【実施例】
【0070】
以下の非限定的な実施例によって本発明を示す。
実施例1:自己組織化微粒子の製造:
ブラシル酸(1.54g、6.31ミリモル)及び4−ジメチルアミノピリジン(DMAP、1.54g、12.62ミリモル)を水(10cm
3)中に溶解し、試料を顕微鏡上に配置した。直径約3μmのほぼ単分散状態の球状の物体が観察された(
図1)。
【0071】
実施例2:自己組織化微粒子の製造:
ブラシル酸(1.54g、6.31ミリモル)及びジメチルアミノエタノール(DMAE、1.12g、12.62ミリモル)を水(10cm
3)中に溶解し、試料を顕微鏡上に配置した。直径約3μmのほぼ単分散状態の球状の物体が観察された。
【0072】
実施例3:自己組織化微粒子の製造:
ブラシル酸(1.54g、6.31ミリモル)及び4−メチルモルホリン(NMM、1.275g、12.62ミリモル)を水(10cm
3)中に溶解し、試料を顕微鏡上に配置した。直径約3μmのほぼ単分散状態の球状の物体が観察された。
【0073】
実施例4:自己組織化微粒子の製造:
また、一定範囲の酸及び一定範囲の水溶性有機塩基を用いて上記のジカルボン酸溶解実験を行った。試験した組合せの幾つかを下記に示す。これらの組合せは、0.9〜1.1:1の酸基/塩基性基のモル比を有していた。これらの組合せは全て、実施例1に記載するような球状物体を形成した。
【0074】
ピメリン酸+NMM;
スベリン酸+NMM;
アゼライン酸+NMM;
セバシン酸+NMM;
セバシン酸+DMAP;
セバシン酸+DMAE;
セバシン酸+イミダゾール;
ドデカン二酸+NMM;
ドデカン二酸+DMAP;
ドデカン二酸+DMAE;
C
36ダイマー酸+NMM。
【0075】
実施例5:架橋自己組織化微粒子の製造:
ブラシル酸(1.54g、6.31ミリモル)及び4−ジメチルアミノピリジン(DMAP、1.54g、12.62ミリモル)を水(10cm
3)中に溶解し、試料を顕微鏡上に配置した。直径約3μmのほぼ単分散状態の球状の物体が観察された(
図1)。ポリ−ε−リシン(PeK)(2g、12.04ミリモルのNH
2)を水(10cm
3)中に溶解し、ブラシル酸/DMAP微小球状体の上記の溶液に加えた。0.45μmの膜を通して混合物を濾過し、試料を顕微鏡上に配置した。直径約3μmの微小球状体が未だ存在していた。この溶液を水で100cm
3に希釈した。N−(3−ジメチルアミノプロピル)−N’−エチルカルボジイミドヒドロクロリド(EDCl)(4.6g、2.4ミリモル)及びHONSu(1.38g、1.2ミリモル)を水(10cm
3)中に溶解し、上記の溶液に加えた。架橋反応を一晩放置し、得られた粒子を接線流濾過(TFF)によって洗浄し、凍結乾燥によって回収した(収量2.35g)。
図2は、得られた微小球状体の走査電子顕微鏡写真を示す。
【0076】
実施例6:プロトポルフィリンIXヘムBを含む架橋自己組織化微粒子の製造:
ブラシル酸(0.734g、3.3ミリモル)及び4−ジメチルアミノピリジン(DMAP、0.734g、6.6ミリモル)を水(10cm
3)中に溶解し、試料を顕微鏡上に配置した。直径約3μmのほぼ単分散状態の球状の物体が観察された(
図1)。ポリ−ε−リシン(PeK)(1g、6.02ミリモルのNH
2)を水(10cm
3)中に溶解し、ブラシル酸/DMAP微小球状体の上記の溶液に加えた。0.45μmの膜を通して混合物を濾過し、試料を顕微鏡上に配置した。直径約3μmの微小球状体が未だ存在していた。この溶液を、ヘムBの飽和溶液(50cm
3)で希釈した。N−(3−ジメチルアミノプロピル)−N’−エチルカルボジイミドヒドロクロリド(EDCl)(2.3g、1.2ミリモル)及びHONSu(0.7g、0.6ミリモル)を水(5cm
3)中に溶解し、上記の溶液に加えた。架橋反応を一晩放置し、得られた粒子を接線流濾過(TFF)によって洗浄し、凍結乾燥によって回収した(収量0.93g)。
【0077】
実施例7:架橋自己組織化微粒子の製造:
セバシン酸(0.619g、6.12ミリモル)及びNMM(0.62g、6.12ミリモル)を水(10cm
3)中に溶解し、試料を顕微鏡上に配置した。直径約2.5μmのほぼ単分散状態の球状の物体が観察された。
【0078】
ポリ−ε−リシン(PeK)(1g、5.83ミリモルのNH
2)を水(10cm
3)中に溶解し、セバシン酸/NMM微小球状体の上記の溶液に加えた。0.45μmの膜を通して混合物を濾過し、試料を顕微鏡上に配置した。直径約2.5μmの微小球状体が未だ存在していた。この溶液を、水で50cm
3に希釈した。EDCl(2.24g、11.7ミリモル)及びHONSu(2.0g、17.4ミリモル)を水(10cm
3)中に溶解し、上記の溶液に加えた。架橋反応を一晩放置し、得られた粒子をTFFによって洗浄し、凍結乾燥によって回収した。
【0079】
実施例8:架橋自己組織化微粒子の製造:
セバシン酸(5.06g、25ミリモル)及びイミダゾール(3.4g、50ミリモル)を水(50cm
3)中に溶解し、試料を顕微鏡上に配置した。直径約2.5μmのほぼ単分散状態の球状の物体が観察された。
【0080】
ポリ−ε−リシン(PeK)(8.576g、50ミリモルのNH
2)を水(50cm
3)中に溶解し、セバシン酸/イミダゾール微小球状体の上記の溶液に加えた。0.45μmの膜を通して混合物を濾過し、試料を顕微鏡上に配置した。直径約2.5μmの微小球状体が未だ存在していた(
図3)。この溶液を、水で500cm
3に希釈した。EDCl(4.8g、25ミリモル)を水(20cm
3)中に溶解し、上記の溶液に加えた。架橋反応を1時間放置し、次に更に25ミリモルのEDClを加えた後に一晩放置した。得られた粒子をデカンテーションによって水で洗浄し、凍結乾燥によって回収した(
図4)。
【0081】
実施例9:架橋自己組織化微粒子の製造:
セバシン酸(5g、24.7ミリモル)及び(3−アミノプロピル)トリメトキシシラン(8.42g、46.9ミリモル)を水(50cm
3)中に溶解し、試料を顕微鏡上に配置した。直径約2.5μmのほぼ単分散状態の球状の物体が観察された。
【0082】
混合物を一晩放置した後、濃塩酸で酸性化した。塩酸を加えることによって、粒子内にシリカが形成され、セバシン酸/シリカ複合体が生成した。
実施例10:架橋自己組織化微粒子の製造:
セバシン酸(5g、24.7ミリモル)及びN−[3−(トリメトキシシリル)プロピル]エチレンジアミン(5.77g、51.9ミリモルのアミン)を水(50cm
3)中に溶解し、試料を顕微鏡上に配置した。直径約2.5μmのほぼ単分散状態の球状の物体が観察された。
【0083】
この溶液を水で500cm
3に希釈した。EDCl(20g、104ミリモル)を水(100cm
3)中に溶解し、上記の溶液に加えた。混合物を一晩放置した後、濃塩酸で酸性化した。塩酸を加えることによって、粒子内にシリカが形成され、セバシン酸/シリカ複合体が生成した。
【0084】
実施例11:架橋自己組織化微粒子の製造:
セバシン酸(5g、24.7ミリモル)及びN1−(3−トリメトキシシリルプロピル)ジエチレントリアミン(4.37g、46.9ミリモルのアミン)を水(50cm
3)中に溶解し、試料を顕微鏡上に配置した。直径約2.5μmのほぼ単分散状態の球状の物体が観察された。
【0085】
この溶液を水で500cm
3に希釈した。EDCl(20g、104ミリモル)を水(100cm
3)中に溶解し、上記の溶液に加えた。混合物を一晩放置した後、濃塩酸で酸性化した。塩酸を加えることによって、粒子内にシリカが形成され、セバシン酸/シリカ複合体が生成した。
【0086】
実施例12:自己組織化マクロ孔質架橋シートの製造:
セバシン酸(0.619g、6.12ミリモル)及びNMM(0.62g、6.12ミリモル)を水(10cm
3)中に溶解し、試料を顕微鏡上に配置した。直径約2.5μmのほぼ単分散状態の球状の物体が観察された。
【0087】
ポリ−ε−リシン(PeK)(1g、5.83ミリモルのNH
2)を水(10cm
3)中に溶解し、セバシン酸/NMM微小球状体の上記の溶液に加えた。0.45μmの膜を通して混合物を濾過し、試料を顕微鏡上に配置した。直径約2.5μmの微小球状体が未だ存在していた。EDCl(2.24g、11.7ミリモル)及びHONSu(2.0g、17.4ミリモル)を水(10cm
3)中に溶解し、上記の溶液に加えた。架橋反応を一晩放置し、得られたシートを水で洗浄し、凍結乾燥によって乾燥した。
図5に示すSEMは、マクロ孔質ポリマーの融合微細球体構造が形成されたことを明確に示している。
【0088】
実施例13:自己組織化マクロ孔質架橋シートの製造:
(12−ホスホノドデシル)ホスホン酸(330mg、1ミリモル)及びNMM(404mg、4ミリモル)を水中に溶解した。試料を顕微鏡上に配置して、実質的に単分散状体の微小球状体の存在を確認した。PeK(343mg、2ミリモルのNH
2)を水(10cm
3)中に溶解し、上記で調製したビスホスホン酸溶液に加えた。この段階において、微小球状体は未だ存在していた。水(10cm
3)中に溶解したEDCl(1.15g、6ミリモル)を加え、混合物を直ちにトレイ中に注ぎ入れた。ここでも、この段階において微小球状体が未だ存在していた。約2時間後にシートが形成され、これを水で十分に洗浄した。最終的なシートはゴム状のテクスチャーを有していた。
【0089】
実施例14:骨細胞の培養(3D細胞培養の実施例):
本実施例においては、実施例12において製造された自己組織化マクロ孔質シートを製造した。実施例12のシートを、この足場材に対して約10重量%のSigmaAldrichからカタログNo.702153で入手できるヒドロキシアパタイトナノ粒子と一緒に含む更なる生成物を調製し、細胞適合性を試験した。
【0090】
骨芽骨細胞の9日間成長曲線は、プラスチック培養皿組織培養対照試験と比較した際に培養期間の初期段階中の細胞生存性の間に大きな差はなかったことを示した。カルボキシル又はヒドロキシアパタイト被覆足場材のいずれかの上で培養した骨芽細胞の間において、細胞生存性における大きな差はなかった。3D足場材との細胞間相互作用は、40倍の倍率においてより明らかになり、アクチンフィラメント染色によって、
図7に示すように、細胞が3D足場材に固定された付着点が強調された。
【0091】
図7は、カルボキシル官能化及びヒドロキシアパタイト被覆3D足場材上で培養した骨芽細胞を、(a+b)48時間培養したものを10倍の倍率、(c+d)48時間培養したものを40倍の倍率、(e+f)7日間培養したものを10倍の倍率、(g+h)7日間培養したものを20倍の倍率で示す。
【0092】
骨芽細胞は、培養期間の残りの間、生存して足場材と相互作用し続けた。これらの結果は、3D足場材は、ヒドロキシアパタイト被覆を有していてもいなくても骨芽細胞の成長を促進することを示している。
【0093】
骨芽細胞の増殖:
骨芽細胞を24ウェルのインサート上に細胞数1×10
5の密度で播種し、37℃及び5%CO
2の標準組織培養条件下で培養した。ファンギゾン及びペニシリン/ストレプトマイシンを補充した10%FCSを含むダルベッコ改変イーグル培地(DMEM)(高グルコース+2mMのグルタミン)の培地を用いた。細胞FアクチンをFITC標識(FITC-conjugated)ファロイジンで染色し、次に核染色剤のHoechst 33342で対比染色した。24時間、48時間、及び7日の時点において、Nikon Eclipse Ti-E位相差顕微鏡(Nikon,東京,日本)を用いて画像を撮影した(
図6)。
図6は、カルボキシル及びヒドロキシアパタイト被覆3D足場材上で9日間の培養期間培養した骨芽細胞の代謝活性アッセイ(CCK−8)を示す。
【0094】
細胞増殖アッセイ:
CCK-8アッセイキット(Dojindo Laboratories,日本国熊本県)を用いて、9日間の培養期間の経過中の種々の時点における細胞増殖をモニターした。製造者のガイドラインにしたがって、細胞数を求めるための標準曲線を作成した。細胞は、細胞数5×10
4の初期密度で足場材に播種した後に、標準培養条件下でインキュベートした。それぞれの時点において、CCK-8溶液(50mm
3)を、それぞれのウェル内の培地(500mm
3)に加えた。次に、細胞を標準培養条件下で2時間インキュベートした。それぞれのウェルからの溶液のアリコート(3×100mm
3)を、96ウェルプレート内のラベルしたウェル中にピペットで注入した。好適な対照試料も用いた。FLUOstar Optimaプレートリーダー(BMG Labtech, Ortenberg,ドイツ)を用いて、600nmにおけるバックグラウンドの読みと共に485nmにおける吸光度を読み取り、結果を記録した。
【0095】
実施例15:殺生物剤配合物:
パーソナルケア、化粧品、在宅ケア、及び一般的な消毒のための殺生物剤は、現在、摩損のために、処置すべき表面と接触させてそれらを保持する時間が限定されている。例えば、病院内での消毒のために用いられているタイプの表面スプレーは、限定された活性使用寿命を有しており、したがって、MRSA、緑膿菌、C.ディフィシルのような病院内感染に対しては減少した活性を有する。更に、幾つかの表面スプレーは、殺生物剤の摩損による除去を減少させるために、イソプロパノールのような有機溶媒、又はシリコーン油のような非生分解性成分を含んでいる。
【0096】
第4級アンモニウム化合物のようなカチオン性及び両性殺生物剤は、細胞膜を可溶化して細胞の溶解及び死滅をもたらすことによって病原体に対して作用する。カチオン性化合物であるクロルヘキシジン、ベンザルコニウムクロリド、クリンバゾール、ジデシルジメチルアンモニウムクロリド、ドデシルジプロピレントリアミンなどのような消毒のために商業的に用いられている多くの殺生物剤が存在する。更に、幾つかの殺生物剤は、ポリ(ジアリルジメチルアンモニウムクロリド)のようなポリマーカチオン性化合物である。これらの化合物は、本明細書に記載する技術を用いて球状微粒子中に容易に配合することができ、これにより表面、皮膚、及び毛髪上の摩損除去を減少させることができ、殺生物剤の制御放出を可能にする可能性がある。更に、同じ微粒子中に複数のカチオン性化合物を含む殺生物剤が可能であり、感染源が明確な特定の用途に合わせて調整して、それに的を絞ることができる配合物を与えることができる。
【0097】
製造した試料は次の通りであった:
ポリ(ジアリルジメチルアンモニウムクロリド)(PDAC)SpheriSomes:
PDAC(1.615g、10ミリモル)を水(50cm
3)中に溶解し、NaOH(0.4g、10ミリモル)を加えた。ブラシル酸(1.22g、5ミリモル)をこの溶液に加えて、一晩溶解させた。これは明澄な溶液であるように見えたが、顕微鏡下で観察すると約3μmの微粒子の懸濁液であり、PDACの新しい配合物であることが確認され、
図8に示す結果は、PDAC−ブラシル酸の微粒子の形成を示す。
【0098】
ジデシルジメチルアンモニウムクロリド(DDAC):
DDAC(9.04cm
3の40%w/w溶液、10ミリモル)を水で50cm
3に希釈し、NaOH(0.4g、10ミリモル)を加えた。ブラシル酸(1.22g、5ミリモル)をこの溶液に加え、一晩溶解させた。これは曇った溶液であるように見えたが、顕微鏡下で観察すると約3μmの微粒子の懸濁液であり、DDACの新しい配合物であることが確認された。
【0099】
ドデシルジプロピレントリアミン(DDPT):
DDPT(9.97cm
3の30%w/w溶液、10ミリモル)を水で50cm
3に希釈し、ブラシル酸(3.66g、15ミリモル)をこの溶液に加えて一晩溶解させた。これは明澄な溶液であるように見えたが、顕微鏡下で観察すると約3μmの微粒子の懸濁液であり、DDPTの新しい配合物であることが確認された。
【0100】
実施例16:抗菌性創傷包帯:
ビスカルボキシ脂肪酸微粒子を衝突させることによって形成される多孔質ポリマーの親水性は、吸収創傷包帯において有利である。ビスカルボキシ脂肪酸をポリ−ε−リシンと結合させ、架橋してかかる多孔質マトリクスを形成すると、創傷包帯の成分の生来の抗菌活性を保持して、必要な場合には増大させることができる。カチオン形態においては、脂肪酸よりも過剰のポリ−ε−リシンが存在している場合には、この材料は栄養分保存特性を保持して新規な抗菌創傷包帯を与えることが示された。この材料の多孔性は、微生物バイオフィルムを破壊することができるカチオン性と組み合わせて、3D足場材として向上した皮膚の修復を可能にする。
【0101】
混合種CDC反応器モデルを用いて、カチオン性創傷包帯の抗バイオフィルム能力を評価した。これらの実験においては実施例13の生成物を用いた。
下記に示すように2種類の混合種バイオフィルムを調製し、PBS及び制御アニオン性包帯に対して試験した。
【0102】
複数種バイオフィルム1:
黄色ブドウ球菌−NCTC8325;
緑膿菌−NCIMB10434;
アシネトバクター・バウマニ−ATCC19606;
表皮ブドウ球菌。
【0103】
複数種バイオフィルム2:
黄色ブドウ球菌−NCTC8325;
MRSA;
VREフェカリス−NCTC12201;
カンジダ・アルビカンス−ATCC−MYA−2876−SC5313;
大腸菌−NCTC−12923,6DOT202(03)の3頁。
【0104】
混合移植片1の製造:
滅菌綿棒を用いて、黄色ブドウ球菌、緑膿菌、アシネトバクター・バウマニ、及び表皮ブドウ球菌の24時間培養物を適当な寒天プレートから採取し、20cm
3のトリプトンソイブロス(TSB)中に懸濁した。この混合種懸濁液をTSB中に希釈して、107±5×10
6cfu・mL
−1の全濃度を与え、これをCDC反応器のための移植片として用いた。バイオフィルム成長を促進するために、CDC反応器を37℃において50rpmで振盪しながら72時間インキュベートした。
【0105】
混合移植片2の製造:
滅菌綿棒を用いて、黄色ブドウ球菌、メチシリン耐性黄色ブドウ球菌、バイコマイシン耐性腸球菌、カンジダ・アルビカンス、及び大腸菌の24時間培養物を適当な寒天プレートから採取し、20cm
3のTSB中に懸濁した。この混合種懸濁液をTSB中に希釈して、107±5×10
6cfu・mL
−1の全濃度を与え、これをCDC反応器のための移植片として用いた。バイオフィルム成長を促進するために、CDC反応器を37℃において50rpmで振盪しながら72時間インキュベートした。
【0106】
バイオフィルムの処理:
インキュベーションの後、CDC反応器から試験片を取り出し、プランクトン様の細胞を除去するために、滅菌リン酸塩緩衝生理食塩水(PBS)中で3回洗浄した。次に、片を創傷包帯材料の2つのディスクの間にサンドイッチすることによって、洗浄した片を処理した。試験前に、それぞれのディスクに400mm
3のPBS+1%TSBを加えることによって包帯を活性化した。対象片を1cm
3のPBS+1%TSB中に浸漬した。全ての試料を3回試験した。24時間の処理時間の後、片に付着した生存微生物を回収するために、片を1cm
3のPBS中に配置して15分間超音波処理した。段階希釈及び塗抹プレートを用いて、回収された微生物を定量した。
【0107】
混合移植片1:
対象包帯(A)で処理した後、細菌回収率は、
図9に示すようにPBSのみで処理した対照試料と同等であった。カチオン性包帯(B)で処理した片からは生存有機体は回収されなかった。これは、PBS処理対照試料と比べて10の5乗より大きな減少を示している。処理後に生存している有機体は、主として緑膿菌であった(
図10)。
【0108】
混合移植片2:
対象包帯(A)による処理によって、PBS処理対照試料と比べて回収された生存細菌の数において10の1.27乗の減少が得られた。カチオン性包帯(B)で処理した片からは生存有機体は回収されなかった。これは、PBS処理対照試料と比べて10の7乗より大きな減少を示している(
図11)。生存している有機体は混合種であった(
図12)。
本発明は以下の実施態様を含む。
[1]2以上の酸基を有する酸、及び有機塩基を含む自己組織化微粒子。
[2][1]に記載の微粒子であって、0.5〜10ミクロン、好ましくは1〜5ミクロンの粒径を有する微粒子。
[3][1]又は[2]に記載の微粒子であって、該酸中の酸基と該塩基中の塩基性基とのモル比が0.6〜1.4:1である微粒子。
[4][1]〜[3]のいずれかに記載の微粒子であって、酸基と塩基性基との該モル比が0.7〜1.3:1である微粒子。
[5][1]〜[4]のいずれかに記載の微粒子であって、2以上の酸基を有する酸、及び有機塩基を含む自己組織化微粒子を含む粒子状支持体として用いるのに好適な微粒子であり、該ビス酸を親水性溶媒中で該有機塩基と接触させることを含む方法であって、該酸が該親水性溶媒中に不溶又は難溶であり、該有機塩基が該親水性溶媒中に可溶である方法によって得ることができる微粒子。
[6][5]に記載の微粒子であって、該溶媒が水溶液を含む微粒子。
[7][5]に記載の微粒子であって、該溶媒が水相内の油中水エマルジョンを含む微粒子。
[8][1]〜[7]のいずれかに記載の微粒子であって、該酸がビス酸を含む微粒子。
[9][1]〜[8]のいずれかに記載の微粒子であって、該酸がビス脂肪酸を含む微粒子。
[10][1]〜[9]のいずれかに記載の微粒子であって、該酸が、その複数の末端カルボン酸が疎水性である領域によって連結されているところのビスカルボキシル脂肪酸を含む微粒子。
[11][1]〜[10]のいずれかに記載の微粒子であって、該酸基が、飽和若しくは不飽和脂肪族鎖;又は置換された飽和若しくは不飽和脂肪族鎖によって分離されている微粒子。
[12][1]〜[11]のいずれかに記載の微粒子であって、該酸が、一般式:HOOC−(CH2)n−COOH(式中、nはビス酸が水中に難溶又は不溶であるのに十分に大きい)の化合物を含む微粒子。
[13][12]に記載の微粒子であって、nが少なくとも5で40以下である微粒子。
[14][1]〜[13]のいずれかに記載の微粒子であって、該酸が、ブラシル酸、セバシン酸、及び/又はアゼライン酸を含む微粒子。
[15][1]〜[14]のいずれかに記載の微粒子であって、該有機塩基が、塩基特性を有するか又は他の窒素含有塩基を有する脂肪族アミン又は芳香族アミンを含む微粒子。
[16][1]〜[15]のいずれかに記載の微粒子であって、該有機塩基が、1以上のアルキル化アミン及びアルキル化ポリアミンを含む微粒子。
[17][1]〜[16]のいずれかに記載の微粒子であって、該有機塩基が、N−メチルモルホリン、N,N−ジメチルアミノエタノール、4−ジメチルアミノピリジン、イミダゾール、1−メチルイミダゾール、ポリ(ジアリルジメチルアンモニウムクロリド)(PDAC)、ジデシルジメチルアンモニウムクロリド(DDAC)、ドデシルジプロピレントリアミン(DDPT)、及びポリ−ε−リシンの1以上を含む微粒子。
[18][1]〜[17]のいずれかに記載の微粒子であって、該微粒子がマルチラメラ構造を含む微粒子。
[19][1]〜[18]のいずれかに記載の自己組織化微小球状体。
[20][1]〜[19]のいずれかに記載の微粒子であって、該ビス酸が該有機塩基と反応して架橋種を形成している微粒子。
[21][1]〜[20]のいずれかに記載の微粒子であって、該有機塩基が他の反応性塩基で置き換えられ、これが次に反応して架橋種を形成している微粒子。
[22][1]〜[21]のいずれかに記載の微粒子を接触させて、該微粒子間で架橋を形成して、それによって三次元体を形成しているマクロ孔質材料。
[23][1]〜[21]のいずれかに記載の自己組織化微粒子及び[22]に記載のマクロ孔質材料であって、該微粒子及び/又は該マクロ孔質材料に吸収されているか又は共有結合している機能性材料が、触媒、ペプチド合成のための開始剤種、オリゴヌクレオチド合成のための開始剤種、固相有機合成のための開始剤種、薬理活性物質、農薬活性物質、タンパク質、酵素、又は他の生体高分子から選択される微粒子及びマクロ孔質材料。
[24][1]〜[21]のいずれかに記載の自己組織化微粒子又は[22]に記載のマクロ孔質材料を含み、該支持体に結合しているか又はそれによって保持されている機能性材料を含む医療診断薬。
[25][24]に記載の医療診断薬であって、該機能性材料が該ポリマーによって担持されている酵素を含む医療診断薬。
[26]カラム内に収容されている[23]に記載のマクロ孔質材料を含むモノリス体。
[27]化学、生物学、又は物理プロセスにおける、[1]〜[21]のいずれかに記載の自己組織化微粒子又は[22]に記載のマクロ孔質材料の使用。
[28][27]に記載の自己組織化微粒子及び/又はマクロ孔質材料の使用であって、ペプチド、オリゴヌクレオチド、オリゴ糖から選択される種の固相合成;固相抽出;固相有機化学;固相試薬、金属及び他の触媒、バイオ触媒、酵素、タンパク質、ポリクローナル及びモノクローナル抗体を含む抗体、全細胞、及びポリマーから選択される種の固定化;細胞培養;クロマトグラフィー分離のための固定相の調製;から選択されるプロセスにおける使用、又は吸収剤としての使用。
[29]身体の内部又は外部のいずれかの創傷のケア又は治療における、[1]〜[21]のいずれかに記載の自己組織化微粒子又は[22]に記載のマクロ孔質材料の使用。
[30]細胞培養、再生医療、又は組織修復のための支持体又は三次元足場材としての、[1]〜[26]のいずれかに記載の自己組織化微粒子及び/又はマクロ孔質材料或いは[22]に記載のマクロ孔質材料の使用。
[31]2以上の酸基を有する二酸を、水性媒体、好ましくは水中で有機塩基と接触させることを含む、水性媒体中で[1]〜[21]のいずれかに記載の自己組織化微粒子又はマクロ孔質材料を製造する方法。
[32][1]〜[21]のいずれかに記載の自己組織化微粒子を含む抗菌組成物。