。圧力センサ212はリード置換部203に収容され、入口211と出口213との間の通路内の空気圧を測定する。圧力センサ212は、演奏者がいつ、どれだけ強く、かつどのように(例えばビブラートをかける)通路内に息を吹き込むかを示す圧力信号を生成する。圧力センサは、プリント基板204上の電子機器によって提供される処理ユニット(図7a〜図10における217、図4における100)に接続される。
【0075】
変換装置200には、装置200の外側を向きかつ装置200の周りの周囲音を受信する、周囲ノイズマイクロホン214も設けられる。周囲ノイズマイクロホン214は周囲ノイズ信号を生成し、それはプリント基板204の電子機器によって提供される電子信号処理ユニット(図7a〜図10における217、図4における100)に中継される。
【0076】
好ましくは再充電可能なバッテリ215および216はプリント基板204上に設けられ、基板204上の電子部品に電力を供給する。また、例えば無線ヘッドホンの受信器によって受信されるように、変換装置200からの出力信号を無線で送信するために、無線送信器218も設けられる。
【0077】
使用中に、変換装置200は、リード楽器のマウスピース201にリードの代わりに装着される。演奏者は次いで、楽器の音孔を開閉し、それによって楽器によって鳴らされる楽音を選択するように、リード楽器のキーを手動で操作しながら、装置の入口211に息を吹き込む。入口211への息の吹込みは圧力センサ212によって検知され、センサは、プリント基板204上の電子機器によって提供される処理ユニットに圧力信号を送信する。処理ユニット(100、217)は、演奏者の息の吹込みを示す圧力信号に応答して、処理ユニット(100、217)の加振ユニット(101、222)を起動させ、加振信号をスピーカ208に出力し、スピーカは次いでリード楽器の空気室15に音を出力する。加振信号の周波数および/または振幅は、演奏者がどれだけ強く吹き込んだかを考慮するため、圧力センサ212によって出力された圧力信号を考慮して、加振ユニット(101、222)によって変動させることができる。また、圧力センサ212によって測定された空気圧の変動は、例えば演奏者がビブラートブレス入力をリード楽器に加えたときにそれを認識し、かつそれに応答してビブラートを合成音に取り込むように、合成音を変調させるために使用されてよい。加振信号の周波数および/または振幅もまた、例えばスピーカ208によって出力される音のレベルが周囲ノイズのレベルより、予めプログラムされた最小値だけ少なくとも高くなることを確実にするために、周囲ノイズマイクロホン214によって出力される周囲ノイズ信号を考慮して、加振ユニット(101、222)によって変動させることができる。
【0078】
マイクロホン209は空気室15で音を受信し、測定信号を処理ユニット(図7a〜図10における217、図4における100)に出力する。処理ユニット(217、100)は、測定信号またはそのスペクトルを、プリント基板204(図4では104としても示される)上のメモリユニット219に保存された事前保存信号または事前保存スペクトルと比較し、ベストマッチを見出す(これは、周囲ノイズマイクロホン214によってもたらされた周囲ノイズ信号によって示された周囲ノイズを測定信号から除去した後で行うことができる)。事前保存信号またはスペクトルは各々、楽音に対応する。測定信号またはそのスペクトルと事前保存信号またはスペクトルとのベストマッチを見出すことによって、処理ユニットはリード楽器の演奏者によって演奏された楽音を決定する。プロセッサ102は、検知された楽音を表す出力信号を合成する合成器220(図8参照)を組み込む。この合成された楽音は、演奏者がヘッドホンによって出力される選択された音を聞くことができるように、出力手段103によって例えば無線送信器218(図8に示す)を介して無線ヘッドホンに出力される。処理ユニット(100、217)は、どの楽音が選択されたか、および/またはどの楽音信号が合成され出力されるかを検知するプロセスで、圧力信号および周囲ノイズ信号をさらに使用することができる(圧力信号は演奏者の息の強さ、したがって演奏者が希望する楽音の大きさを示すので例えば出力信号の振幅は圧力信号に応答して変動する)。
【0079】
上述した変換装置は以下の利点を有する。
i)それは、標準リード楽器のマウスピースにリードの代わりに容易に着脱することのできるユニットであり、あるいは予備の(安価な)マウスピースに永久的に取り付けることができる。
ii)それは、スピーカによって出力される加振信号の音量変調を可能にし、かつ合成楽音がいつ出力されるかの制御をも可能にする、一体型圧力センサを有している。また圧力センサによって出力される圧力信号は、いつビブラート空気圧力がリード楽器に加えられたかを示すことができ、これは合成楽音にビブラート要素を取り込むことを可能にする。
iii)それは一体型の埋込信号処理および無線信号出力を有する。
iv)それは、データをラップトップ、タブレット、またはパーソナルコンピュータ/コンピュータタブレット/スマートフォンアプリケーションへのデータの通信を可能にし、表示画面上の生の楽音スペクトルのビジュアルディスプレイを含め、グラフィカルユーザインタフェースを提供するソフトウェアを実行することができる。
v)それは任意選択的に、演奏者が操作する一体型の加振量制御装置を設けることができる。
vi)それは、空気室マイクロホン測定信号からの統合周囲ノイズ除去を可能にする、周囲ノイズ感知マイクロホンを設けることができる。正確な周囲ノイズ測定値を出すために、周囲ノイズマイクロホンはできるだけ楽器に近接することが好ましい。
vii)その処理ユニット(100、217)は、演奏者への聴覚的フィードバックのため、合成楽音出力を提供する一体型合成器(図8における220)を含む。
viii)それは内部バッテリを含み、それによって電力を供給されるので、リード楽器の演奏者の移動性を抑制するリード線をユニットに接続する必要がない。
ix)それは、リード楽器に装着され、したがってマイクロホンに近接している電子部品でマイクロホン信号を処理して、システムにおける待ち時間を低く維持し、かつデータ伝送コストおよび損失を最小化するので、有利である。
【0080】
上記の実施形態で記載した通り、本発明は、マウスピースと楽器の残部との接続部付近に配置される変換装置200に内蔵された小型スピーカ208によって、電子的刺激を導入する。刺激は、任意の組合せのキーを押し下げることによって生じる共振が、好ましくはスピーカ208によって提供される刺激の近くに配置された少なくとも一つの小型マイクロホン、例えば上述したマイクロホン209によってピックアップされた音響波形を変化させるように選択される。したがって、音響波形の解析は、マイクロホン208によって電気的測定信号および/または信号の導関数に変換されたとき、演奏されたキー位置に関連付けられる意図された音の識別を可能にする。
【0081】
スピーカ208を介してもたらされる刺激は、非常に小さいエネルギで提供することができ、なおかつ測定信号の適切な処理により、意図された音はそれでも認識することができる。これは、リード楽器の演奏者に近無音楽器の演奏効果をもたらすことができる。
【0082】
意図された音の識別は、必ずしもそうではないが典型的には、演奏される種類のリード楽器を模倣するように選択された楽音の合成をもたらすことが好ましい。この電子的な音の合成は、プリント基板204上に設けられた音合成器220によって実行される。合成された音は、楽器によって演奏された音の合成音響表現が演奏者に聞こえるように、ヘッドホンまたは他の電子インタフェースに中継される。電子的処理は、不当な待ち時間無く自然なやり方で楽器を演奏することができるように、演奏者へのこのフィードバックを略実時間で提供することができる。こうして、演奏者は、呼べば聞こえる所にいる他者に迷惑をかけることなく、非常に静かに楽器を練習することができる。
【0083】
楽器のマウスピース201は、通常リード楽器のマウスピース201に装着されるリードの代わりに変換装置200を使用することによって変更される。演奏者は、典型的にはマウスピース201とリード楽器の残部との間の接合部の近傍における、楽器の外側への出口213を提供する永久開口通気孔で終端する通路への入口211によって提供される小さいアパーチャ内に、空気を押し出す。通気孔の目的は好ましくは二つある。演奏者が経験する通常の演奏空気圧を模倣すること、および凝縮した水分を排出するための経路を提供することである。代替的に、凝縮した水分の排出を可能にするために小さいキーを介して開かれるまで密閉される、第二の通気孔が設けられてよい。これらまたは各通気孔の寸法は、従来の楽器の演奏時に生じる通常の圧力範囲を模倣するように選択される。
【0084】
上述の通り、入口211と出口213の間の通路内の空気圧は、圧力センサ212によって検知される。典型的には、測定された圧力を表すアナログ信号は、図4における100および図7a〜図10における217として示される電子処理ユニットに提供される。空気圧の絶対値またはその変化は、刺激を加えること、および/またはマイクロホン信号の処理、および/または合成模倣音の発生を開始するために使用されてよい。空気圧の変動はまた、例えばビブラートがかけられたときに合成音を変調するためにも使用されてよい。入口211と楽器の残部との間に空気通路は無いので、演奏者の息はリード楽器の空気室15に到達できない。
【0085】
電子処理ユニット(100、217)は、時間領域または周波数領域のいずれかで作業して、リード楽器の空気室15によって提供される共振空洞の伝達関数およびそれによって意図する音を見出すために、測定信号を解析するための様々な周知の技術の一つ以上を使用する。これらの技術は、個別のまたは反復的な最長系列の適用、時間領域反射測定法、掃引正弦解析、チャープ解析、および混合正弦解析を含む。
【0086】
次に、単純な正弦トーンの連続的適用に基づく実施形態について記載するが、代替的処理法が使用されてよい。
【0087】
好適な実施形態では、スピーカ、例えばスピーカ208に送られる刺激信号は、楽器の可能な楽音の各々に対して選択されるトーンフラグメントから構成される刺激フレームになる。トーンは離散的にまたは相互に連続して適用することができる。各々のトーンフラグメントは二つ以上の周波数成分から構成されてよい。トーンフラグメントは既知の順序に配置されて刺激フレームを構成する。刺激フレームは、典型的には(圧力センサ212によって検知される通り)演奏者が楽器に吹き込むことによって始動されるスピーカ(例えば208)の加振として適用される。(いずれかの演奏されたキーおよびそれにより発生する共振によって設定される)空気室の音響伝達関数によって変更されたバージョンの刺激フレームを含む信号は、マイクロホン209によってピックアップされる。時間領域測定信号は例えばフィルタバンクまたは高速フーリエ変換(FFT)によって処理され、既知の周波数で一組の測定値を提供する。周波数の測定は、演奏された楽音の事前保存測定値との比較、または機械学習技術を介して得られた保存周波数測定値との比較のいずれかによって、演奏された楽音の認識を可能にする。刺激フレーム内の順序およびタイミングの知識は、認識プロセスを支援するために使用されてよい。
【0088】
刺激フレームは典型的には、空気圧が演奏者によって維持されている期間(圧力センサ212によって感知される)、ラウンドロビン方式で繰返し適用される。刺激フレームの適用は、演奏者が吹込みを停止したことを示す圧力信号を圧力センサ212が出したときに停止され、刺激フレームの適用は、新たなタイミングの音の検知が圧力センサ212によって示されたときに再始動される。演奏された音の識別直後に処理ユニット(図7a〜図10における217、図4における100)の構成部品によって出力される、演奏音出力信号のタイミングは、演奏された音の認識および測定された空気圧の組合せによって決定されることが好ましい。演奏音出力信号は次いで、演奏された音の模倣が処理ユニット(図7a〜図10における217、図4における100)の合成器220によって出力されるように、合成器220で実行される合成ソフトウェアに入力され、合成された楽音信号およびそのタイミングは、典型的には例えば無線ヘッドホンを介して演奏者に戻される。
【0089】
演奏された音は、特に基本周波数の単一周期が数十ミリ秒かかる、低周波数の音の場合、低遅延で演奏者にフィードバックすることが望ましい。電子処理技術の組合せは、演奏された音が依然として応答から検知されるように、異なる周波数の単数または複数のトーンを基音に適用することによって、そのような音を低遅延で検知するために、適用されてよい。
【0090】
一部のリード楽器では、演奏された音は、少なくとも一つの追加的「通気孔」を開く一つ以上のレジスタまたはオクターブキーを用いて、あるいは代替的に、基音ではなく倍音が出るように「オーバーブロー」(すなわち演奏者がかなり高い圧力で息を吹き込む)することによって、変化する。オーバーブローは、追加的空気圧が働くことにより、圧力センサ212によって検出される。レジスタまたはオクターブキーの使用は、より高次の倍音の周波数に大きく影響を及ぼすことなく、基音の共振周波数をわずかに移動させ、したがってマイクロホン209によって提供される測定信号を介する認識の基礎を提供する。代替的に、レジスタまたはオクターブキーの位置は、従来の様々な方法を介して、例えば磁気スイッチまたはマイクロスイッチを使用することによって、検知することができる。
【0091】
さらなる実施形態では、スピーカ208に送られる加振信号は、20Hzから20kHzで動作する指数チャープである。信号は20Hzから200Hzの間の最低周波数を含む。この信号はラウドスピーカを介してリード楽器の空気室を繰り返し加振し、こうして刺激フレームを形成する。スキャンの開始周波数は、楽器の最低基本周波数(第一高調波)より、Bフラットクラリネットの場合は約150Hzより、低くなるように選択される。
【0092】
多くのリード楽器では、レジスタキーに関連付けられる孔は、他のキー孔と比較して物理的に小さいことに注目されたい。これは、大きい音エネルギが小さい孔から漏れることができるようになるまで波形の位相が反転するため、高い周波数をほとんど透過させるという孔の効果を有する。刺激フレームによって提供され、マイクロホンに送られるチャープのボトムスキャン周波数は少なくとも、楽器の最低基本周波数、例えば標準Bフラットクラリネットでは150Hzまで低くすることが重要である。
【0093】
空気室15に存在する音はマイクロホン209によって感知され、(刺激フレームをもたらす)指数チャープ加振信号と厳密に同じ長さを続けるデータのフレームに組み立てられる。こうして、マイクロホンデータおよびチャープのフレームは同期する。
【0094】
FFTは、マイクロホン209によって提供される測定信号のデータのフレームに対して実行され、それにより標準的な方法で振幅スペクトルが生成される。
【0095】
この実施形態の変換装置は、演奏者が楽器の全ての音を連続的に演奏し、その結果マイクロホンによって提供される測定信号の振幅スペクトルを演奏された音と相関して保存する、練習モードを有することが好ましい。変換装置には信号受信器のみならずその信号送信器をも設けられ、それによって、演奏者による変換装置の制御を可能にするアプリケーションソフトウェアを実行するラップトップ、タブレット、もしくはパーソナルコンピュータ、またはスマートフォンと通信することが好ましい。アプリケーションソフトウェアは、演奏者が変換装置の練習モードを選択することを可能にする。装置のメモリユニット(104、219)は通常、三組の異なる楽音データを保存することを可能にする。演奏者は一組を選択し、次いでその組に保存する楽音を選択する。演奏者は楽器の関連キーを手動で操作して関連楽音を演奏し、次いでアプリケーションソフトウェアを使用して、マイクロホン209からの測定信号の記録を開始する。変換装置は次いで加振信号の発生を複数回繰り返し、これらの繰り返し回数にわたって得られた測定信号を平均して、関連楽音に対する良好な基準応答を得る。次いでこのプロセスは、楽器によって演奏された各楽音に対して繰り返される。全ての楽音が演奏されかつ基準スペクトルが保存されると、処理ユニット(図7a〜図10における217、図4における100)は、メモリ(104、219)内に練習セットを含む一組の保存スペクトルを有する。後で演奏者が選択できるように、(例えば異なる楽器用に)幾つかの(例えば三つの)練習セットが生成されてよい。ラップトップ、タブレット、もしくはパーソナルコンピュータ、またはスマートフォンは表示画面を有することが好ましく、かつ測定信号によって示される通り、演奏された各楽音のグラフィカル表現を表示する。これは、保存されたスペクトルを精査し、かつ演奏者によって何らかの不具合のある楽音データが見つかった場合に、練習モードの学習プロセスを繰り返すことを可能にする。
【0096】
別個のラップトップ、タブレット、もしくはパーソナルコンピュータ、またはスマートフォン上のアプリケーションソフトウェアを使用するのではなく、ソフトウェアは、装置200の選択された動作モードの表示、選択された楽音、および選択されたデータセットを提供する小型のビジュアルディスプレイ、例えばLEDと共に、変換装置200自体の電子処理ユニット(100、217)、および変換装置200に設けられた手動操作可能な制御装置、例えばボタンによって、実行することができる。
【0097】
変換装置200の動きを感知するために変換装置200に加速度計221(図8参照)を設けることができ、次いで演奏者は練習モードで次の楽音の入力を選択するために楽器を動かすことができ、こうして演奏者が楽音の演奏の合間に楽器から彼/彼女の除去する必要性が取り除かれる。代替的に、電子処理ユニット(100、217)、あるいはそれと通信するラップトップ、タブレット、もしくはパーソナルコンピュータまたはスマートフォンは、例えば周囲ノイズマイクロホン214あるいはラップトップ、タブレット、もしくはパーソナルコンピュータまたはスマートフォンのマイクロホンを介して受信される、「次(NEXT)」のような音声コマンドを認識するように構成することができる。さらなる代替例として、圧力センサ212によって提供される圧力信号をこのプロセスで使用して、一つの楽音の学習から次の楽音の学習に移るときの合図として、演奏者が吹くのを止めかつ(適切な時間間隔後に)次に吹き始めた事象を認識することができる。
【0098】
次いで変換装置200が演奏モードで作動する場合、事前に保存された練習セットが事前に選択される。選択は、変換装置と通信するラップトップ、タブレット、もしくはパーソナルコンピュータまたはスマートフォンで実行されるアプリケーションソフトウェアを用いて行うことができる。代替的に、選択を可能にするために、変換装置200には手動操作可能な制御装置を設けることができる。振幅スペクトルは上述の通り測定信号から生成されるが、練習セットとして保存される代わりに、それは練習セットの各スペクトルと比較される(練習セットの各保存スペクトルは単一の演奏音を表す)。比較のために様々な技術、例えば最小二乗差技術または最大ピアソン二次モーメントの相関技術が使用されてよい。加えて、機械学習技術は、比較および/または練習セットを時間をかけて調整し、楽音間の弁別を改善するような比較に適用されてよい。
【0099】
簡単な理解および視覚化の観点から、測定信号の振幅スペクトルだけを使用すると便利であるが、楽音認識の信頼性を向上するために、位相および振幅情報(二倍のデータ量)両方の全複合スペクトルを使用することもできる。しかし、振幅スペクトルは全複素スペクトルのデータの約五十%であるので、振幅スペクトルだけの使用は、処理および送信の速度上の利点を有する。本明細書および特許請求の範囲における「スペクトル」の言及は、振幅スペクトルだけ、位相スペクトルだけ、位相および振幅スペクトルの組合せ、および/または振幅および位相をそこから導出できる複素スペクトルを指すものと考慮すべきである。
【0100】
代替的実施形態では、振幅スペクトルを生成するために、高速フーリエ変換技術を使用する代わりに、理想的には中心周波数が対数間隔のフィルタバンクを使用することができる。バンクのフィルタの中心周波数は、リード楽器によって演奏される楽音の周波数に対応するようにそれを選択することによって、改善された結果を出すために選択することができる。
【0101】
したがって、信号処理の結果は、加振のフレーム(またはチャープ)毎に認識される音である。最小遅延はしたがって、チャープの長さに、スペクトルを生成し、かつ練習セットに照らして認識プロセスを実行する時間を加えたものである。好適な実施形態の処理ユニット(図7a〜図10における217、図4における100)は典型的には加振信号に対し93msで作動し、かつ測定信号の信号処理のために30msまで作動する。遅延をさらに低減することが望ましい。FFT手法は通常、一定のサンプルレートを仮定して、より少ないポイントが考慮されるので、スペクトル分解能を低減させる。フィルタバンク手法では、利用可能な処理時間が少なくなり、かつフィルタの応答時間が短くなるが、スペクトル分解能は必ずしも低減させる必要がない。
【0102】
他の好適な実施形態と同様に、認識された音は即座に合成されて、有線ヘッドホンを介して演奏者にフィードバックされる。代替的に、合成された楽音は、ラップトップ、タブレット、もしくはパーソナルコンピュータ、またはスマートフォン、あるいは他の接続されたプロセッサで実行されるアプリケーションソフトウェアによって使用されるように送信されてよい。接続は有線、または好ましくは様々な手段、例えばBluetooth(登録商標)を用いて無線であってよい。動作のために必須ではないが有用であるパラメータ、例えば振幅スペクトルもまた、全てのフレームについて、アプリケーションソフトウェアに渡されてよい。したがって、アプリケーションソフトウェアは表示画面に出力を生成することができ、それは、演奏者が演奏者の演奏上の不備、例えば音孔を完全に閉じることができなかった場合の周波数スペクトルにおける視覚的効果を見ることを可能にする。これは演奏者が彼/彼女の演奏を調整し、かつそれによって彼/彼女の技術を向上することを可能にする。
【0103】
本発明のさらなる実施形態では、加振信号を発生し測定信号を処理する代替的方法が実現され、ここでは、典型的には調波的に関係する周波数の多い混合を含む加振信号が生成される。測定信号はフィルタバンクまたはFFTによって解析され、複素周波数スペクトルをもたらす。次いで複素周波数スペクトルは、演奏された音の最初の早期指示を提供するために、認識アルゴリズムに通される。これは、上述したものを含めて様々な認識技術を介して行うことができる。演奏された音の最初の早期指示は次いで、演奏された音をよりよく弁別するために、加振信号の周波数の混合を動的に変更するのに使用される。したがって認識プロセスは、演奏された音を際立たせるのに適したスペクトル刺激をフィードバックすることによって支援される。このステップは、連続的に、おそらく標本毎に繰り返される。認識アルゴリズムは演奏された音を追加の出力信号として提供する。
【0104】
さらなる実施形態では、加振信号の内容は認識プロセスを支援するように変更される。これは、リードが調波の多い刺激を提供し、それがリード楽器の音響フィードバックによって変更され、こうして演奏される音の生成を強化するという点で、リード楽器の従来の演奏で起きることと類似している。しかし、加振信号としての周波数の混合は基本的に、上述の通り、同じ周波数をカバーするチャープを用いる場合よりシステムの信号対雑音比(SNR)が低くなるという不利点がある。これは、いずれか一つの周波数の振幅が、合計波形が同一最大振幅を占めなければならない場合存在する他の周波数によって、必然的に損なわれるためである。例えば加振信号が32の同等に重みを付けられた周波数の混合を含む場合、周波数の合計の総振幅は、同一周波数範囲にスキャンされたチャープにより達成可能な場合の1/32になり、これはシステムのSNRに反映する。これは、加振信号としてスキャンチャープを使用することが、上述の通り、本質的に優れたSNRを有する理由であるが、後で強化される加振信号に周波数の混合を使用することにより、装置は演奏される音と装置によって認識される音との間に容認できる低い遅延を持つことが可能になる。
【0105】
適切な通信により、楽器および/または変換装置の外部の装置で実行されるアプリケーションソフトウェアは、完全な楽器データセットおよび特に練習セットのバックアップ/復元機能を提供するためにも使用されてよい。アプリケーションソフトウェアはまた、練習セットのそれぞれの音のスペクトルを表示することによって、ユーザに正しいスペクトルを示すためにも使用されてよい。表示される正しいスペクトルは、比較できるように、現在演奏される楽音のスペクトルと一緒に表示することができる。
【0106】
楽音およびその音量はフレーム毎にアプリケーションソフトウェアに利用可能であるので、演奏された音を演奏者に提示するために、様々な手段が使用されてよい。これらは音の単純なテキスト記述、例えばG#3、または聴覚的フィードバックを提供する(典型的にはより洗練された)音の合成、または演奏された音を示すか強調する譜面動画、または生の音の表示または楽譜の生成のための標準的な音楽製作ソフトウェア、例えばSibeliusとのMIDI接続を含む。
【0107】
変換装置と通信し、かつ/または本発明のシステム全体の一部としてのラップトップ、タブレット、もしくはパーソナルコンピュータ、またはスマートフォンで実行されるアプリケーションソフトウェアは次のことを可能にする。演奏された音の周波数のグラフィック表現をビジュアルディスプレイユニットに表示すること、演奏された音の装置による検知に使用するためメモリに保存された一組のデータの選択、スピーカにより出力される音の音量の演奏者の制御、圧力センサの利得調整、合成楽音の再生の音量調整、装置の練習モードまたは演奏モードの操作、練習モード中に装置によって学習すべき楽音の選択、練習モード中の一組の楽音の学習の進展または完了を示す視覚的表示、変換装置のオンボードメモリに保存されたデータセットのラップトップ、タブレット、もしくはパーソナルコンピュータ、またはスマートフォンのメモリ(またはそれらのいずれかによってアクセスされるクラウドメモリ)内への保存(それらは次に(例えばデータセットを復元する目的で)変換装置200オンボードメモリ(104、219)にエクスポートされる)、演奏された楽音の例えば英数字でのグラフィック表現、演奏者が連続的に復習することを可能にする演奏された楽音のスペクトルの楽音毎のグラフィック表示、スペクトルの例えばPDFファイルの生成。アプリケーションソフトウェアには、楽器の演奏を学習する演奏者を支援するために、楽音および練習のダウンロードおよび表示を可能にする機能を追加的に設けることができる。
【0108】
上記では、演奏された音の識別および楽音の合成は、変換装置に搭載された電子機器によって実行されるが、これらのプロセスは、楽器に装着された装置とは物理的に離れているがそれと通信する別個の電子機器によって、あるいは実際、ラップトップ、タブレット、もしくはパーソナルコンピュータ、またはスマートフォンで実行されるアプリケーションソフトウェアによって実行することができる。加振信号の生成もまた、楽器に装着された装置とは物理的に離れているがそれと通信する別個の電子機器で、あるいはラップトップ、タブレット、もしくはパーソナルコンピュータ、またはスマートフォンで実行されるアプリケーションソフトウェアによって行うことができる。
【0109】
上述した実施形態の変形例では、少なくとも第二の処理チャネルに一つ以上の独立した周囲ノイズマイクロホン214が設けられ、それはプリント基板204に配置することができる。独立した周囲ノイズマイクロホン214は空気室15の外部の音を測定する。これは次の二つの可能性をもたらす。
a)外部マイクロホン信号は、直接的に、または例えばFFT処理および認識の前に内部マイクロホン209によって提供される測定信号により、測定信号から周囲ノイズを除去するように処理された周囲ノイズ信号を提供することによって、外部の周囲ノイズを低減するために使用されてよい。代替的に、周囲信号の複素または振幅スペクトルは、マイクロホン209によって提供された測定信号のそれぞれのスペクトルから生成しかつ除去することができる。
b)外部マイクロホン信号は、音認識プロセス後に、フレーム毎に周囲ノイズを克服するのを助けるためにスピーカ208の音量を動的に増大することによって、周囲ノイズの影響を低減するために代替的に、または追加的に使用されてよい。
【0110】
変換装置200は処理のマスター状態および全てのパラメータを、例えば選択された練習セットを、メモリ(104、219)に保持することが好ましい。したがって変換装置200は、全てのパラメータ変化に対し、それによって実現されるプロセスを更新するようにプログラムされる。多くの場合、変化はラップトップ、タブレット、もしくはパーソナルコンピュータ、またはスマートフォン上のアプリケーションソフトウェアによって、例えば訓練音の選択により開始されている。しかし、変換装置200はまた、例えば圧力センサ212により音として現在加えられる圧力、または現在最も新しく認識された音に局所的に状態変化を生じる。
【0111】
上記の本発明の実施形態は、装置に含まれる加速度計の追加によって変更することができる。加速度計からの信号はリード楽器の動きを示し、それにより演奏者に楽器の動きによる表現制御および/または自動電源オン/電源オフを提供する。この制御は、リード楽器に装着された電子機器で、またはリード楽器に装着された装置と通信するラップトップ、タブレット、もしくはパーソナルコンピュータ、またはスマートフォンで実行されるアプリケーションソフトウェアで実現することができる。
【0112】
上記では電子処理ユニット(100、217)は、加振信号を提供しかつ合成楽音を出力する、リード楽器に連結された装置に含まれるが、楽器搭載装置とラップトップ、タブレット、もしくはパーソナルコンピュータ、またはスマートフォンとの間の高速通信リンクは、ラップトップ、タブレット、もしくはパーソナルコンピュータ、またはスマートフォン上のアプリケーションソフトウェアが加振信号を生成し(それは次いで楽器に装着されたスピーカに中継される)、マイクロホンからの測定信号を受信し、そこから演奏された楽音を検知し、例えばラップトップ、タブレット、もしくはパーソナルコンピュータ、またはスマートフォンのスピーカによって演奏され、あるいは演奏者が装着しているヘッドホンに中継される楽音を合成することを可能にする。ラップトップ、タブレット、もしくはパーソナルコンピュータ、またはスマートフォンに内蔵されたマイクロホンは、周囲ノイズマイクロホンとして使用することができる。ラップトップ、タブレット、もしくはパーソナルコンピュータ、またはスマートフォンは、圧力センサおよび/または加速度計が使用されるときにそれらからの信号をも受信する。
【0113】
例えばリード楽器の演奏者が装着しているヘッドホンに送信される合成楽音は、演奏するリード楽器を模倣することができ、あるいは完全に異なる楽器の音を模倣するように調整された楽音とすることができる。このようにして、リード楽器の経験を積んだ演奏者は、本発明を用いて、彼/彼女のリード楽器を演奏し、それによって例えばギター演奏の音を生成することができる。この音はヘッドホンを用いて演奏者だけが聞くことができ、あるいはラウドスピーカを介して聴衆に放送することができる。これは特定のリード楽器の練習に特に役立てることができる。例えばバスリード楽器は非常に大きくかつ高価であり、本発明を取り付けたBフラットクラリネットで曲を練習することができれば、バス楽器自体で練習するより、多くの状況で(例えば旅行のとき)ずっと便利である。
図1
図2
図3
図4
図5a
図5b
図6
図7a
図7b
図8
図9
図10
図11