【実施例】
【0093】
以下、実施例により、本発明の実施の形態をさらに具体的に説明する。
(実施例1)
本実施例は、波長193nmのArFエキシマレーザーを露光光として用いる転写用マスク(バイナリマスク)の製造に使用するマスクブランク及び転写用マスクの製造に関するもので、前述の第1の実施の形態に対応する実施例である。
本実施例に使用するマスクブランク10は、
図1に示すような、透光性基板1上に、エッチングストッパー膜2、遮光膜3およびハードマスク膜4をこの順に積層した構造のものである。このマスクブランク10は、以下のようにして作製した。
【0094】
合成石英ガラスからなる透光性基板1(大きさ約152mm×152mm×厚み約6.35mm)を準備した。この透光性基板1は、主表面及び端面が所定の表面粗さ(例えば主表面はRqで0.2nm以下)に研磨されている。
【0095】
まず、枚葉式DCスパッタリング装置内に、上記透光性基板1を設置し、クロムからなるターゲットを用い、アルゴン(Ar)と二酸化炭素(CO
2)とヘリウム(He)の混合ガス雰囲気中で、反応性スパッタリングを行うことにより、上記透光性基板1の主表面上に、クロム、酸素および炭素を含有するCrOC膜からなるエッチングストッパー膜2を厚さ10nmで形成した。
【0096】
次に、枚葉式DCスパッタリング装置内に上記エッチングストッパー膜2を形成した透光性基板1を設置し、モリブデン(Mo)とケイ素(Si)との混合ターゲット(Mo:Si=13原子%:87原子%)を用い、窒素(N
2)とアルゴン(Ar)の混合ガスをスパッタリングガスとし、DCスパッタリングにより、上記エッチングストッパー膜2の表面に接して、モリブデン、ケイ素および窒素を含有するMoSiN膜(Mo:9.2原子%、Si:68.3原子%、N:22.5原子%)からなる遮光膜の下層を47nmの厚さで形成した。続いて、上記と同じMoSi混合ターゲットを用い、窒素(N
2)とアルゴン(Ar)の混合ガスによるDCスパッタリングにより、上記遮光膜の下層の上に、モリブデン、ケイ素および窒素を含有するMoSiN膜(Mo:5.8原子%、Si:64.4原子%、N:27.7原子%)からなる遮光膜の上層を4nmの厚さで形成した。こうして、合計の厚さが51nmの二層構造のMoSi系の遮光膜3を形成した。形成したMoSi系遮光膜3の積層膜の光学濃度は、ArFエキシマレーザーの波長(193nm)において3.0以上であった。
【0097】
次に、枚葉式DCスパッタリング装置内に、上記遮光膜3までを形成した透光性基板1を設置し、クロムからなるターゲットを用い、アルゴン(Ar)と二酸化炭素(CO
2)とヘリウム(He)の混合ガスによるDCスパッタリングをエッチングストッパー膜2を形成するときと同じ成膜条件で行うことにより、上記遮光膜3の表面に、クロム、酸素および炭素を含有するCrOC膜からなるハードマスク膜4を厚さ10nmで形成した。
以上のようにして、本実施例のマスクブランク10を作製した。
【0098】
別の透光性基板の主表面上に上記と同じ条件で上記エッチングストッパー膜2のみを形成したものを準備した。このエッチングストッパー膜2に対し、X線光電子分光法(RBS補正有り)で分析を行った。この結果、上記エッチングストッパー膜2における各構成元素の含有量は、平均値でCr:71原子%、O:15原子%、C:14原子%であることが確認できた。さらに、上記エッチングストッパー膜2の厚さ方向における各構成元素の含有量の差がいずれも3原子%以下(ただし、分析結果が大気の影響を受けるエッチングストッパー膜2の表面近傍の領域を除く。)であり、厚さ方向の組成傾斜は実質的にないことが確認できた。また、同様に、別の透光性基板の主表面上に上記と同じ条件でハードマスク膜4のみを形成したものを準備した。このハードマスク膜4に対し、X線光電子分光法(RBS補正有り)で分析を行ったところ、エッチングストッパー膜2の場合と同様の組成であることが確認できた。
【0099】
別の透光性基板1上に形成されたこの実施例1のエッチングストッパー膜2に対するX線光電子分光法での分析を行うことによって得られた、Cr2pナロースペクトルの深さ方向化学結合状態分析の結果を
図6に、O1sナロースペクトルの深さ方向化学結合状態分析の結果を
図7に、N1sナロースペクトルの深さ方向化学結合状態分析の結果を
図8に、C1sナロースペクトルの深さ方向化学結合状態分析の結果を
図9に、Si2pナロースペクトルの深さ方向化学結合状態分析の結果を
図10に、それぞれ示す。
【0100】
上記エッチングストッパー膜2に対するX線光電子分光法による分析では、まずエッチングストッパー膜2の表面に向かってX線を照射してエッチングストッパー膜2から放出される光電子のエネルギー分布を測定し、次いでArガススパッタリングでエッチングストッパー膜2を所定時間だけ掘り込み、掘り込んだ領域のエッチングストッパー膜2の表面に対してX線を照射してエッチングストッパー膜2から放出される光電子のエネルギー分布を測定するというステップを繰返すことで、エッチングストッパー膜2の膜厚方向の分析を行う。なお、本実施例では、このX線光電子分光法での分析は、X線源に単色化Al(1486.6eV)を用い、光電子の検出領域は100μmφ、検出深さが約4〜5nm(取り出し角45deg)の条件で行った(以降の実施例及び比較例においても同様。)。
【0101】
また、
図6〜
図10における各深さ方向化学結合状態分析では、エッチングストッパー膜2の最表面から1.60minだけArガススパッタリングで掘り込んだ後におけるエッチングストッパー膜2の膜厚方向の位置での分析結果が各図中の「1.60min」のプロットにそれぞれ示されている。
【0102】
なお、エッチングストッパー膜2の最表面から1.60minだけArガススパッタリングで掘り込んだ後におけるエッチングストッパー膜2の膜厚方向の位置は、表面から約6nmの深さの位置であり、「1.60min」のプロットは、その深さの位置における測定結果である。
【0103】
また、
図6〜
図10の各ナロースペクトルにおける縦軸のスケールは同じではない。
図8のN1sナロースペクトルと
図10のSi2pナロースペクトルは、
図6、
図7及び
図9の各ナロースペクトルに比べて縦軸のスケールを大きく拡大している。従って、
図8のN1sナロースペクトルと
図10のSi2pナロースペクトルにおける振動の波は、ピークの存在が表れているのではなく、ノイズが表れているだけである。
【0104】
図6のCr2pナロースペクトルの結果から、上記実施例1のエッチングストッパー膜2は、結合エネルギーが574eVで最大ピークを有していることがわかる。この結果は、上記エッチングストッパー膜2では、酸素等の原子と未結合のクロム原子が一定比率以上存在していることを意味している。
【0105】
図7のO1sナロースペクトルの結果から、上記実施例1のエッチングストッパー膜2は、結合エネルギーが約530eVで最大ピークを有していることがわかる。この結果は、上記エッチングストッパー膜2では、Cr−O結合が一定比率以上存在していることを意味している。
【0106】
図8のN1sナロースペクトルの結果から、上記実施例1のエッチングストッパー膜2は、最大ピークが検出下限値以下であることがわかる。この結果は、上記エッチングストッパー膜2では、Cr−N結合を含め、窒素と結合した原子が検出されなかったことを意味している。
【0107】
図9のC1sナロースペクトルの結果から、上記実施例1のエッチングストッパー膜2は、結合エネルギーが282eV〜283eVで最大ピークを有していることがわかる。この結果は、上記エッチングストッパー膜2では、Cr−C結合が一定比率以上存在していることを意味している。
【0108】
図10のSi2pナロースペクトルの結果から、上記実施例1のエッチングストッパー膜2は、最大ピークが検出下限値以下であることがわかる。この結果は、上記エッチングストッパー膜2では、Cr−Si結合を含め、ケイ素と結合した原子が検出されなかったことを意味している。
【0109】
次に、上記マスクブランク10を用いて、前述の
図3に示される製造工程に従って、転写用マスク(バイナリマスク)を製造した。なお、以下の符号は
図3中の符号と対応している。
まず、上記マスクブランク10の上面に、スピン塗布法によって、電子線描画用の化学増幅型レジスト(富士フィルムエレクトロニクスマテリアルズ社製 PRL009)を塗布し、所定のベーク処理を行って、膜厚80nmのレジスト膜を形成した。次に、電子線描画機を用いて、上記レジスト膜に対して所定のデバイスパターン(遮光膜3に形成すべき転写パターンに対応するパターン)を描画した後、レジスト膜を現像してレジストパターン6aを形成した(
図3(a)参照)。なお、このレジストパターン6aは、線幅50nmのSRAFパターンを含むものとした。
【0110】
次に、上記レジストパターン6aをマスクとし、前述の高バイアス条件のドライエッチングでハードマスク膜4のドライエッチングを行い、ハードマスク膜4にパターン4aを形成した(
図3(b)参照)。エッチングガスとしては塩素ガス(Cl
2)と酸素ガス(O
2)との混合ガス(Cl
2:O
2=13:1(流量比))を用い、バイアス電圧を印加した時の電力が50Wの高バイアスでドライエッチングを行った。
【0111】
次に、上記レジストパターン6aを除去した後、上記ハードマスク膜のパターン4aをマスクとし、MoSi系の二層構造の遮光膜3のドライエッチングを連続して行い、遮光膜3にパターン3aを形成した(
図3(c)参照)。エッチングガスとしてはフッ素系ガス(SF
6)を用いた。
【0112】
次に、上記遮光膜のパターン3aをマスクとし、前述の高バイアス条件のドライエッチングでエッチングストッパー膜2のドライエッチングを行い、エッチングストッパー膜2にパターン2aを形成するとともに、上記ハードマスク膜パターン4aを除去した(
図3(d)参照)。エッチングガスとしては塩素ガス(Cl
2)と酸素ガス(O
2)との混合ガス(Cl
2:O
2=13:1(流量比))を用い、バイアス電圧を印加した時の電力が50Wの高バイアスでドライエッチングを行った。
このようにして、透光性基板1上にエッチングストッパー膜のパターン2aおよび遮光膜のパターン3aの積層からなる転写パターンを備えた転写用マスク(バイナリマスク)20を完成した(
図3(d)参照)。
【0113】
上記と同様の手順で、実施例1の転写用マスク20を別に製造し、SRAFパターンが形成されている領域の断面STEM(Scanning Transmission Electron Microscope)像を取得し、遮光膜のパターン3aおよびエッチングストッパー膜のパターン2aのそれぞれのライン幅の測長を行った。
【0114】
そして、上記遮光膜のパターン3aのライン幅と上記エッチングストッパー膜のパターン2aのライン幅との間の変化量であるエッチングバイアスを算出した。その結果、エッチングバイアスは6nm程度であり、従来のクロム系材料膜に対するドライエッチングの場合よりも大幅に小さい値であった。
【0115】
このことは、上記遮光膜のパターン3aをマスクとし、塩素系ガスと酸素ガスとの混合ガスを用い、高バイアス条件のドライエッチングでエッチングストッパー膜2をパターニングした場合においても、エッチングストッパー膜2のパターン側壁に生じるサイドエッチングを抑制できることを示している。また、このことにより、エッチングストッパー膜2のパターン2aの細りによる上記遮光膜パターン3aの倒れを抑制でき、例えばライン幅50nm以下のSRAFパターンのような微細なパターンを有する転写パターンであっても精度良く形成できることを示している。
【0116】
得られた上記転写用マスク20に対してマスク検査装置によってマスクパターンの検査を行った結果、パターンの倒れは無く、設計値から許容範囲内で微細パターンが形成されていることが確認できた。
以上のように、本実施例のマスクブランクを用いることにより、高精度の微細な転写パターンが形成された転写用マスク20を製造することができる。
【0117】
さらに、この転写用マスク20に対し、AIMS193(Carl Zeiss社製)を用いて、波長193nmの露光光で半導体デバイス上のレジスト膜に露光転写したときにおける露光転写像のシミュレーションを行った。このシミュレーションで得られた露光転写像を検証したところ、設計仕様を十分に満たしていた。以上のことから、本実施例のマスクブランクから製造された転写用マスク20は、露光装置にセットしてArFエキシマレーザーの露光光による露光転写を行うと、半導体デバイス上のレジスト膜に対して高精度で露光転写を行うことができるといえる。
【0118】
(実施例2)
実施例2のマスクブランク10は、エッチングストッパー膜2以外については、実施例1と同様にして作製した。実施例2におけるエッチングストッパー膜2は、以下のように実施例1のエッチングストッパー膜2とは成膜条件を変更して形成した。
【0119】
具体的には、枚葉式DCスパッタリング装置内に、上記実施例1と同じ透光性基板1を設置し、クロムからなるターゲットを用い、アルゴン(Ar)と二酸化炭素(CO
2)とヘリウム(He)の混合ガス雰囲気中で、反応性スパッタリングを行うことにより、上記透光性基板1の主表面上に、クロム、酸素および炭素を含有するCrOC膜からなるエッチングストッパー膜2を厚さ10nmで形成した。
次に、上記エッチングストッパー膜2の上に、実施例1と同じ条件でMoSi系遮光膜3を形成した。
【0120】
次に、枚葉式DCスパッタリング装置内に、上記遮光膜3までを形成した透光性基板1を設置し、クロムからなるターゲットを用い、アルゴン(Ar)と二酸化炭素(CO
2)とヘリウム(He)の混合ガスによるDCスパッタリングをこの実施例2のエッチングストッパー膜2を形成するときと同じ成膜条件で行うことにより、上記遮光膜3の表面に、クロム、酸素および炭素を含有するCrOC膜からなるハードマスク膜4を厚さ10nmで形成した。
以上のようにして、実施例2のマスクブランク10を作製した。
【0121】
次に、別の透光性基板の主表面上に上記と同じ条件で上記実施例2のエッチングストッパー膜2のみを形成したものを準備した。この実施例2のエッチングストッパー膜2に対し、X線光電子分光法(RBS補正有り)で分析を行った。この結果、上記エッチングストッパー膜2における各構成元素の含有量は、平均値でCr:55原子%、O:30原子%、C:15原子%であることが確認できた。さらに、上記エッチングストッパー膜2の厚さ方向における各構成元素の含有量の差がいずれも3原子%以下(ただし、分析結果が大気の影響を受けるエッチングストッパー膜2の表面近傍の領域を除く。)であり、厚さ方向の組成傾斜は実質的にないことが確認できた。また、同様に、別の透光性基板の主表面上に上記と同じ条件でハードマスク膜4のみを形成したものを準備した。このハードマスク膜4に対し、X線光電子分光法(RBS補正有り)で分析を行ったところ、エッチングストッパー膜2の場合と同様の組成であることが確認できた。
【0122】
実施例1の場合と同様に、別の透光性基板1上に形成されたこの実施例2におけるエッチングストッパー膜2に対するX線光電子分光法での分析を行うことによって得られた、Cr2pナロースペクトルの深さ方向化学結合状態分析の結果を
図11に、O1sナロースペクトルの深さ方向化学結合状態分析の結果を
図12に、N1sナロースペクトルの深さ方向化学結合状態分析の結果を
図13に、C1sナロースペクトルの深さ方向化学結合状態分析の結果を
図14に、Si2pナロースペクトルの深さ方向化学結合状態分析の結果を
図15に、それぞれ示す。
【0123】
なお、
図11〜
図15における各深さ方向化学結合状態分析では、エッチングストッパー膜2の最表面から1.60minだけArガススパッタリングで掘り込んだ後におけるエッチングストッパー膜2の膜厚方向の位置(最表面から約6nmの深さの位置)での分析結果が各図中の「1.60min」のプロットにそれぞれ示されている。
【0124】
また、
図11〜
図15の各ナロースペクトルにおける縦軸のスケールは同じではない。
図13のN1sナロースペクトルと
図15のSi2pナロースペクトルは、
図11、
図12及び
図14の各ナロースペクトルに比べて縦軸のスケールを大きく拡大している。従って、
図13のN1sナロースペクトルと
図15のSi2pナロースペクトルにおける振動の波は、ピークの存在が表れているのではなく、ノイズが表れているだけである。
【0125】
図11のCr2pナロースペクトルの結果から、上記実施例2のエッチングストッパー膜2は、結合エネルギーが574eVで最大ピークを有していることがわかる。この結果は、上記エッチングストッパー膜2では、酸素等の原子と未結合のクロム原子が一定比率以上存在していることを意味している。
【0126】
図12のO1sナロースペクトルの結果から、上記実施例2のエッチングストッパー膜2は、結合エネルギーが約530eVで最大ピークを有していることがわかる。この結果は、上記エッチングストッパー膜2では、Cr−O結合が一定比率以上存在していることを意味している。
【0127】
図13のN1sナロースペクトルの結果から、上記実施例2のエッチングストッパー膜2は、最大ピークが検出下限値以下であることがわかる。この結果は、上記エッチングストッパー膜2では、Cr−N結合を含め、窒素と結合した原子が検出されなかったことを意味している。
【0128】
図14のC1sナロースペクトルの結果から、上記実施例2のエッチングストッパー膜2は、結合エネルギーが282eV〜283eVで最大ピークを有していることがわかる。この結果は、上記エッチングストッパー膜2では、Cr−C結合が一定比率以上存在していることを意味している。
【0129】
図15のSi2pナロースペクトルの結果から、上記実施例2のエッチングストッパー膜2は、最大ピークが検出下限値以下であることがわかる。この結果は、上記エッチングストッパー膜2では、Cr−Si結合を含め、ケイ素と結合した原子が検出されなかったことを意味している。
【0130】
次に、この実施例2のマスクブランク10を用いて、前述の実施例1と同様の製造工程に従って、透光性基板1上にエッチングストッパー膜のパターン2aおよび遮光膜のパターン3aの積層からなる転写パターンを備え転写用マスク(バイナリマスク)20を製造した。
【0131】
実施例1と同様の手順で、上記実施例2の転写用マスク20を別に製造し、SRAFパターンが形成されている領域の断面STEM像を取得し、遮光膜のパターン3aおよびエッチングストッパー膜のパターン2aのそれぞれのライン幅の測長を行った。
【0132】
そして、上記遮光膜のパターン3aのライン幅と上記エッチングストッパー膜2のパターン2aのライン幅との間の変化量であるエッチングバイアスを算出した結果、エッチングバイアスは10nm程度であり、従来のクロム系材料膜に対するドライエッチングの場合よりも大幅に小さい値であった。
【0133】
このことは、実施例2のマスクブランクにおいても、上記遮光膜のパターン3aをマスクとし、塩素系ガスと酸素ガスとの混合ガスを用い、高バイアス条件のドライエッチングでエッチングストッパー膜2をパターニングした場合において、エッチングストッパー膜2のパターン側壁に生じるサイドエッチングを抑制できるので、このことにより、エッチングストッパー膜2のパターン2aの細りによる上記遮光膜パターン3aの倒れを抑制でき、例えばライン幅50nm以下のSRAFパターンのような微細なパターンを有する転写パターンであっても精度良く形成できることを示している。
【0134】
得られた実施例2の転写用マスク20に対してマスク検査装置によってマスクパターンの検査を行った結果、パターンの倒れは無く、設計値から許容範囲内で微細パターンが形成されていることが確認できた。
以上のように、本実施例2のマスクブランクを用いることにより、高精度の微細な転写パターンが形成された転写用マスク20を製造することができる。
【0135】
さらに、この実施例2の転写用マスク20に対し、実施例1と同様にAIMS193(Carl Zeiss社製)を用いて、波長193nmの露光光で半導体デバイス上のレジスト膜に露光転写したときにおける露光転写像のシミュレーションを行った。このシミュレーションで得られた露光転写像を検証したところ、設計仕様を十分に満たしていた。以上のことから、実施例2のマスクブランクから製造された転写用マスク20は、露光装置にセットしてArFエキシマレーザーの露光光による露光転写を行うと、半導体デバイス上のレジスト膜に対して高精度で露光転写を行うことができるといえる。
【0136】
(実施例3)
本実施例は、波長193nmのArFエキシマレーザーを露光光として用いるハーフトーン型位相シフトマスク(転写用マスク)の製造に使用するマスクブランク及びハーフトーン型位相シフトマスク(転写用マスク)の製造に関するもので、前述の第2の実施の形態に対応する実施例である。
本実施例に使用するマスクブランク30は、
図2に示すような、透光性基板1上に、位相シフト膜5、エッチングストッパー膜2、遮光膜3およびハードマスク膜4をこの順に積層した構造のものである。このマスクブランク30は、以下のようにして作製した。
【0137】
実施例1と同様にして準備した透光性基板1(合成石英基板)を枚葉式DCスパッタリング装置内に設置し、モリブデン(Mo)とケイ素(Si)との混合ターゲット(Mo:Si=12原子%:88原子%)を用い、アルゴン(Ar)、窒素(N
2)およびヘリウム(He)の混合ガス(流量比 Ar:N
2:He=8:72:100、圧力0.2Pa)をスパッタリングガスとし、DCスパッタリングにより、上記透光性基板1の表面に、モリブデン、ケイ素および窒素を含有するMoSiN膜(Mo:4.1原子%、Si:35.6原子%、N:60.3原子%)からなる位相シフト膜5を69nmの厚さで形成した。
【0138】
次に、スパッタリング装置から上記位相シフト膜5を形成した透光性基板1を取り出し、上記基板上の位相シフト膜5に対し、大気中での加熱処理を行った。この加熱処理は、450℃で30分間行った。この加熱処理後の位相シフト膜5に対し、位相シフト量測定装置を使用してArFエキシマレーザーの波長(193nm)における透過率と位相シフト量を測定した結果、透過率は6.44%、位相シフト量は174.3度であった。
【0139】
次に、上記位相シフト膜5を形成した基板を再びスパッタリング装置内に導入し、上記位相シフト膜5の上に、実施例1と同じ成膜条件で、実施例1のCrOC膜からなるエッチングストッパー膜2、二層構造のMoSi系材料からなる遮光膜3(ただし、遮光膜の下層は35nmの厚さで形成した。)、およびCrOC膜からなるハードマスク膜4をこの順に形成した。
以上のようにして、実施例3のマスクブランク30を作製した。
【0140】
次に、上記マスクブランク30を用いて、前述の
図4に示される製造工程に従って、ハーフトーン型位相シフトマスクを製造した。なお、以下の符号は
図4中の符号と対応している。
まず、上記マスクブランク30の上面に、スピン塗布法によって、電子線描画用の化学増幅型レジスト(富士フィルムエレクトロニクスマテリアルズ社製 PRL009)を塗布し、所定のベーク処理を行って、膜厚80nmのレジスト膜を形成した。次に、電子線描画機を用いて、上記レジスト膜に対して所定のデバイスパターン(位相シフト膜5に形成すべき転写パターンに対応するパターン)を描画した後、レジスト膜を現像してレジストパターン7aを形成した(
図4(a)参照)。なお、このレジストパターン7aは、線幅(50nm)のSRAFパターンを含むものとした。
【0141】
次に、上記レジスト膜パターン7aをマスクとし、前述の高バイアス条件のドライエッチングでハードマスク膜4のドライエッチングを行い、ハードマスク膜4にパターン4aを形成した(
図4(b)参照)。エッチングガスとしては塩素ガス(Cl
2)と酸素ガス(O
2)との混合ガス(Cl
2:O
2=13:1(流量比))を用い、バイアス電圧を印加した時の電力が50Wの高バイアスでドライエッチングを行った。
【0142】
次に、残存する上記レジスト膜パターン7aを除去した後、上記ハードマスク膜4に形成されたパターン4aをマスクとし、フッ素系ガスを用いたドライエッチングにより、MoSi系の二層構造の遮光膜3のドライエッチングを連続して行い、遮光膜3にパターン3aを形成した(
図4(c)参照)。エッチングガスとしてはフッ素系ガス(SF
6)を用いた。
【0143】
次に、上記遮光膜のパターン3aが形成されたマスクブランクの全面に上記と同様のレジスト膜を形成し、このレジスト膜に対して、所定の遮光パターン(遮光帯パターン)を描画し、描画後、現像することにより、上記ハードマスク膜4上に、所定の遮光パターンを有するレジスト膜パターン7bを形成した(
図4(d)参照)。
【0144】
次に、塩素系ガスと酸素ガスとの混合ガスを用いたドライエッチングにより、上記遮光膜のパターン3aをマスクとし、本発明の構成のクロム系材料からなるエッチングストッパー膜2にパターン2aを形成するとともに、上記レジストパターン7bをマスクとして、上記ハードマスク膜4に上記遮光パターンを有するパターン4bを形成した(
図4(e)参照)。エッチングガスとしては塩素ガス(Cl
2)と酸素ガス(O
2)との混合ガス(Cl
2:O
2=13:1(流量比))を用い、バイアス電圧を印加した時の電力が50Wの高バイアスでドライエッチングを行った。
ドライエッチング終了後に、パターンの検査を行ったところ、上記遮光膜のパターン3aの倒れは生じていなかった。
【0145】
次に、上記レジスト膜パターン7bを除去した後、フッ素系ガスを用いたドライエッチングにより、上記エッチングストッパー膜2に形成されたエッチングストッパー膜パターン2aをマスクとして、位相シフト膜5に位相シフト膜パターン5aを形成するとともに、上記遮光パターンを有するハードマスク膜パターン4bをマスクとして、上記遮光膜3に遮光パターンを有するパターン3bを形成した(
図4(f)参照)。エッチングガスとしてはフッ素系ガス(SF
6)を用いた。
【0146】
次に、塩素ガス(Cl
2)と酸素ガス(O
2)との混合ガス(Cl
2:O
2=4:1(流量比))を用いたドライエッチングにより、上記遮光パターンが形成された遮光膜パターン3bをマスクとし、上記エッチングストッパー膜2に上記遮光パターンを有するパターン2bを形成するとともに、残存する上記ハードマスク膜パターン4bを除去した(
図4(g)参照)。
【0147】
以上のようにして、透光性基板1上に転写パターンとなる位相シフト膜のパターン5aおよび外周領域の遮光パターン(遮光帯パターン)を備えたハーフトーン型位相シフトマスク(転写用マスク)40を完成した(
図4(g)参照)。
得られた上記位相シフトマスク40に対してマスク検査装置によってマスクパターンの検査を行った結果、設計値から許容範囲内で位相シフト膜の微細パターンが形成されていることが確認できた。
【0148】
実施例3のマスクブランク30を用いることにより、上記遮光膜3に形成された遮光膜パターン3aをマスクとし、上記エッチングストッパー膜2を塩素系ガスと酸素ガスとの混合ガスを用いたドライエッチングでパターニングする際(
図4(e)の工程)のエッチングストッパー膜2のパターン側壁に生じるサイドエッチングを抑制でき、エッチングストッパー膜2のパターン2aの細りによる上記遮光膜パターン3aの倒れを抑制できるため、微細な遮光膜パターン(転写パターン)であっても精度良く形成することができる。さらに、サイドエッチングによるパターン幅の細りの無いエッチングストッパー膜のパターン2aをマスクとして位相シフト膜5をパターニングすることで(
図4(f)の工程)、位相シフト膜5にも微細な転写パターンを精度良く形成することができる。
【0149】
さらに、この位相シフト40に対し、実施例1と同様にAIMS193(Carl Zeiss社製)を用いて、波長193nmの露光光で半導体デバイス上のレジスト膜に露光転写したときにおける露光転写像のシミュレーションを行い、このシミュレーションで得られた露光転写像を検証したところ、設計仕様を十分に満たしていた。従って、実施例3のマスクブランクから製造された位相シフトマスク40は、半導体デバイス上のレジスト膜に対して高精度で露光転写を行うことが可能である。
【0150】
(実施例4)
本実施例は、実施例1のマスクブランク10と同様の構成のマスクブランクを用いた基板掘り込みタイプの位相シフトマスク(クロムレス位相シフトマスク)の製造に関するものであり、
図5に示される製造工程に従って説明する。
本実施例に使用するマスクブランクは、透光性基板1上に、エッチングストッパー膜2、遮光膜3およびハードマスク膜4をこの順に積層した構造のものであり、以下のようにして作製した。
【0151】
実施例1と同様にして準備した透光性基板1(合成石英基板)を枚葉式DCスパッタリング装置内に設置し、上記基板上に、実施例1と同じ成膜条件で、実施例1のCrOC膜からなるエッチングストッパー膜2を形成した。
次に、上記エッチングストッパー膜2上に、実施例1と同じ成膜条件で、MoSiN膜の下層31とMoSiN膜の上層32の二層構造のMoSi系遮光膜3を形成した。次いで、この遮光膜3上に、実施例1と同じ成膜条件で、CrOC膜からなるハードマスク膜4を形成した。
以上のようにして、実施例4のマスクブランクを作製した。
【0152】
次に、上記実施例4のマスクブランクを用いて、
図5に示される製造工程に従って、位相シフトマスクを製造した。
まず、上記マスクブランクの上面に、スピン塗布法によって、電子線描画用の化学増幅型レジスト(富士フィルムエレクトロニクスマテリアルズ社製 PRL009)を塗布し、所定のベーク処理を行って、膜厚80nmのレジスト膜を形成した。次に、電子線描画機を用いて、上記レジスト膜に対して所定のデバイスパターン(基板に掘り込む転写パターンに対応するパターン)を描画した後、レジスト膜を現像してレジストパターン8aを形成した(
図5(a)参照)。なお、このレジストパターン8aは、線幅50nmのライン・アンド・スペースパターンを含むものとした。
【0153】
次に、上記レジストパターン8aをマスクとし、前述の高バイアス条件のドライエッチングでハードマスク膜4のドライエッチングを行い、ハードマスク膜4にパターン4aを形成した(
図5(b)参照)。エッチングガスとしては塩素ガス(Cl
2)と酸素ガス(O
2)との混合ガス(Cl
2:O
2=13:1(流量比))を用い、バイアス電圧を印加した時の電力が50Wの高バイアスでドライエッチングを行った。
【0154】
次に、上記レジストパターン8aを除去した後、上記ハードマスク膜のパターン4aをマスクとし、エッチングガスとしてフッ素系ガス(SF
6)を用い、MoSi系の二層構造の遮光膜3のドライエッチングを連続して行い、遮光膜3にパターン3aを形成した(
図5(c)参照)。
【0155】
次に、上記遮光膜のパターン3aをマスクとし、前述の高バイアス条件のドライエッチングでエッチングストッパー膜2のドライエッチングを行い、エッチングストッパー膜2にパターン2aを形成するとともに、上記ハードマスク膜パターン4aを除去した(
図5(d)参照)。エッチングガスとしては塩素ガス(Cl
2)と酸素ガス(O
2)との混合ガス(Cl
2:O
2=13:1(流量比))を用い、バイアス電圧を印加した時の電力が50Wの高バイアスでドライエッチングを行った。
ドライエッチング終了後に、パターンの検査を行ったところ、上記遮光膜のパターン3aの倒れは生じていなかった。
【0156】
次に、上記遮光膜のパターン3aが形成されたマスクブランクの全面に上記と同様のレジスト膜を形成し、このレジスト膜に対して、所定の遮光パターン(遮光帯パターン)を描画し、描画後、現像することにより、遮光パターンを有するレジスト膜パターン8bを形成した(
図5(e)参照)。
【0157】
次に、上記レジスト膜パターン8bをマスクとし、フッ素系ガスを用いたドライエッチングにより、露出している遮光膜のパターン3aを剥離除去するとともに、エッチングストッパー膜2に形成されたエッチングストッパー膜パターン2aをマスクとして、透光性基板1(合成石英基板)のドライエッチングを行い、基板掘り込みタイプの位相シフトパターン1aを形成した(
図5(f)参照)。このとき、180度の位相差が得られる深さ(約173nm)に基板を掘り込んだ。なお、ドライエッチングのエッチングガスにはフッ素系ガス(CF
4)とヘリウム(He)との混合ガスを用いた。
【0158】
次に、レジスト膜パターン8bをマスクとし、塩素ガス(Cl
2)と酸素ガス(O
2)との混合ガス(Cl
2:O
2=4:1(流量比))を用いたドライエッチングにより、露出している上記エッチングストッパー膜パターン2aを剥離除去するとともに、残存するレジスト膜パターン8bを除去した(
図5(g)参照)。
【0159】
以上のようにして、透光性基板1に、掘り込みタイプの位相シフトパターン1aが形成され、外周領域の遮光パターン(遮光帯パターン)を備えた基板掘り込みタイプの位相シフトマスク(転写用マスク)50を完成した(
図5(g)参照)。
得られた上記位相シフトマスク50に対してマスク検査装置によってマスクパターンの検査を行った結果、設計値から許容範囲内で位相シフトパターンが形成されていることが確認できた。
【0160】
実施例4においても、上記遮光膜3に形成された遮光膜パターン3aをマスクとし、上記エッチングストッパー膜2を塩素系ガスと酸素ガスとの混合ガスを用いたドライエッチングでパターニングする際(
図5(d)の工程)のエッチングストッパー膜2のパターン側壁に生じるサイドエッチングを抑制でき、エッチングストッパー膜2のパターン2aの細りによる上記遮光膜パターン3aの倒れを抑制できる。さらに、サイドエッチングによるパターン幅の細りの無いエッチングストッパー膜のパターン2aをマスクとして基板を掘り込むことで(
図5(f)の工程)、基板掘り込みによる微細な位相シフトパターンを精度良く形成することができる。
【0161】
さらに、この位相シフトマスク50に対し、実施例1と同様にAIMS193(Carl Zeiss社製)を用いて、波長193nmの露光光で半導体デバイス上のレジスト膜に露光転写したときにおける露光転写像のシミュレーションを行い、このシミュレーションで得られた露光転写像を検証したところ、設計仕様を十分に満たしていた。従って、実施例4のマスクブランクから製造された位相シフトマスク50は、半導体デバイス上のレジスト膜に対して高精度で露光転写を行うことが可能である。
【0162】
(比較例1)
比較例1のマスクブランクは、エッチングストッパー膜以外については、実施例1と同様にして作製した。比較例1におけるエッチングストッパー膜は、以下のように実施例1のエッチングストッパー膜2とは成膜条件を変更して形成した。
具体的には、枚葉式DCスパッタリング装置内に、上記実施例1と同じ透光性基板(合成石英基板)を設置し、クロムからなるターゲットを用い、アルゴン(Ar)と二酸化炭素(CO
2)と窒素(N
2)とヘリウム(He)の混合ガス雰囲気中で、反応性スパッタリングを行うことにより、上記透光性基板の主表面上に、クロム、酸素、炭素及び窒素を含有するCrOCN膜からなるエッチングストッパー膜を厚さ10nmで形成した。次に、上記エッチングストッパー膜の上に、実施例1と同じ条件で実施例1のMoSi系遮光膜3およびハードマスク膜4を順に形成した。
以上のようにして、比較例1のマスクブランクを作製した。
【0163】
次に、別の透光性基板の主表面上に上記と同じ条件で上記比較例1のエッチングストッパー膜のみを形成したものを準備した。この比較例1のエッチングストッパー膜に対し、X線光電子分光法(RBS補正有り)で分析を行った。この結果、上記比較例1のエッチングストッパー膜における各構成元素の含有量は、平均値でCr:55原子%、O:22原子%、C:12原子%、N:11原子%であることが確認できた。さらに、上記エッチングストッパー膜の厚さ方向における各構成元素の含有量の差がいずれも3原子%以下(ただし、分析結果が大気の影響を受けるエッチングストッパー膜の表面近傍の領域を除く。)であり、厚さ方向の組成傾斜は実質的にないことが確認できた。
【0164】
実施例1の場合と同様に、この比較例1におけるエッチングストッパー膜に対するX線光電子分光法での分析の結果得られた、Cr2pナロースペクトルの深さ方向化学結合状態分析の結果を
図16に、O1sナロースペクトルの深さ方向化学結合状態分析の結果を
図17に、N1sナロースペクトルの深さ方向化学結合状態分析の結果を
図18に、C1sナロースペクトルの深さ方向化学結合状態分析の結果を
図19に、Si2pナロースペクトルの深さ方向化学結合状態分析の結果を
図20に、それぞれ示す。
【0165】
なお、
図16〜
図20における各深さ方向化学結合状態分析では、エッチングストッパー膜の最表面から1.60minだけArガススパッタリングで掘り込んだ後におけるエッチングストッパー膜の膜厚方向の位置(最表面から約7nmの深さの位置)での分析結果が各図中の「1.60min」のプロットにそれぞれ示されている。
【0166】
図16のCr2pナロースペクトルの結果から、上記比較例1のエッチングストッパー膜は、574eVよりも大きい結合エネルギーで最大ピークを有していることがわかる。この結果は、いわゆるケミカルシフトしている状態で、窒素、酸素等の原子と未結合のクロム原子の存在比率がかなり低い状態であることを意味している。そのため、化学反応が主体のエッチングに対する耐性が低く、サイドエッチングを抑制することが困難である。
【0167】
図17のO1sナロースペクトルの結果から、上記比較例1のエッチングストッパー膜は、結合エネルギーが約530eVで最大ピークを有していることがわかる。この結果は、Cr−O結合が一定比率以上存在していることを意味している。
【0168】
図18のN1sナロースペクトルの結果から、上記比較例1のエッチングストッパー膜は、結合エネルギーが約397eVで最大ピークを有していることがわかる。この結果は、比較例1のエッチングストッパー膜では、Cr−N結合が一定比率以上存在していることを意味している。そのためサイドエッチングが進行しやすいといえる。
【0169】
図19のC1sナロースペクトルの結果から、上記比較例1のエッチングストッパー膜は、結合エネルギーが283eVで最大ピークを有していることがわかる。この結果は、Cr−C結合が一定比率以上存在していることを意味している。
【0170】
図20のSi2pナロースペクトルの結果から、上記比較例1のエッチングストッパー膜は、最大ピークが検出下限値以下であることがわかる。この結果は、比較例1のエッチングストッパー膜では、Cr−Si結合を含め、ケイ素と結合した原子が検出されなかったことを意味している。
【0171】
次に、この比較例1のマスクブランクを用いて、前述の実施例1と同様の製造工程に従って、比較例1の転写用マスク(バイナリマスク)を製造した。
さらに、実施例1と同様の手順で、この比較例1の転写用マスクを別に製造し、SRAFパターンが形成されている領域の断面STEM像を取得し、遮光膜のパターンおよびエッチングストッパー膜のパターンのそれぞれのライン幅の測長を行った。
【0172】
そして、上記遮光膜のパターンのライン幅と上記エッチングストッパー膜のパターンのライン幅との間の変化量であるエッチングバイアスを算出した結果、エッチングバイアスは27nmであり、従来のクロム系材料膜に対するドライエッチングの場合と同様、比較的大きい値であった。
【0173】
このことは、比較例1のマスクブランクにおいては、上記遮光膜パターンをマスクとし、塩素系ガスと酸素ガスとの混合ガスを用い、高バイアス条件のドライエッチングでエッチングストッパー膜をパターニングした場合、エッチングストッパー膜のパターン側壁に生じるサイドエッチングを抑制することが難しく、そのためエッチングストッパー膜パターンの細りによる遮光膜パターンの倒れが起こり、例えばライン幅50nm以下の微細な転写パターンを精度良く形成することが困難であることを示している。
【0174】
実際、得られた比較例1の転写用マスクに対してマスク検査装置によってマスクパターンの検査を行った結果、遮光膜パターンの倒れが生じていることが確認できた。
さらに、この比較例1の転写用マスクに対し、実施例1と同様にAIMS193(Carl Zeiss社製)を用いて、波長193nmの露光光で半導体デバイス上のレジスト膜に露光転写したときにおける露光転写像のシミュレーションを行った。このシミュレーションで得られた露光転写像を検証したところ、転写不良が確認された。これは、上記の遮光膜パターンの倒れが要因であると推察される。
【0175】
(比較例2)
比較例2のマスクブランクは、エッチングストッパー膜以外については、実施例1と同様にして作製した。比較例2におけるエッチングストッパー膜は、以下のように実施例1のエッチングストッパー膜とは成膜条件を変更して形成した。
具体的には、枚葉式DCスパッタリング装置内に、上記実施例1と同じ透光性基板を設置し、クロムからなるターゲットを用い、アルゴン(Ar)と一酸化窒素(NO)とヘリウム(He)の混合ガス雰囲気中で、反応性スパッタリングを行うことにより、上記透光性基板の主表面上に、クロム、酸素及び窒素を含有するCrON膜からなるエッチングストッパー膜を厚さ10nmで形成した。次に、このエッチングストッパー膜の上に、実施例1と同じ条件で実施例1のMoSi系遮光膜3およびハードマスク膜4を順に形成した。
以上のようにして、比較例2のマスクブランクを作製した。
【0176】
次に、別の透光性基板の主表面上に上記と同じ条件で上記比較例2のエッチングストッパー膜のみを形成したものを準備した。この比較例2のエッチングストッパー膜に対し、X線光電子分光法(RBS補正有り)で分析を行った。この結果、上記比較例2のエッチングストッパー膜における各構成元素の含有量は、平均値でCr:58原子%、O:17原子%、N:25原子%であることが確認できた。さらに、上記エッチングストッパー膜の厚さ方向における各構成元素の含有量の差がいずれも3原子%以下(ただし、分析結果が大気の影響を受けるエッチングストッパー膜の表面近傍の領域を除く。)であり、厚さ方向の組成傾斜は実質的にないことが確認できた。
【0177】
実施例1の場合と同様に、この比較例2のエッチングストッパー膜に対するX線光電子分光法での分析を行い、Cr2pナロースペクトルの深さ方向化学結合状態分析の結果、O1sナロースペクトルの深さ方向化学結合状態分析の結果、N1sナロースペクトルの深さ方向化学結合状態分析の結果、C1sナロースペクトルの深さ方向化学結合状態分析の結果、Si2pナロースペクトルの深さ方向化学結合状態分析の結果をそれぞれ取得した。
【0178】
Cr2pナロースペクトルの結果から、上記比較例2のエッチングストッパー膜は、574eVよりも大きい結合エネルギーで最大ピークを有していることがわかった。この結果は、いわゆるケミカルシフトしている状態で、窒素、酸素等の原子と未結合のクロム原子の存在比率がかなり低い状態であることを意味している。そのため、化学反応が主体のエッチングに対する耐性が低く、サイドエッチングを抑制することが困難である。
【0179】
O1sナロースペクトルの結果から、上記比較例2のエッチングストッパー膜は、結合エネルギーが約530eVで最大ピークを有していることがわかった。この結果は、Cr−O結合が一定比率以上存在していることを意味している。
【0180】
N1sナロースペクトルの結果から、上記比較例2のエッチングストッパー膜は、結合エネルギーが約397eVで最大ピークを有していることがわかった。この結果は、比較例2のエッチングストッパー膜では、Cr−N結合が一定比率以上存在していることを意味している。そのためサイドエッチングが進行しやすいといえる。
【0181】
C1sナロースペクトルの結果から、上記比較例2のエッチングストッパー膜は、最大ピークが検出下限値以下であることがわかった。この結果は、比較例2のエッチングストッパー膜では、Cr−C結合を含め、炭素と結合した原子が検出されなかったことを意味している。
【0182】
また、Si2pナロースペクトルの結果から、上記比較例2のエッチングストッパー膜は、最大ピークが検出下限値以下であることがわかった。この結果は、比較例2のエッチングストッパー膜では、Cr−Si結合を含め、ケイ素と結合した原子が検出されなかったことを意味している。
【0183】
次に、この比較例2のマスクブランクを用いて、前述の実施例1と同様の製造工程に従って、比較例2のバイナリ型の転写用マスクを製造した。
さらに、実施例1と同様の手順で、この比較例2の転写用マスクを別に製造し、SRAFパターンが形成されている領域の断面STEM像を取得し、遮光膜のパターンおよびエッチングストッパー膜のパターンのそれぞれのライン幅の測長を行った。
【0184】
そして、上記遮光膜のパターンのライン幅と上記エッチングストッパー膜のパターンのライン幅との間の変化量であるエッチングバイアスを算出し、さらにエッチングバイアスの算出した結果、エッチングバイアスは30nmであり、従来のクロム系材料膜に対するドライエッチングの場合と比べても、大分大きい値であった。
【0185】
このことは、比較例2のマスクブランクでは、上記遮光膜パターンをマスクとし、塩素系ガスと酸素ガスとの混合ガスを用い、高バイアス条件のドライエッチングでエッチングストッパー膜をパターニングした場合、エッチングストッパー膜のパターン側壁に生じるサイドエッチングを抑制することが難しく、そのためエッチングストッパー膜パターンの細りによる遮光膜パターンの倒れが起こり、例えばライン幅50nm以下の微細な転写パターンを精度良く形成することが困難であることを示している。
【0186】
実際、得られた比較例2の転写用マスクに対してマスク検査装置によってマスクパターンの検査を行った結果、遮光膜パターンの倒れが生じていることが確認できた。
さらに、この比較例2の転写用マスクに対し、実施例1と同様にAIMS193(Carl Zeiss社製)を用いて、波長193nmの露光光で半導体デバイス上のレジスト膜に露光転写したときにおける露光転写像のシミュレーションを行った。このシミュレーションで得られた露光転写像を検証したところ、転写不良が確認された。これは、上記の遮光膜パターンの倒れが要因であると推察される。
【0187】
以上、本発明の実施形態及び実施例について説明したが、これは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載した技術には、以上に例示した具体例を変形、変更したものが含まれる。