(58)【調査した分野】(Int.Cl.,DB名)
前記第1制御装置は、前記光が前記検出部を照射するように前記照射方向調整部を制御した後に、前記照射方向の仰角及び方位角が所定角度の範囲で往復して変化するように前記照射方向調整部を制御することを特徴とする請求項1に記載の伝搬経路見通し試験システム。
前記データベース作成部は、前記映像情報が撮影されたそれぞれの前記位置が建設候補地に該当するか否かを判定した判定情報が入力された場合に、前記判定情報と前記データベースの情報とを関連付けたデータベースを作成することを特徴とする請求項5に記載の伝搬経路見通し試験システム。
【発明を実施するための形態】
【0032】
以下、本発明につき図面を参照しつつ詳細に説明する。なお、下記の発明を実施するための形態(以下、実施形態という)により本発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、下記実施形態で開示した構成要素は適宜組み合わせることが可能である。
【0033】
図1は、マイクロ波無線通信回線の一例を説明するための説明図である。
図1を参照して、伝搬経路見通し試験の概要について説明する。
図1に示すように、マイクロ波無線通信回線10は、端局14、40と、第1中継局20と、第2中継局30と、を備える。端局14、40は、マイクロ波無線通信において、信号を発信及び受信する局舎である。端局14とは、例えば、給電所である。端局14には、第1アンテナ位置16に第1パラボラアンテナ18が設置されている。端局40とは、例えば、発電所である。端局40には、第6アンテナ位置42に第6パラボラアンテナ44が設置されている。
【0034】
第1中継局20は、端局14と第2中継局30との間に位置する中継局である。第1中継局20は、第2アンテナ位置22に第2パラボラアンテナ24が設置されている。第1中継局20は、第3アンテナ位置26に第3パラボラアンテナ28が設置されている。
【0035】
第2中継局30は、第1中継局20と端局40との間に位置する中継局である。第2中継局30は、第4アンテナ位置32に第4パラボラアンテナ34が設置されている。第2中継局30は、第5アンテナ位置36に第5パラボラアンテナ38が設置されている。
【0036】
端局14は、第1パラボラアンテナ18から第1中継局20の第2パラボラアンテナ24に向けてマイクロ波46を照射する。第1中継局20は、端局14から照射されたマイクロ波46を第2パラボラアンテナ24で受信する。第1中継局20は、受信したマイクロ波46を図示しない増幅回路で増幅させて、増幅されたマイクロ波48を第3パラボラアンテナ28から第4パラボラアンテナ34に向けて照射する。
【0037】
第2中継局30は、第1中継局20から照射されたマイクロ波48を第4パラボラアンテナ34で受信する。第2中継局30は、受信したマイクロ波48を図示しない増幅回路で増幅させて、増幅されたマイクロ波50を第5パラボラアンテナ38から第6パラボラアンテナ44に向けて照射する。端局40は、第2中継局30から照射されたマイクロ波50を第6パラボラアンテナ44で受信する。
【0038】
端局14と第1中継局20との間には、例えば、第1障害物52が存在する。第1障害物52とは、例えば、高層ビルである。第1中継局20と第2中継局30との間には、例えば、第2障害物54及び第3障害物56が存在する。第2障害物54とは、例えば、山である。第3障害物56とは、例えば、鉄塔である。このように、端局14、40、第1中継局20、及び第2中継局30の間には、様々な障害物が存在する。マイクロ波46、48、50の伝搬経路上に障害物が位置する場合、マイクロ波無線通信を行うことができないことがある。例えば、マイクロ波48の伝搬経路上に第2障害物54が存在する場合、マイクロ波48が遮られるため、第1中継局20と第2中継局30との間でマイクロ波通信を行うことができない。一般に、マイクロ波無線通信回線10は、都市部から山間部を介して地方へ設置されることが多い。そのため、都市部においては高層ビル等の障害物が伝搬経路上に位置しないように中継局を設置する必要がある。また、山間部及び地方においては、山、木及び鉄塔等の障害物が伝搬経路上に位置しないように中継局を設置する必要がある。
【0039】
マイクロ波無線通信回線10を新設する場合には、マイクロ波の伝搬経路上に障害物が存在しているか否かを確認するために、見通し試験が行われる。見通し試験は、例えば、第3アンテナ位置26と第4アンテナ位置32との間に障害物が有るか否かを確認する試験である。見通し試験は、従来、端局と中継局の候補地とに作業員が移動し、作業員が鏡を用いて太陽光を互いの方向に反射させ、反射された太陽光が互いに目視にて確認する方法で行われていた。
【0040】
本実施形態では、伝搬経路見通し試験に要する作業者の負担を軽減するために、2台の無人航空機を用いた伝搬経路見通し試験システムを提供する。
【0041】
(第1実施形態)
図2は、第1実施形態に係る伝搬経路見通し試験システムの一例を示す模式図である。
図3は、第1実施形態に係る伝搬経路見通し試験システムの主要構成を示すブロック図である。第1実施形態に係る伝搬経路見通し試験システム100は、例えば、マイクロ波無線通信の各中継点にアンテナを新設する場合において、中継点間に見通しがあるか否かを確認する場合に適用される。
図2及び
図3に示すように、伝搬経路見通し試験システム100は、第1無人航空機102と、第2無人航空機150と、コントローラ200と、を備える。なお、第1無人航空機102及び第2無人航空機150は、マルチコプター、及びドローンともいう。マルチコプターとは、複数の回転翼を備える無人航空機である。第1実施形態において、第1無人航空機102及び第2無人航空機150は、クアッドコプターのマルチコプターであるがこれに限定されない。クアッドコプターとは、回転翼を4つ備えるマルチコプターである。
【0042】
図2及び
図3に示すように、第1無人航空機102は、筐体104と、回転翼106と、駆動部108と、鏡110と、照射方向調整部116と、撮影部124と、センサ部126と、通信部134と、電源部136と、第1制御装置138と、を備える。
【0043】
図2に示すように、筐体104は、センサ部126と、通信部134と、電源部136と、第1制御装置138と、を収容するケースである。筐体104は、略立方体形状であるが、筐体104の形状はこれに限定されない。
【0044】
図2に示すように、回転翼106は、2枚のブレードを備えるプロペラである。回転翼106のブレードの数は限定されず、回転翼106は、4枚又は6枚のブレードを有していてもよい。第1無人航空機102は、回転翼106を4枚備える。
【0045】
駆動部108は、例えば、4個のモータである。モータは、4枚の回転翼106にそれぞれ接続される。駆動部108は、筐体104に固定される。駆動部108は、回転翼106を回転駆動させる。これにより、第1無人航空機102は、揚力を得ることができる。
図3に示すように、駆動部108は、第1制御装置138に接続される。
【0046】
図2に示すように、鏡110は、太陽112から照射される太陽光114を反射させるミラーである。鏡110は、照射方向調整部116を介して筐体104に固定されている。鏡110は、太陽光114を反射させて、反射された反射光118を第2無人航空機150に照射する照射部である。鏡110は、例えば、プラスチックフィルムに金属を蒸着した樹脂ミラーである。これによれば、鏡110にガラス製ミラーを適用した場合と比較して、割れない。その結果、第1無人航空機102が飛行中に、鏡110が割れ、破片が落下することが無い。また、これによれば、鏡110にガラス製ミラーを適用した場合と比較して、鏡110の質量を軽くすることができる。その結果、第1無人航空機102の質量を軽くすることができる。
【0047】
照射方向調整部116は、方位角調整部120と、仰角調整部122と、を備える。
図2に示すように、方位角調整部120は、筐体104に固定されている。方位角調整部120は、例えば、仰角調整部122を介して鏡110を方位角方向に回転させるステッピングモータである。
【0048】
仰角調整部122は、方位角調整部120を介して筐体104に固定されている。仰角調整部122は、例えば、鏡110を仰角方向に回転させるステッピングモータである。なお、方位角調整部120及び仰角調整部122は、ステッピングモータであるとしたがこれに限定されない。方位角調整部120及び仰角調整部122は、鏡110の向きを調整できるものであればよい。
【0049】
撮影部124は、第1無人航空機102の鉛直方向下側を撮影する光学機器である。光学機器とは、例えば、イメージセンサを備えるカメラである。撮影部124は、第1制御装置138の指令に応じて、第1無人航空機102の鉛直方向下側の写真を撮影する。撮影部124は、撮影した画像データを第1制御装置138に出力する。なお、撮影部124が撮影するデータは動画でもよい。
【0050】
センサ部126は、GPSセンサ128と、方位センサ130と、ジャイロセンサ132と、を備える。GPSセンサ128は、測位衛星からの測位信号を受信するGPS受信機である。GPSセンサ128は、測位信号に基づき、第1無人航空機102の現在の位置情報(経度、緯度、及び高度の情報)を算出する。GPSセンサ128は、測位信号に基づき、時間情報を算出する。時間情報とは、測位信号に含まれるGPS時の情報から現在の年月日及び時刻を算出した情報である。つまり、GPSセンサ128は、現在の時間情報を取得する時間情報取得部でもある。GPSセンサ128は、現在の位置情報及び時間情報を第1制御装置138に出力する。なお、本実施形態においては、GPSセンサ128が位置情報を算出するとしたが、GPSセンサ128が測位情報を第1制御装置138に出力し、第1制御装置138が測位信号に基づいて現在の位置情報を算出する構成としてもよい。
【0051】
方位センサ130は、地磁気を計測するセンサである。方位センサ130は、計測した地磁気データを第1制御装置138に出力する。第1制御装置138は、地磁気データに基づいて、第1無人航空機102の方位を算出する。第1無人航空機102の方位とは、基準向きにおける鏡110の法線の方位である。基準向きとは、方位角調整部120が時計回り及び反時計回りに回転していない場合の向きである。方位センサ130は、例えば、地磁気を計測する3軸の磁気センサである。3軸の磁気センサとは、磁気センサの前後方向及び左右方向の2つの磁気センサに加えて、上下方向の地磁気を検出する磁気センサを備えるセンサである。これによれば、方位センサ130が任意の方向に傾いていても、上下方向の地磁気を検出する磁気センサが傾きを検出することができる。これにより、検出した傾きに基づいて、第1制御装置138が第1無人航空機102の方位を補正することができる。その結果、正確な方位を算出することができる。
【0052】
ジャイロセンサ132は、例えば、3軸の角速度を計測するセンサである。3軸とは、ロール軸、ピッチ軸、及びヨー軸である。ロール軸とは、物体の前後方向の軸である。ピッチ軸とは、物体の左右方向の軸である。ヨー軸とは、物体の上下方向の軸である。ジャイロセンサ132は、第1無人航空機102の3軸方向の角速度を検出する。ジャイロセンサ132は、検出した角速度を含む信号を第1制御装置138に出力する。第1制御装置138は、角速度の変化に基づいて、第1無人航空機102がホバリングするように駆動部108を制御する。ホバリングとは、空中の一点に静止した飛行状態である。
【0053】
図3に示すように、通信部134は、通信回線NWを介して、第2無人航空機150及びコントローラ200と情報の送受信を行う送受信機である。通信部134は、通信回線NWに接続するためのネットワークインタフェースコントローラ(NIC:Network Interface Controller)等を有し、通信回線NWを介して接続された端末との間で行われる通信に係る各種の処理を行う。通信回線NWとは、例えば、携帯電話回線である。通信部134は、第1制御装置138から出力される情報を通信回線NWを介して第2無人航空機150又はコントローラ200の少なくとも一方に送信する。通信部134は、第2無人航空機150又はコントローラ200の少なくとも一方から通信回線NWを介して送信される情報を第1制御装置138に出力する。
【0054】
電源部136は、蓄電池である。蓄電池とは、例えば、リチウムイオン電池である。電源部136は、駆動部108、照射方向調整部116、撮影部124、センサ部126、通信部134、及び第1制御装置138に電力を供給する。
【0055】
第1制御装置138は、駆動制御部140と、太陽位置算出部142と、照射方向制御部144と、記憶部148と、を備える。
【0056】
駆動制御部140は、第1無人航空機102が予め定められた位置に移動するように、駆動部108を制御して第1無人航空機102を飛行させる。駆動制御部140は、第1無人航空機102を飛行させる場合、隣合う回転翼106を逆回転させるように駆動部108を制御する。これによれば、隣合う回転翼106の反トルクを相殺することができる。これにより、第1無人航空機102の姿勢を安定させることができる。駆動制御部140は、第1無人航空機102が予め定められた位置へ移動した場合に、ジャイロセンサ132から出力される角速度信号に基づいて、第1無人航空機102がホバリングするように駆動部108を制御する。
【0057】
図4は、第1実施形態に係る伝搬経路見通し試験システムの仰角方向の角度調整方法を説明するための説明図である。
図5は、第1実施形態に係る伝搬経路見通し試験システムの方位角方向の角度調整方法を説明するための説明図である。
図4は、第1無人航空機102及び第2無人航空機150を水平方向から見た立面図を模式的に示している。
図5は、第1無人航空機102及び第2無人航空機150を鉛直方向上側から見た平面図を模式的に示している。
【0058】
図4及び
図5に示す第1位置P1は、第1無人航空機102の現在の位置を示す。
図4及び
図5に示す第2位置P2は、第2無人航空機150の現在の位置を示す。太陽位置算出部142は、GPSセンサ128から第1無人航空機102の現在の位置情報(経度、緯度、及び高度の情報)及び時間情報を取得する。太陽位置算出部142は、現在の位置情報(経度、緯度、及び高度の情報)及び時間情報に基づいて、第1位置P1を基準とした太陽仰角θes及び太陽方位角θasを算出する。任意の位置及び任意の時刻における、太陽仰角θes及び太陽方位角θasの算出方法は公知であるので、説明を省略する。太陽位置算出部142は、算出した太陽仰角θes及び太陽方位角θasを照射方向制御部144に出力する。
【0059】
図2、
図3及び
図4に示すように、照射方向制御部144は、方位角調整部120及び仰角調整部122を制御することで、反射光118が第2無人航空機150を照射するように鏡110の向きを調整する。
図4を参照して、照射方向制御部144が鏡仰角θemを調整する方法を説明する。
図4に示すように、鏡仰角θemとは、鏡110の鏡面の法線143と水平面145とが成す角度である。
図4に示す高度差hは、第1位置P1と第2位置P2との高度差である。
図4に示す距離dは、第1位置P1と第2位置P2との距離である。照射方向制御部144は、記憶部148から試験位置の情報を取得する。試験位置の情報とは、第1位置P1及び第2位置P2の位置情報(緯度、経度及び高度)である。試験位置の情報は、予め作業者によって設定されているがこれに限定されない。試験位置の情報は、GPSセンサ128、170が取得した現在の位置情報であってもよい。
【0060】
照射方向制御部144は、第1位置P1の高度と第2位置P2の高度との差から、高度差hを算出する。照射方向制御部144は、第1位置P1及び第2位置P2の位置情報から距離dを算出する。なお、任意の2点間の距離dの算出方法は公知であるので、説明を省略する。照射方向制御部144は、例えば、
図4に示す第1位置P1及び第2位置P2間の仰角θeを、式(1)によって算出する。
【0061】
θe=arctan{h/d}…(1)
【0062】
次に、照射方向制御部144は、鏡仰角θemが太陽位置算出部142から出力される太陽仰角θesと仰角θeとの和を2で除した値と一致するように、仰角調整部122を制御する。
【0063】
次に、
図5を参照して、照射方向制御部144が鏡方位角θamを調整する方法を説明する。なお、方位角は、北を基準とする。方位角は、時計回りを正方向とする。
図5に示すように、鏡方位角θamとは、鏡110の鏡面の法線143の方位角である。
【0064】
図5に示す方位角θaは、第1位置P1から見た第2位置P2の方位角である。
図5に示す太陽方位角θasは、第1位置P1から見た太陽の方位角である。照射方向制御部144は、例えば、方位角θaを、第1位置P1及び第2位置P2の位置情報に基づいて、式(2)によって算出する。
【0065】
θa=90−atan2(sin(Xb−Xa),
cos(Ya)tan(Yb)−sin(Ya)cos(Xb−Xa))…(2)
【0066】
なお、経度Xaは、第1位置P1の経度を示している。緯度Yaは、第1位置P1の緯度を示している。経度Xbは、第2位置P2の経度を示している。緯度Ybは、第2位置P2の緯度を示している。
【0067】
次に、照射方向制御部144は、鏡方位角θamが太陽位置算出部142から出力される太陽方位角θasと方位角θaとの和を2で除した値と一致するように、方位角調整部120を制御する。
【0068】
記憶部148は、見通し試験に係る情報を記憶する。見通し試験に係る情報とは、例えば、見通し試験を行う試験位置(緯度、経度及び高度)の情報、試験位置の試験順序に係る情報、各試験位置において見通しが有るか否かを示す情報、撮影部124が撮影した画像データ、及び繰返し上限値N等である。
【0069】
第1制御装置138の機能がソフトウェアで実現される場合、第1制御装置138は、プロセッサ及びメモリを含む。第1制御装置138が有する駆動制御部140、太陽位置算出部142、及び照射方向制御部144の機能は、プロセッサによって実現される。プロセッサは、CPU(Central Processing Unit:中央処理装置)、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、又はDSP(Digital Signal Processor)ともいう。
【0070】
この場合、駆動制御部140、太陽位置算出部142、及び照射方向制御部144の機能は、ソフトウェア、ファームウェア、又はソフトウェアとファームウェアとの組み合せにより実現される。ソフトウェア及びファームウェアはプログラムとして記述され、メモリに記憶される。プロセッサは、メモリに記憶されたプログラムを読み出して実行することにより、駆動制御部140、太陽位置算出部142、及び照射方向制御部144の機能を実現する。これらのプログラムは、駆動制御部140、太陽位置算出部142、及び照射方向制御部144が実行する手順をコンピュータに実行させるものであるともいえる。
【0071】
メモリは、記憶部148の機能を実現する。メモリは、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリー、EPROM(Erasable Programmable Read Only Memory)、及びEEPROM(Electrically Erasable Programmable Read Only Memory)といった揮発性又は不揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、及びDVD(Digital Versatile Disc)が該当する。
【0072】
第1制御装置138が有する駆動制御部140、太陽位置算出部142、及び照射方向制御部144の機能は、処理回路によって実現されてもよい。処理回路は、駆動制御部140、太陽位置算出部142、及び照射方向制御部144の機能を実現するための専用のハードウェアである。処理回路は、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、又はこれらを組み合わせたものが該当する。駆動制御部140、太陽位置算出部142、及び照射方向制御部144のそれぞれの機能を異なる処理回路が実現してもよいし、それぞれの機能をまとめて1つの処理回路が実現してもよい。
【0073】
駆動制御部140、太陽位置算出部142、及び照射方向制御部144の各機能は、一部が専用のハードウェアで実現され、一部がソフトウェア又はファームウェアで実現されてもよい。このように、第1制御装置138は、ハードウェア、ソフトウェア、ファームウェア又はこれらの組み合せによって、駆動制御部140、太陽位置算出部142、及び照射方向制御部144の各機能を実現することができる。
【0074】
図2及び
図3に示すように、第2無人航空機150は、筐体152と、回転翼154と、駆動部156と、検出部158と、向き調整部160と、撮影部166と、センサ部168と、通信部176と、電源部178と、第2制御装置180と、を備える。
【0075】
図2に示すように、筐体152は、センサ部168と、通信部176と、電源部178と、第2制御装置180と、を収容するケースである。筐体152は、略立方体形状であるが、筐体152の形状はこれに限定されない。
【0076】
回転翼154は、回転翼106と同様の構成であるので説明を省略する。駆動部156は、駆動部108と同様の構成であるので説明を省略する。
【0077】
図2に示すように、検出部158は、鏡110から照射される反射光118を検出する検出部である。検出部158は、例えば、イメージセンサを備えるカメラである。検出部158は、向き調整部160を介して筐体152に固定されている。
図3に示すように、検出部158は、イメージセンサが検出した映像情報を検出判定部186に出力する。
【0078】
図2に示すように、向き調整部160は、方位角調整部162と、仰角調整部164と、を備える。方位角調整部162は、筐体152に固定されている。方位角調整部162は、例えば、仰角調整部164を介して検出部158を方位角方向に回転させるステッピングモータである。
【0079】
図2に示すように、仰角調整部164は、方位角調整部162を介して筐体152に固定されている。仰角調整部164は、例えば、検出部158を仰角方向に回転させるステッピングモータである。なお、方位角調整部162及び仰角調整部164は、ステッピングモータであるとしたがこれに限定されない。方位角調整部162及び仰角調整部164は、検出部158の向きを調整できるものであればよい。
【0080】
撮影部166は、第2無人航空機150の鉛直方向下側を撮影する光学機器である。光学機器とは、例えば、イメージセンサを備えるカメラである。撮影部166は、第2制御装置180の指令に応じて、第2無人航空機150の鉛直方向下側の写真を撮影する。撮影部166は、撮影した画像データを第2制御装置180に出力する。なお、撮影部166が撮影するデータは動画でもよい。
【0081】
センサ部168は、GPSセンサ170と、方位センサ172と、ジャイロセンサ174と、を備える。GPSセンサ170は、第2無人航空機150の位置情報及び時間情報を第2制御装置180に出力すること以外は、GPSセンサ128と同様である。
【0082】
方位センサ172は、計測した地磁気データを第2制御装置180に出力すること以外は、方位センサ130と同様の構成を有する。ジャイロセンサ174は、第2無人航空機150の3軸方向の角速度の変化を検出し、検出した角速度の変化を第2制御装置180に出力すること以外は、ジャイロセンサ132と同様である。
【0083】
図3に示すように、通信部176は、通信回線NWを介して、第1無人航空機102及びコントローラ200と情報の送受信を行う送受信機である。通信部176は、通信回線NWに接続するためのネットワークインタフェースコントローラ(NIC:Network Interface Controller)等を有し、通信回線NWを介して接続された端末との間で行われる通信に係る各種の処理を行う。通信部176は、第2制御装置180から出力される情報を通信回線NWを介して第1無人航空機102又はコントローラ200の少なくとも一方に送信する。通信部176は、第1無人航空機102又はコントローラ200の少なくとも一方から通信回線NWを介して送信される情報を受信する。通信部176は、受信した情報を第2制御装置180に出力する。
【0084】
電源部178は、蓄電池である。蓄電池とは、例えば、リチウムイオン電池である。電源部178は、駆動部156、向き調整部160、撮影部166、センサ部168、通信部176、及び第2制御装置180に電力を供給する。
【0085】
第2制御装置180は、駆動制御部182と、向き制御部184と、検出判定部186と、繰返し判定部188と、記憶部190と、を備える。
【0086】
駆動制御部182は、第2無人航空機150が予め定められた位置に移動するように、駆動部156を制御して第2無人航空機150を飛行させる。駆動制御部182は、第2無人航空機150を飛行させる場合、隣合う回転翼154を逆回転させるように駆動部156を制御する。これによれば、隣合う回転翼154の反トルクを相殺することができる。これにより、第2無人航空機150の姿勢を安定させることができる。駆動制御部182は、第2無人航空機150が予め定められた位置へ移動した場合に、ジャイロセンサ174から出力される角速度信号に基づいて、第2無人航空機150がホバリングするように駆動部156を制御する。
【0087】
向き制御部184は、検出部158が第1無人航空機102の方向を向くように向き調整部160を制御する。具体的には、向き制御部184は、第2無人航空機150の位置を基準とした第1無人航空機102の方位角及び仰角を算出する。なお、向き制御部184が第2無人航空機150の位置を基準とした第1無人航空機102の方位角及び仰角を算出する方法は、照射方向制御部144と同様であるので、説明を省略する。向き制御部184は、算出した方位角及び仰角に基づいて、検出部158が第1無人航空機102の方向を向くように向き調整部160を制御する。
【0088】
検出判定部186は、検出部158から出力された映像情報が入力される。検出判定部186は、映像情報を解析する。検出判定部186は、映像情報を解析した結果、映像情報に鏡110から照射された反射光118が含まれているか否かを判定する。検出判定部186は、反射光118が検出されたことを記憶部190に記憶させる。具体的には、検出判定部186は、例えば、映像情報に反射光118が含まれていると判定した場合、及び映像情報に反射光118が含まれていないと判定した場合に、それぞれ異なる情報を記憶部190に記憶させる。検出判定部186は、映像情報に反射光118が含まれていないと判定した場合に、検出判定信号を繰返し判定部188に出力する。なお、検出判定部186は、映像情報に反射光118が含まれていないと判定した場合に限り、反射光118が含まれていないことを記憶部190に記憶させてもよい。又は、検出判定部186は、映像情報に反射光118が含まれていると判定した場合に限り、反射光118が検出されたことを記憶部190に記憶させてもよい。
【0089】
繰返し判定部188は、第2無人航空機150がそれぞれの試験位置で行った見通し試験の繰返し回数iをカウントする。繰返し回数iとは、記憶部190に保存される変数である。繰返し判定部188は、見通し試験が行われる度に、繰返し回数iに1を加算して記憶部190に記憶させる。繰返し判定部188は、試験位置が変わった場合に、繰返し回数iに0を代入して記憶部190に記憶させる。繰返し判定部188は、検出判定部186から検出判定信号が入力された場合に、繰返し回数iが予め定められた繰返し上限値N以上であるか否かを判定する。繰返し上限値Nとは、同じ試験位置で見通し試験を繰返す回数の上限値である。繰返し上限値Nは作業者によって予め定められた値である。繰返し判定部188は、繰返し回数iが予め定められた繰返し上限値N以上であるか否かを判定した情報を第2制御装置180に出力する。第2制御装置180は、繰返し回数iが繰返し上限値N未満である場合に、その試験位置で再度見通し試験を行う。
【0090】
記憶部190は、見通し試験に係る情報を記憶する。見通し試験に係る情報とは、例えば、見通し試験を行う試験位置(緯度、経度及び高度)の情報、試験位置の試験順序に係る情報、各試験位置において見通しが有るか否かを示す情報、撮影部166が撮影した画像データ、及び繰返し上限値N等である。
【0091】
第2制御装置180の機能がソフトウェアで実現される場合、第2制御装置180は、プロセッサ及びメモリを含む。第2制御装置180が有する駆動制御部182、向き制御部184、検出判定部186、及び繰返し判定部188の機能は、プロセッサによって実現される。プロセッサは、CPU(Central Processing Unit:中央処理装置)、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、又はDSP(Digital Signal Processor)ともいう。
【0092】
この場合、駆動制御部182、向き制御部184、検出判定部186、及び繰返し判定部188の機能は、ソフトウェア、ファームウェア、又はソフトウェアとファームウェアとの組み合せにより実現される。ソフトウェア及びファームウェアはプログラムとして記述され、メモリに記憶される。プロセッサは、メモリに記憶されたプログラムを読み出して実行することにより、駆動制御部182、向き制御部184、検出判定部186、及び繰返し判定部188の機能を実現する。これらのプログラムは、駆動制御部182、向き制御部184、検出判定部186、及び繰返し判定部188が実行する手順をコンピュータに実行させるものであるともいえる。
【0093】
メモリは、記憶部190の機能を実現する。メモリは、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリー、EPROM(Erasable Programmable Read Only Memory)、及びEEPROM(Electrically Erasable Programmable Read Only Memory)といった揮発性又は不揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、及びDVD(Digital Versatile Disc)が該当する。
【0094】
第2制御装置180が有する駆動制御部182、向き制御部184、検出判定部186、及び繰返し判定部188の機能は、処理回路によって実現されてもよい。処理回路は、駆動制御部182、向き制御部184、検出判定部186、及び繰返し判定部188の機能を実現するための専用のハードウェアである。処理回路は、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、又はこれらを組み合わせたものが該当する。駆動制御部182、向き制御部184、検出判定部186、及び繰返し判定部188のそれぞれの機能を異なる処理回路が実現してもよいし、それぞれの機能をまとめて1つの処理回路が実現してもよい。
【0095】
駆動制御部182、向き制御部184、検出判定部186、及び繰返し判定部188の各機能は、一部が専用のハードウェアで実現され、一部がソフトウェア又はファームウェアで実現されてもよい。このように、第1制御装置138は、ハードウェア、ソフトウェア、ファームウェア又はこれらの組み合せによって、駆動制御部182、向き制御部184、検出判定部186、及び繰返し判定部188の各機能を実現することができる。
【0096】
図2に示すように、コントローラ200は、表示部202と、入力部204と、コントローラ通信部206と、コントローラ制御装置208と、を備える。
【0097】
表示部202は、例えば、液晶ディスプレイである。表示部202は、コントローラ制御装置208から出力される情報を表示する。入力部204は、例えば、キーボードである。入力部204は、作業者からの入力操作を受け付ける。入力部204は、作業者から入力された情報をコントローラ制御装置208に出力する。
【0098】
図3に示すように、コントローラ通信部206は、通信回線NWを介して、第1無人航空機102及び第2無人航空機150と情報の送受信を行う送受信機である。コントローラ通信部206は、通信回線NWに接続するためのネットワークインタフェースコントローラ(NIC:Network Interface Controller)等を有し、通信回線NWを介して接続された端末との間で行われる通信に係る各種の処理を行う。コントローラ通信部206は、コントローラ制御装置208から出力される情報を通信回線NWを介して第1無人航空機102又は第2無人航空機150の少なくとも一方に送信する。コントローラ通信部206は、第1無人航空機102又は第2無人航空機150の少なくとも一方から通信回線NWを介して送信される情報を受信する。コントローラ通信部206は、受信した情報をコントローラ制御装置208に出力する。
【0099】
コントローラ制御装置208は、記憶部210と、試験順序決定部212と、データベース作成部214と、を備える。コントローラ制御装置208は、記憶部148に記憶された情報をダウンロードする。記憶部148に記憶された情報とは、撮影部124が撮影した画像データである。詳細には、コントローラ制御装置208は、コントローラ通信部206、通信回線NW、及び通信部134を介して第1制御装置138から記憶部148に記憶された画像データを取得する。コントローラ制御装置208は、第1制御装置138から取得した画像データを記憶部210に記憶させる。なお、ダウンロードは、通信回線NWに代えて有線による接続を介して行われてもよい。
【0100】
コントローラ制御装置208は、記憶部190に記憶された情報をダウンロードする。記憶部190に記憶された情報とは、撮影部166が撮影した画像データ、及び検出判定部186が反射光118を検出したことを示す情報である。詳細には、コントローラ制御装置208は、コントローラ通信部206、通信回線NW、及び通信部176を介して第2制御装置180から記憶部190に記憶された情報を取得する。コントローラ制御装置208は、第2制御装置180から取得した情報を記憶部210に記憶させる。なお、ダウンロードは、通信回線NWに代えて有線による接続を介して行われてもよい。
【0101】
コントローラ制御装置208は、撮影部124、166が撮影した画像データを表示部202に表示する。作業者は、表示部202に表示された画像データに対して、建設候補地として適しているか否かを判定する。作業者は、建設候補地として適しているか否かを判定した結果を入力部204に入力する。入力部204は、作業者が入力した情報をコントローラ制御装置208に出力する。コントローラ制御装置208は、入力された情報を記憶部210に保存する。
【0102】
記憶部210は、見通し試験に係る情報を記憶する。見通し試験に係る情報とは、例えば、見通し試験を行う試験位置(緯度、経度及び高度)の情報、試験位置の試験順序に係る情報、各試験位置において検出判定部186が反射光118を検出したことを示す情報、撮影部124、166が撮影した画像データ、及び繰返し上限値N等である。見通し試験を行う試験位置の情報、及び繰返し上限値N等は、作業者が入力部204を用いて入力するがこれに限定されない。記憶部210は、例えば、通信回線NWに接続された端末から見通し試験に係る情報をダウンロードして記憶する構成としてもよい。
【0103】
試験順序決定部212は、記憶部210が記憶した試験位置の情報に基づいて、試験順序を決定する。試験順序とは、見通し試験を行う試験位置の試験順序である。試験順序の決定方法については、後述する。
【0104】
図6は、第1実施形態に係る伝搬経路見通し試験システムが作成するデータベースの表示例を示す表である。
図6に示すように、データベース作成部214は、記憶部210が記憶する情報からデータベース215を作成する。記憶部210が記憶する情報とは、例えば、見通し試験を行う試験位置(緯度、経度及び高度)の情報、撮影部124、166が撮影した画像データ、各試験位置において検出判定部186が反射光118を検出したことを示す情報、及び作業者が各試験位置の画像データに対して建設候補地として適しているか否かを判定した判定結果の情報である。データベース215とは、例えば、リレーショナルデータベースである。データベース作成部214は、記憶部210が記憶する情報を関連付けて各試験位置におけるレコードを作成する。レコードとは、データベース215の1つの試験位置で得られたデータを関連付けたものである。レコードとは、データベース215の各行に相当する。データベース作成部214は、例えば、記憶部210に記憶された各情報が保存された順序に基づいて、記憶部210に記憶された各情報を各試験位置ごとに関連付ける。なお、データベース作成部214は、例えば、記憶部210に記憶された情報が保存された時刻に基づいて、記憶部210に記憶された情報を関連付けてもよい。
【0105】
図6に示すように、データベース215のフィールドは、例えば、レコード名を含む。フィールドとは、データベース215の入力項目である。フィールドとは、データベース215の各列に相当する。レコード名とは、データベース作成部214が各レコードに対して定めたレコードの名前である。データベース作成部214は、試験順序の順番で各レコードの名前を定めているがこれに限定されない。
【0106】
図6に示すように、データベース215のフィールドは、例えば、第1位置緯度、第1位置経度、第1位置高度、及び第1位置画像を含む。フィールドとは、データベース215の入力項目である。フィールドとは、データベース215の各列に相当する。第1位置緯度とは、第1無人航空機102の試験位置の緯度である。第1位置経度とは、第1無人航空機102の試験位置の経度である。第1位置高度とは、第1無人航空機102の試験位置の高度である。第1位置画像とは、撮影部124が撮影した画像データである。
【0107】
データベース215のフィールドは、例えば、第2位置緯度、第2位置経度、第2位置高度、及び第2位置画像を含む。第2位置緯度とは、第2無人航空機150の試験位置の緯度である。第2位置経度とは、第2無人航空機150の試験位置の経度である。第2位置高度とは、第2無人航空機150の試験位置の高度である。第2位置画像とは、撮影部166が撮影した画像データである。データベース作成部214は、第2位置画像の情報が含まれていない試験位置に対して、第2位置画像のフィールドに空の文字情報−を保存する。つまり、第2位置画像のフィールドに記載された空の文字情報−は、その試験位置において撮影がされていないことを示している。
【0108】
データベース215のフィールドは、例えば、見通し判定を含む。見通し判定とは、第1位置と第2位置との間で見通しが有るか否かを示す情報である。データベース作成部214は、検出判定部186が反射光118を検出したことを記憶した情報を○と×とに変換して見通し判定のフィールドに保存する。より詳細には、データベース作成部214は、検出判定部186が映像情報に反射光118が含まれていると判定した情報を○に変換する。つまり、見通し判定のフィールドに記載された○は、その地点において見通しが有ることを示している。データベース作成部214は、検出判定部186が映像情報に反射光118が含まれていないと判定した情報を×に変換する。見通し判定のフィールドに記載された×は、その地点において見通しが無いことを示している。
【0109】
データベース215のフィールドは、例えば、画像判定を含む。画像判定とは、各試験位置が建設候補地として適切であるか否かを示す情報である。データベース作成部214は、作業者が建設候補地として適切であるか否かを判定した情報を○と×とに変換して画像判定のフィールドに保存する。より詳細には、データベース作成部214は、作業者が建設候補地として適切であると判定した情報を○に変換する。つまり、画像判定のフィールドに記載された○は、その試験位置が建設候補地として適切であると判定されたことを示している。データベース作成部214は、作業者が建設候補地として適切ではないと判定した情報を×に変換する。つまり、画像判定のフィールドに記載された×は、その試験位置が建設候補地として適切ではないと判定されたことを示している。データベース作成部214は、作業者が建設候補地として適切であるか否かを判定した情報が含まれていない場合、−を画像判定のフィールドに保存する。つまり、画像判定のフィールドに記載された−は、建設候補地として適切であるか否かが判定されていないことを示している。
【0110】
図6に示すように、データベース作成部214は、例えば、データベース215の情報をレコード名が昇順となるように表示部202に表示する。これによれば、見通し試験を行った順序でレコードを表示できる。これにより、緯度及び経度が同じ試験位置のレコードを高度が高い順番に表示することができる。その結果、作業者が見通し判定のフィールドを見た場合に、見通しが有る高度と見通しが無い高度との境界を直感的に理解することができる。具体的には、作業者は、第1レコード及び第2レコードの見通しのフィールドが○であり、かつ第3レコードの見通しのフィールドが×であることから、第1位置の高度が1216.55m以上であれば、見通しが確保できることを直感的に理解することができる。つまり、作業者は、見通しがある第1位置及び第2位置の組み合わせの内、最も高度が低い組み合わせを容易に把握することができる。一般に、アンテナの設置高さが低いほど建設負荷を軽減できる。建設負荷とは、建設に要する時間及び建設に要する費用等である。以上より、データベース作成部214は、最も建設負荷が低い建設候補地を作業者に提供することができる。
【0111】
なお、データベース作成部214がデータベース215の情報を表示させる順序はこれに限定されない。データベース作成部214は、例えば、第1位置緯度のフィールドが降順であり、かつ第1位置高度のフィールドが昇順になるように、データベース215を表示部202に表示させてもよい。また、作業者がデータベース215の表示順序を設定する構成としてもよい。
【0112】
データベース作成部214は、第1位置画像、第2位置画像、及び画像判定を含む情報を表示部202に表示させる。これによれば、試験位置が建設候補地として適切であるか否かを判定した情報と現地の写真とを一度に確認することができる。これにより、建設候補地として適切であるか否かを判定した情報とその判定根拠となる試験位置の写真とを同時に確認することができる。その結果、例えば、
図6に示す第1レコードを確認することで、第1位置に川があり、その結果、建設候補地として適切ではないと判定されたことを容易に理解することができる。
【0113】
図7は、第1実施形態に係る伝搬経路見通し試験の試験手順を示すフローチャートである。以下、第1実施形態に係る伝搬経路見通し試験システム100の見通し試験手順について
図7を参照して説明する。
【0114】
まず、作業者は、試験情報を設定する(試験情報設定ステップST10)。試験情報とは、見通し試験を行う試験位置(緯度、経度及び高度)の位置情報、及び繰返し上限値N等である。作業者は、入力部204に試験情報を入力する。入力部204は、入力された情報をコントローラ制御装置208に出力する。コントローラ制御装置208は、作業者が入力した試験情報を記憶部210に記憶させる。
【0115】
次に、試験順序決定部212は、記憶部210に記憶された試験情報に基づいて、見通し試験を行う試験位置の試験順序を決定する(試験順序決定ステップST12)。試験順序決定部212は、試験開始位置を起点及び終点として、第1無人航空機102及び第2無人航空機150が各試験位置を移動する総移動距離が最短となる試験順序を決定する。具体的には、試験順序決定部212は、緯度及び経度が異なる試験位置の間の距離を算出する。次に、試験順序決定部212は、試験開始位置を起点及び終点として緯度及び経度が異なる試験位置を移動する場合の全ての経路に対して、第1無人航空機102及び第2無人航空機150の総移動距離を算出する。次に、試験順序決定部212は、総移動距離が最も小さくなる経路となるように試験順序を設定する。試験順序決定部212は、緯度及び経度が同一の試験位置に対して、高度が高い位置から高度が低い位置へ順番に試験順序を設定する。これによれば、第1無人航空機102及び第2無人航空機150が同じ経路を重複して移動することが無い。これにより、第1無人航空機102及び第2無人航空機150の移動距離を短くすることができる。その結果、見通し試験に要する時間を短縮することができる。なお、試験順序決定部212は、緯度及び経度が同一の試験位置に対して、高度が低い位置から高度が高い位置へ順番に試験順序を決定してもよい。
【0116】
次に、コントローラ制御装置208は、試験順序、試験位置、及び繰返し上限値Nの情報を第1無人航空機102及び第2無人航空機150にアップロードする(アップロードステップST13)。より詳細には、コントローラ制御装置208は、試験順序、試験位置、及び繰返し上限値Nの情報をコントローラ通信部206に出力する。コントローラ通信部206は、通信回線NW及び通信部134を介して試験順序、試験位置、及び繰返し上限値Nの情報を第1制御装置138に送信する。第1制御装置138は、試験順序、試験位置、及び繰返し上限値Nの情報を記憶部148に記憶する。
【0117】
コントローラ通信部206は、通信回線NW及び通信部176を介して試験順序、試験位置、及び繰返し上限値Nの情報を第2制御装置180に送信する。第2制御装置180は、試験順序、試験位置、及び繰返し上限値Nの情報を記憶部190に記憶する。
【0118】
次に、繰返し判定部188は、繰返し回数iに0を代入して記憶部190に記憶させる(ステップST15)。
【0119】
次に、第1無人航空機102及び第2無人航空機150は、試験順序に基づいて、次に見通し試験を行う試験位置へ移動する(試験位置移動ステップST16)。より詳細には、駆動制御部140は、試験位置へ第1無人航空機102が移動するように、駆動部108を制御して回転翼106を回転させる。駆動制御部140は、試験位置に移動した第1無人航空機102が試験位置でホバリングするように、駆動部108を制御する。第1制御装置138は、通信部134、通信回線NW、及び通信部176を介して移動完了信号を第2制御装置180に出力する。駆動制御部182は、試験位置へ第2無人航空機150が移動するように、駆動部156を制御して回転翼154を回転させる。駆動制御部182は、試験位置に移動した第2無人航空機150が試験位置でホバリングするように、駆動部156を制御する。第2制御装置180は、通信部176、通信回線NW、及び通信部134を介して移動完了信号を第1制御装置138に出力する。
【0120】
次に、繰返し判定部188は、繰返し回数iに1を加算して記憶部190に記憶させる(ステップST18)。
【0121】
次に、
図2に示すように、照射方向制御部144は、反射光118が検出部158を照射するように、照射方向調整部116を制御する(向き調整ステップST20)。次に、照射方向制御部144は、照射方向を調整したことを示す信号を第2制御装置180に送信する。次に、向き制御部184は、検出部158が第1無人航空機102の方向を向くように向き調整部160を制御する。次に、向き制御部184は、検出部158の向きを調整したことを示す信号を第1制御装置138に送信する。
【0122】
次に、照射方向制御部144は、反射光118の仰角及び方位角が所定角度の範囲で往復して変化するように照射方向調整部116を制御する(首振りステップST22)。これによれば、鏡110が反射光118照射する範囲を大きくすることができる。これにより、第1無人航空機102の位置及び姿勢が風によって変化して照射方向が安定しない場合でも、反射光118が検出部158を照射し易くすることができる。その結果、第1位置P1と第2位置P2との見通し確認をより確実に実施することができる。
【0123】
次に、検出判定部186は、検出部158が反射光118を検出したか否かを判定する(ステップST24)。
【0124】
ステップST24で検出判定部186が反射光118を検出したと判定した場合(ステップST24、Yes)、第1制御装置138及び第2制御装置180は、現場撮影ステップST26を実施する。まず、検出判定部186は、反射光118を検出したと判定した信号を第1制御装置138に出力する。次に、第1制御装置138は、第1無人航空機102の鉛直方向下側を撮影するように撮影部124を制御する。次に、撮影部124は、撮影した画像データを第1制御装置138に出力する。第1制御装置138は、撮影部124が撮影した画像データを記憶部148に記憶させる。また、第2制御装置180は、第2無人航空機150の鉛直方向下側を撮影するように撮影部166を制御する。次に、撮影部166は、撮影した画像データを第2制御装置180に出力する。第2制御装置180は、撮影部166が撮影した画像データを記憶部190に記憶させる。
【0125】
ステップST24で検出判定部186が反射光118を検出しなかったと判定した場合(ステップST24、No)、繰返し判定部188は、ステップST28を実施する。ステップST28では、繰返し判定部188が繰返し回数iが繰返し上限値N以上であるか否かを判定する。ステップST28において、繰返し判定部188が繰返し回数iが繰返し上限値N以上ではないと判定した場合(ステップST28、No)、伝搬経路見通し試験システム100は、ステップST18からステップST24までのステップを繰り返す。
【0126】
現場撮影ステップST26の後、又は繰返し回数iが繰返し上限値N以上であると判定された(ステップST28、Yes)場合、第2制御装置180は、見通し結果記録ステップST30を実施する。見通し結果記録ステップST30では、検出判定部186が反射光118を検出したことを記憶部190に記憶させる。
【0127】
次に、第2制御装置180は、全ての試験位置が見通し確認済であるか否かを判定する(ステップST32)。
【0128】
伝搬経路見通し試験システム100は、第2制御装置180が全ての試験位置が見通し確認済ではないと判定した場合(ステップST32、No)、ステップST15からステップST32までの処理を繰り返す。以下、向き調整ステップST20からステップST32までのステップを適宜見通し試験ステップと称する。
【0129】
第2制御装置180は、全ての試験位置が見通し確認済であると判定した場合(ステップST32、Yes)、帰還ステップST34を実行する。まず、第2制御装置180は、通信部176、通信回線NW、及び通信部134を介して、第1制御装置138に帰還指令信号を送信する。次に、第1無人航空機102は、駆動制御部140を制御することで、試験開始位置まで移動する。次に、第2無人航空機150は、駆動制御部182を制御することで、試験開始位置まで移動する。
【0130】
次に、コントローラ制御装置208は、ダウンロードステップST36を実行する。ダウンロードステップST36では、コントローラ制御装置208が、見通し結果記録ステップST30で検出判定部186が反射光118の検出を記憶させた情報及び現場撮影ステップST26で撮影した画像データを記憶部148、190からダウンロードして記憶部210に記憶させる。
【0131】
次に、コントローラ制御装置208は、映像判定ステップST38を実行する。コントローラ制御装置208は、表示部202に現場撮影ステップST26で撮影した画像データを表示する。次に、作業者は、表示部202に表示された試験位置の画像から、試験位置が建設候補地として適切であるか否かを入力部204に入力する。建設候補地として適切であるか否かを入力部204に入力するとは、例えば、適切であると判定した場合に入力部204のyキーを押し、適切ではないと判定した場合に入力部204のnキーを押すことである。作業者は、例えば、
図6に示す第1レコードの第1位置画像から第1位置に川があることを確認し、建設候補地として適切ではないと判定する。作業者は、例えば、
図6に示す第6レコードの第1位置画像から第1位置が整地をすることで中継局を建設可能であることを確認し、建設候補地として適切であると判定する。次に、コントローラ制御装置208は、試験位置が建設候補地として適切であるか否かを判定した情報を記憶部210に記憶させる。
【0132】
次に、データベース作成部214は、データベース作成ステップST40を実行する。
図6に示すように、データベース作成部214は、記憶部210が記憶する情報から
図6に示すデータベース215を作成する。データベース作成部214は、例えば、試験順序決定ステップST12で決定した試験順序の昇順でデータベース215を表示部202に表示する。これによれば、試験位置における見通しの有無に加えて試験位置が建設候補地として適しているか否かを示した情報を含むデータベース215を作業者に提供することができる。これにより、作業者が建設候補地に係る情報をデータベース化する作業を省略することができる。その結果、見通し確認試験に係る作業者への負担だけではなく、見通し確認試験後の資料作成に係る作業者への負担を軽減することができる。
【0133】
上述したように、第1実施形態に係る伝搬経路見通し試験システム100は、第1無人航空機102及び第2無人航空機150が試験位置へ移動し見通し試験を実施する。第1無人航空機102及び第2無人航空機150は、見通しが確認された試験位置の画像データを記録する。データベース作成部214は、第1位置、第1位置画像、第2位置、第2位置画像、見通し結果、及び画像判定結果を含む情報を表示部202に表示させる。作業者は、現地へ移動すること無く見通しが確認された第1位置及び第2位置の位置情報を知ることができる。さらに、作業者は、現地へ移動すること無く試験位置の状態を視覚的に知ることができる。さらに、作業者は、現地へ移動すること無く建設候補地として適切な場所を知ることができる。その結果、伝搬経路見通し試験システム100は、作業者の現地調査に係る負担を軽減することができる。
【0134】
第1実施形態に係る伝搬経路見通し試験システム100は、試験情報設定ステップST10で複数の試験位置を設定する。伝搬経路見通し試験システム100は、全ての試験位置で見通しの有無を確認するまで、見通し試験を確認する。これによれば、1度に複数の試験位置において見通しが有るか否かを確認することができる。これにより、建設候補地として適しているか否かをより多くの地点で確認することができる。その結果、建設候補地の選定を効率よく行うことができる。
【0135】
第1実施形態に係る伝搬経路見通し試験システム100は、現場撮影ステップST26で試験位置の画像データを記録する。これによれば、作業員が試験位置へ移動せずに現地の状況を調査することができる。これにより、現地調査に係る費用及び作業員の負担を軽減することができる。
【0136】
第1実施形態に係る伝搬経路見通し試験システム100は、見通し結果記録ステップST30において、第1制御装置138がGPSセンサ128から位置情報を取得して記憶部148に記憶させて、さらに、第2制御装置180がGPSセンサ170から位置情報を取得して記憶部190に記憶させる構成としてもよい。これによれば、第1無人航空機102及び第2無人航空機150が試験をしている位置をより正確に記録することができる。これにより、試験情報設定ステップST10で設定した試験位置(目標位置)よりも、より正確な実際の試験位置を記録することができる。その結果、より信頼性のある位置情報で建設候補地の選定を行うことができる。
【0137】
第1実施形態に係る伝搬経路見通し試験システム100は、検出判定部186を省略して、検出部158が撮影した映像データを作業者が確認することで、見通しの有無を確認する構成としてもよい。これによれば、第2無人航空機150の装置構成を簡略することができる。また、映像を人間が直接確認することで見通しの有無を確認することができるため、検出判定部186が検出部158から出力される映像データを解析する場合と比較して、誤った判定結果となることを抑制することができる。その結果、見通し確認試験の信頼性を向上させることができる。
【0138】
なお、第1実施形態に係る伝搬経路見通し試験システム100は、各試験位置における見通し試験を連続して実行しているが、これに限定されない。伝搬経路見通し試験システム100は、試験位置で見通し試験を行う度に、試験開始位置に戻る構成としてもよい。また、現場撮影ステップST26の後、又は繰返し回数iが繰返し上限値N以上であると判定された(ステップST28、Yes)場合、試験順序決定部212は、緯度及び経度が同一の試験位置に対して、高度が異なる他の試験位置を自動設定してもよい。これによれば、第1無人航空機102及び第2無人航空機150が同じ経路を重複して移動することが無く、伝搬経路見通し試験システム100は、見通しが有る試験位置を探索することができる。
【0139】
なお、第1実施形態に係る伝搬経路見通し試験システム100は、第2無人航空機150が検出部158及び撮影部166を備える構成としているが、これに限定されない。検出部158が撮影部166の機能を兼ねる構成としてもよい。例えば、検出判定部186が反射光118を検出した場合、検出部158が第2無人航空機150の鉛直方向下側を撮影してもよい。これによれば、伝搬経路見通し試験システム100は、撮影部166を省略することができる。これにより、第2無人航空機150の構成を簡略化することができる。その結果、第2無人航空機150の質量を軽くすることができる。
【0140】
(第2実施形態)
図8は、第2実施形態に係る伝搬経路見通し試験システムの一例を示す模式図である。
図9は、第2実施形態に係る伝搬経路見通し試験システムの主要構成を示すブロック図である。第2実施形態に係る伝搬経路見通し試験システム100aには、実施形態1に係る伝搬経路見通し試験システム100と同じ構成要素に同一の符号を付して重複する説明を省略する。伝搬経路見通し試験システム100aは、第1無人航空機102aと、第2無人航空機150aと、コントローラ200aと、を備える。
【0141】
図8及び
図9に示すように、第1無人航空機102aは、鏡110に代えてレーザ出力部216を備えること、及び第1制御装置138に代えて第1制御装置138aを備えること以外は、第1実施形態に係る第1無人航空機102と同様の構成である。
【0142】
図8及び
図9に示すように、レーザ出力部216は、レーザ光218を出力するレーザ発信機である。レーザ出力部216は、例えば、532nmの第2高調波を出力するYAGレーザであるがこれに限定されない。レーザ出力部216は、検出部158が検出可能なレーザ光218を出力できるものであればよい。レーザ出力部216が照射するレーザ光218の波長は、例えば、UVレーザ(355nm)、半導体レーザ(808nm、940nm、975nm)、ファイバーレーザ(1060〜1100nm)、YAGレーザ(1064nm、2080nm、2940nm)などを用いてもよい。レーザ出力部216は、照射方向調整部116を介して筐体104に固定されている。
【0143】
図9に示すように、第1制御装置138aは、照射方向制御部144に代えて照射方向制御部144aを備えていること、レーザ出力制御部220を備えていること、及び太陽位置算出部142を備えていないこと以外は、第1制御装置138と同様の構成である。
【0144】
図10は、第2実施形態に係る伝搬経路見通し試験システムの仰角方向の角度調整方法を説明するための説明図である。
図11は、第2実施形態に係る伝搬経路見通し試験システムの方位角方向の角度調整方法を説明するための説明図である。
図10は、第1無人航空機102a及び第2無人航空機150aを水平方向から見た立面図を模式的に示している。
図11は、第1無人航空機102a及び第2無人航空機150aを鉛直方向上側から見た平面図を模式的に示している。
【0145】
図8から
図11に示すように、照射方向制御部144aは、照射方向調整部116を制御することで、レーザ光218が第2無人航空機150aを照射するようにレーザ出力部216の照射方向を調整する。
図10を参照して、照射方向制御部144aがレーザ仰角θelを調整する方法を説明する。
図10に示すレーザ仰角θelは、レーザ光218の照射方向と水平面145とが成す角度である。照射方向制御部144aは、仰角θeを算出する。なお、仰角θeの算出方法は、照射方向制御部144が仰角θeを算出する方法と同様であるので、説明を省略する。照射方向制御部144aは、レーザ仰角θelが仰角θeと一致するように、仰角調整部122を制御する。
【0146】
次に、
図11を参照して、照射方向制御部144aがレーザ方位角θalを調整する方法を説明する。
図11に示すように、レーザ方位角θalとは、レーザ光218の方位角である。照射方向制御部144aは、方位角θaを算出する。なお、方位角θaの算出方法は、照射方向制御部144と同様であるので、説明を省略する。照射方向制御部144aは、レーザ方位角θalが方位角θaと一致するように、方位角調整部120を制御する。
【0147】
図9に示すように、レーザ出力制御部220は、レーザ出力部216から照射されるレーザ光218の照射タイミングを制御する。より詳細には、レーザ出力制御部220は、レーザ出力部216のオンオフ制御を行うことで、レーザ光218を変調する。レーザ光218を変調するとは、例えば、予め定められた周期でレーザ光218のオンオフを繰り返すことである。なお、レーザ出力制御部220がレーザ光218を変調する方法はこれに限定されない。
【0148】
図8及び
図9に示すように、第2無人航空機150aは、第2制御装置180に代えて第2制御装置180aを備えていること以外は、第1実施形態に係る第2無人航空機150と同様の構成である。
【0149】
図8及び
図9に示すように、第2制御装置180aは、検出判定部186に代えて検出判定部186aを備えていること以外は、第2制御装置180と同様の構成である。
【0150】
図9に示すように、検出判定部186aには、検出部158から出力された映像情報が入力される。検出判定部186aは、映像情報を解析する。検出判定部186aは、映像情報を解析した結果、映像情報にレーザ出力部216から照射されたレーザ光218が含まれているか否かを判定する。より詳細には、検出判定部186aは、映像情報を解析して、レーザ光218のオンオフ周期を算出する。検出判定部186aは、算出したオンオフ周期とレーザ出力制御部220がレーザ光218を変調する際の予め定められた周期とが同一であるか否かを判定する。このように、検出判定部186aは、レーザ光218を識別することができる。検出判定部186aは、レーザ光218を検出したことを記憶部190に記憶させる。
【0151】
図9に示すように、コントローラ200aは、データベース作成部214に代えてデータベース作成部214aを備えていること以外は、コントローラ200と同様の構成である。
【0152】
図12は、第2実施形態に係る伝搬経路見通し試験システムが作成するデータベースの表示例を示す表である。
図12に示すように、データベース作成部214aは、データベース215に代えてデータベース215aを作成すること以外は、データベース作成部214と同様である。データベース215aは、第1レコードに高所見通し確認ステップST14で見通しを確認した情報が入力されていること以外は、データベース215と同様である。高所見通し確認ステップST14については、後述する。
【0153】
図13は、第2実施形態に係る伝搬経路見通し試験方法の試験手順を示すフローチャートである。以下、第2実施形態に係る伝搬経路見通し試験システム100aの見通し試験手順について
図12及び
図13を参照して説明する。
【0154】
図13に示すように、第2実施形態に係る伝搬経路見通し試験方法は、高所見通し確認ステップST14を含む。第2実施形態に係る伝搬経路見通し試験方法は、首振りステップST22に代えて首振りステップST22aを含む。第2実施形態に係る伝搬経路見通し試験方法は、データベース作成ステップST40に代えてデータベース作成ステップST40aを含む。なお、第2実施形態に係る伝搬経路見通し試験方法のステップST10からステップST13、ステップST15からステップST20、及びステップST24からステップST38は、第1実施形態に係る伝搬経路見通し試験方法と同様である。
【0155】
図13に示すように、第1制御装置138aは、向き調整ステップST20の後に首振りステップST22aを実施する。まず、レーザ出力制御部220は、レーザ出力部216を制御してレーザ光218を出力させる。次に、レーザ出力制御部220は、レーザ出力部216のオンオフ制御を行うことで、レーザ光218を変調する。次に、照射方向制御部144aは、レーザ光218の仰角及び方位角が所定角度の範囲で往復して変化するように照射方向調整部116を制御する。次に、レーザ出力制御部220は、レーザ出力部216を制御してレーザ光218の出力を停止させる。
【0156】
高所見通し確認ステップST14では、駆動制御部140が駆動部108を制御して第1無人航空機102aを予め定められた第1確認位置まで移動させる。次に、駆動制御部182は、駆動部156を制御して第2無人航空機150aを予め定められた第2確認位置へ移動させる。予め定められた第1確認位置とは、例えば、試験開始位置から西へ10m離れ、かつ試験開始位置よりも高度が50m高い位置であるがこれに限定されない。予め定められた第2確認位置とは、例えば、試験開始位置から東へ10m離れ、かつ試験開始位置よりも高度が50m高い位置であるがこれに限定されない。第1確認位置及び第2確認位置は、高度が十分に高い位置であればよい。高度が十分に高い位置とは、第1確認位置と第2確認位置との間に障害物が無い位置である。なお、予め定められた第1確認位置及び予め定められた第2確認位置は、試験情報設定ステップST10で作業者が設定してもよい。
【0157】
次に、高所見通し確認ステップST14では、向き調整ステップST20、首振りステップST22a、及び見通し結果記録ステップST30を実施する。つまり、第2制御装置180aは、第1確認位置と第2確認位置との間における見通しの有無を判定して記憶する。具体的には、検出判定部186aは検出部158がレーザ光218を検出したことを記憶部190に記憶させる。これによれば、各試験位置における見通しの有無を判定する前に、十分に高度が高い第1確認位置及び第2確認位置の間で見通しの有無を判定することができる。これにより、伝搬経路見通し試験システム100aが正常に機能しているか否かを確認することができる。具体的には、十分に高度が高い第1確認位置及び第2確認位置の間で見通しが無いと判定された場合に、伝搬経路見通し試験システム100aが故障していることを確認することができる。
【0158】
図12に示すように、データベース作成ステップST40aは、データベース作成部214aがデータベース215aを作成すること以外は、データベース作成ステップST40と同様である。データベース215aは、第1レコードに高所見通し確認ステップST14で見通しを確認した位置の位置情報(緯度、経度及び高度)及び見通しの有無を判定した情報が入力されていること以外は、データベース215と同様である。データベース作成部214aは、最上部に第1レコードが表示されるようにデータベース215aを表示部202に表示する。これによれば、十分に高度が高い位置における見通しの有無を判定した結果と試験位置における見通しの有無を判定した結果とを容易に比較することができる。これにより、試験位置における見通しの有無を示す情報の信頼性を向上させることができる。具体的には、
図12に示すように、高度が十分に高い位置(第1レコード)において見通しが有ると判定され、かつ試験位置(第4レコード及び第5レコード)において見通しが無いと判定された場合に、見通しが無いと判定された結果の信頼性を担保することができる。また、見通しが無いと判定された結果の信頼性が担保されていることから、見通しがあると判定された試験結果(第4レコード及び第5レコード)の信頼性をより担保することができる。その結果、伝搬経路見通し試験システム100aの信頼性を向上させることができる。
【0159】
第2実施形態に係る伝搬経路見通し試験システム100aは、伝搬経路見通し試験システム100同様に、作業者が見通し判定のフィールドを見た場合に、見通しが有る高度と見通しが無い高度との境界を直感的に理解することができる。具体的には、作業者は、第2レコード及び第3レコードの見通しのフィールドが○であり、かつ第3レコードの見通しのフィールドが×であることから、第1位置の高度が1231.00m以上であれば、見通しが確保できることを直感的に理解することができる。つまり、作業者は、見通しがある第1位置及び第2位置の組み合わせの内、最も高度が低い組み合わせを容易に把握することができる。一般に、アンテナの設置高さが低いほど建設負荷を軽減できる。建設負荷とは、建設に要する時間及び建設に要する費用等である。以上より、データベース作成部214aは、最も建設負荷が低い建設候補地を作業者に提供することができる。
【0160】
なお、
図12に示すデータベース215aは、第2位置高度を変化させずに、第1位置高度のみを変化させた例である。このような試験方法は、例えば、
図1に示す第2中継局30が第1位置に該当し、
図1に示す端局40が第2位置に該当する。つまり、データベース215aは、端局40のアンテナ位置を固定して、第2中継局30のアンテナ位置の候補位置を試験している例である。このように、第1無人航空機102a又は第2無人航空機150aのいずれか一方の試験位置のみを変化させてもよい。
【0161】
第2実施形態に係る伝搬経路見通し試験システム100aは、レーザ出力部216がレーザ光218を照射する。これによれば、鏡を用いて見通し試験をする場合と比較して、晴れていない日及び夜間でも見通し試験を実施することができる。また、レーザ光218は、マイクロ波よりも指向性が高い。つまり、マイクロ波無線通信回線10を建設後にマイクロ波を用いて通信する場合と比較して、レーザ光218を用いて第1位置P1及び第2位置P2の間の見通しを確認することの方が条件が厳しい。これによれば、第1位置P1及び第2位置P2の間で見通しが確認された場合に、第1位置P1及び第2位置P2の間でマイクロ波無線通信が行えることをより担保することができる。
【0162】
第2実施形態に係る伝搬経路見通し試験システム100aは、レーザ出力制御部220がレーザ光218を変調する。伝搬経路見通し試験システム100aは、検出判定部186aが変調されたレーザ光218を識別して検出する。これによれば、レーザ光218以外の光が検出部158に照射された場合に、検出判定部186aが誤って検出有と判定する可能性を低減することができる。これにより、検出判定部186aの判定結果の信頼性を向上することができる。
【0163】
第2実施形態に係る高所見通し確認ステップST14では、第2制御装置180aが第1確認位置と第2確認位置との間で見通しの有無を判定した情報を記憶部190に記録するとしたが、これに限定されない。例えば、第2制御装置180aが第1確認位置と第2確認位置との間で見通しが無いと判定した場合に、伝搬経路見通し確認試験を中止して帰還する構成としてもよい。
【0164】
第2実施形態に係るステップST32では、全ての試験位置で見通しが確認されない場合(ステップST32、No)、ステップST15から見通し結果記録ステップST30を繰り返すとしたが、これに限定されない。例えば、全ての試験位置で見通しが確認されていない場合(ステップST32、No)、高所見通し確認ステップST14から見通し結果記録ステップST30を繰り返す手順としてもよい。これによれば、各試験位置ごとに十分に高度が高い位置における見通しを確認することができる。これにより、各試験位置の見通し結果と、十分に高度が高い位置における見通し結果とを併せて記憶部148、190に記憶させることができる。その結果、十分に高度が高い位置において見通しが有ると確認され、かつ試験位置において見通しが確認できない場合に、見通しが確認できないという判定結果の信頼性をより担保することができる。
【0165】
第2実施形態に係る伝搬経路見通し試験システム100aは、検出部158がレーザ光218の波長に感度を持つフォトダイオードであり、検出判定部186aがフォトダイオードの出力電流を解析して見通しの有無を判定する構成としてもよい。これによれば、検出判定部186aは、フォトダイオードから出力される電流値の変化のみを解析することで見通しの有無を判定することができる。これにより、検出判定部186aが映像データを解析する場合と比較して、検出判定部186aの情報処理に要する負荷を軽減することができる。その結果、検出判定部186aの装置構成及び判定アルゴリズムを簡単にすることができる。
【0166】
第2実施形態に係る伝搬経路見通し試験システム100aは、レーザ出力制御部220がレーザ出力部216から照射されるレーザ光218を変調するとしたがこれに限定されない。レーザ出力部216がレーザ光218を変調して出力する構成としてもよい。
【0167】
(第3実施形態)
図14は、第3実施形態に係る伝搬経路見通し試験システムの一例を示す模式図である。
図15は、第3実施形態に係る伝搬経路見通し試験システムの主要構成を示すブロック図である。第3実施形態に係る伝搬経路見通し試験システム100bには、実施形態2に係る伝搬経路見通し試験システム100aと同じ構成要素に同一の符号を付して重複する説明を省略する。伝搬経路見通し試験システム100bは、第1無人航空機102bと、第2無人航空機150bと、コントローラ200aと、を備える。
【0168】
図14及び
図15に示すように、第2無人航空機150bは、レーザ出力部230、照射方向調整部232を備えること、及び第2制御装置180aに代えて第2制御装置180bを備えること以外は、第2実施形態に係る第1無人航空機102aと同様の構成である。
【0169】
図14及び
図15に示すように、レーザ出力部230は、照射方向調整部232を介して筐体152に固定されていること以外は、レーザ出力部216と同様の構成である。
【0170】
図14に示すように、照射方向調整部232は、方位角調整部234と、仰角調整部236と、を備える。方位角調整部234は、筐体152に固定されていること以外は、方位角調整部120と同様の構成である。
【0171】
仰角調整部236は、方位角調整部234を介して筐体152に固定されていること以外は、仰角調整部122と同様である。
【0172】
図15に示すように、第2制御装置180bは、レーザ出力制御部238及び照射方向制御部242を備えていること以外は、第2制御装置180bと同様の構成である。
【0173】
レーザ出力制御部238は、レーザ出力部230から照射されるレーザ光240の照射タイミングを制御すること以外はレーザ出力制御部220と同様である。
【0174】
照射方向制御部242は、方位角調整部234及び仰角調整部236を制御することで、レーザ光240が第1無人航空機102bを照射するようにレーザ出力部230の照射方向を制御する。なお、照射方向制御部242がレーザ光240の照射方向を制御する方法は、照射方向制御部144aが照射方向を制御する方法と同様であるため説明を省略する。
【0175】
図14及び
図15に示すように、第1無人航空機102bは、検出部244、向き調整部246を備えること、及び第1制御装置138aに代えて第1制御装置138bを備えること以外は、第2実施形態に係る第1無人航空機102aと同様の構成である。
【0176】
図14及び
図15に示すように、検出部244は、レーザ出力部230から照射されるレーザ光240を検出する。検出部244は、例えば、イメージセンサを備えるカメラである。
図14に示すように、検出部244は、向き調整部246を介して筐体104に固定されている。
図15に示すように、検出部244は、イメージセンサが検出した情報を第1制御装置138bに出力する。
【0177】
図14に示すように、向き調整部246は、方位角調整部248と、仰角調整部250と、を備える。方位角調整部248は、筐体104に固定されていること以外は、方位角調整部162と同様の構成である。
【0178】
仰角調整部250は、方位角調整部248を介して筐体104に固定されていること以外は、仰角調整部164と同様の構成である。
【0179】
第1制御装置138bは、向き制御部252を備えていること、及び検出判定部254を備えていること以外は、第1制御装置138aと同様の構成である。
【0180】
図15に示すように、向き制御部252は、検出部244が第2無人航空機150bの方向を向くように方位角調整部248及び仰角調整部250を制御する。なお、向き制御部252が検出部244の向きを制御する方法は、向き制御部184の制御方法と同様であるため説明を省略する。
【0181】
検出判定部254は、検出部244から出力された映像情報が入力されること以外は検出判定部186aと同様であるため、説明を省略する。
【0182】
図16は、第3実施形態に係る伝搬経路見通し試験方法の試験手順を示すフローチャートである。
図16に示すように、第3実施形態に係る伝搬経路見通し試験方法は、ステップST281、及び照射検知入替ステップST282を含むこと以外は、第2実施形態に係る伝搬経路見通し試験方法と同様である。以下、第3実施形態に係る伝搬経路見通し試験システム100bの伝搬経路見通し試験手順について
図16を参照して説明する。
【0183】
図16に示すように、繰返し回数iが繰返し上限値N以上である場合(ステップST28、Yes)、第1制御装置138b及び第2制御装置180bは、ステップST281を実行する。まず、ステップST281では、第1制御装置138b及び第2制御装置180bは、現在の試験位置において照射と検知とが入替済か否かを判定する。
【0184】
照射と検知とが入替済であると判定した場合(ステップST281、Yes)、見通し結果記録ステップST30を実施する。照射と検知とが入替済ではないと判定した場合(ステップST281、No)、照射検知入替ステップST282を実行する。まず、照射検知入替ステップST282では、レーザ出力制御部220がレーザ出力部216を制御してレーザ光218の出力を停止させる。次に、レーザ出力制御部238は、レーザ出力部230を制御してレーザ光240を出力させる。これによれば、レーザ出力部216又は検出部158の少なくとも一方が故障をしても、レーザ出力部230及び検出部244を用いて見通し試験を行うことができる。また、レーザ出力部230又は、検出部244の少なくとも一方が故障をしても、レーザ出力部216及び検出部158を用いて見通し試験を行うことができる。その結果、伝搬経路見通し試験システム100bを冗長化させることができる。