【実施例】
【0066】
実施例1〜18
[0073]18種の多孔性ポリマー吸着剤について、その細孔構造を特性評価し、実施例1〜18においてこれらの合成について説明する。細孔構造の特性評価は実施例19において示される。
【0067】
[0074]合成過程は、(1)水相を調製し、(2)有機相を調製し、(3)懸濁重合を行い、(4)得られた多孔性ポリマー吸着剤生成物を精製(処理)し、(5)血液適合性被膜を形成することからなる。
【0068】
[0075]以下の合成手順は、調製したすべての試料に適合するように一般化されている。合成過程はそれぞれのポリマー試料で異なる。一般化された手順に従い、個々の例の特定の運転条件については表6を参照のこと。
【0069】
[0076]反応器の設定。5Lまたは0.5Lのケトル反応器に頭上撹拌器、水冷却濃縮器、多層撹拌羽根、熱電対、及び泡立て器を取り付けた。0.5Lケトルの場合、ガスケットを上部の蓋と底部のケトルの間に取り付けた。5Lケトルの場合、バッフル板アセンブリと2つの平らなゴムガスケットを上部の蓋と底部のケトルの間に取り付けた。使用しない開口はすべて適切な栓で蓋をした。上記の熱電対に取り付けた温度制御器によって調整された加熱マントルにて、温度を制御した。
【0070】
[0077]重合。ポリビニルアルコール(Polyvinyl alcohol, PVA)を水の半量に室温(room temperature, RT)で分散して、70℃まで加熱した。残りの塩、すなわちMSP、DSP、TSP、及び亜硝酸ナトリウムを残りの半量の水に溶解させた。このPVA溶液と塩溶液を反応器に入れて、撹拌しながら所望の反応温度まで加熱した。開始剤を含む予め混合しておいた有機相を反応器の水相の上に注ぎ、適切な大きさの液滴が形成されるように撹拌速度を分間当たりの回転数(「rpm」)で設定した。温度が設定温度に達したら、反応タイマーを16時間に設定して、運転を開始し、反応を進めた。
【0071】
[0078]処理。溶媒の高さのところに印を付けた。冷却後、ビーズの高さ位置まで溶媒をサイフォンで吸い上げた。次いで、50℃〜70℃の水を用いて30分あたり1総容積(bed volume)の速度でビーズを5回洗浄した。ポリマーが修飾されている場合は、処理における以下の工程は省略した(表6を参照)。次いで室温のメタノールを用いて10分あたり1総容積の速度でビーズを3回洗浄した。ポリマーをソックスレー抽出器で一晩かけて抽出した。このポリマーを8時間水蒸気蒸留して脱溶媒した。水蒸気蒸留が完了した後、このポリマーをイソプロピルアルコールで再度湿らせて、精製水とともに篩にかけて、所望の粒径にした。得られたポリマーを100℃のオーブンで乾燥させた。
【0072】
[0079]修飾の設定。ケトル反応器に、頭上撹拌器、多層撹拌羽根、及び熱電対を取り付けた。使用しない開口はすべて適切な栓で蓋をした。1個のホースアダプタを開けて排出口とした。ガスケットを上部の蓋と底部のケトルの間に取り付けた。上記熱電対に取り付けた温度制御器によって調整された加熱マントルで温度を制御した。
【0073】
[0080]修飾反応。イソプロピルアルコールを用いて1時間につき約1総容積でポリマーを10回洗浄し、その後、精製水を用いて1時間につき約1総容積で10回洗浄した。このポリマーを篩にかけて所望の粒径とし、設定した反応器に入れた。反応床の高さの丁度上にくるまでサイフォンで過剰量の水を吸い上げて、荷電水を加えた。温度制御器を40℃に設定して、運転を開始した。頭上撹拌器も運転を開始した。系を40℃の設定温度まで加熱しながら、各試薬を添加した。温度が30℃〜34℃の間にあるとき、過硫酸アンモニウム(ammonium persulfate, AMPS)水溶液を添加した。NNNN−テトラメチルエ
チレンジアミン(tetramethylethylenediamine, TMED)と水を35℃〜36℃の間で添加した。ビニルピロリジノン(vinylpyrrolidinone, VP)と水を39℃〜40℃の間で添加した。温度が40℃に達した時点で、反応タイマーを2時間に設定しスタートさせ、反応を進めた。冷却後、溶媒をビーズの高さまでサイフォンで吸い出した。室温の水を用いて30分につき1総容積の速度でビーズを3回洗浄した。ビーズを6時間水蒸気蒸留して脱溶媒した。ビーズをイソプロピルアルコールで再度湿らせて、精製H
2Oで10回洗浄した。得られたポリマーを100℃のオーブンで乾燥させた。
【0074】
[0081]この過程により、清潔で乾燥した吸着剤を球状の多孔性ポリマービーズとして得た。
【0075】
【表7】
【0076】
【表8】
【0077】
【表9】
【0078】
【表10】
【0079】
実施例19:細孔構造の特性評価
[0083]吸着剤ポリマーの細孔構造をマイクロメリティクス・オートポアIV9500 VI.09、水銀侵入計測計、またはマイクロメリティクスASAP2010装置(N
2脱着)のいずれかで分析した。結果を
図1に示す。
図1では、細孔体積を孔径の関数とし
てプロットしている。
図1は対数微分による実施例1〜18の細孔構造を示している。
【0080】
実施例20:細孔構造の特性評価
[0084]各収着剤ポリマーについて、細孔体積を細孔の大きさの範囲ごとに分けて、その細孔体積の値を表7及び表8に示している。第1の範囲では、最大細孔体積は、タンパク質の収着に利用でき、かつ直径が100Å超の細孔の体積からなる。有効細孔体積は、約50,000ダルトン未満のタンパク質に選択的に利用可能であり、かつ直径が100〜1000Åの範囲内の細孔からなる。大型細孔体積は、約50,000ダルトン超のタンパク質に利用可能であり、かつ直径が1000Å超の細孔の体積からなる。小型細孔体積は、直径が100Å未満の細孔の体積であり、約10,000ダルトン超のタンパク質には利用できない細孔体積である。
【0081】
[0085]第2の範囲では、最大細孔体積は、タンパク質の収着に利用可能であり、かつ直径が1,000Å超の細孔の体積からなる。有効細孔体積は、約300,000ダルトン未満のタンパク質に選択的に利用可能であり、かつ直径が1000〜10000Åの範囲内の細孔からなる。大型細孔体積は、300,000ダルトン超のタンパク質に利用可能であり、かつ直径が1000Å超の孔の細孔体積からなる。小型細孔体積は、直径が1,000Å未満の細孔の体積であり、約10,000ダルトン超のタンパク質には利用できない。
【0082】
[0086]第3の範囲では、最大細孔体積はタンパク質の収着に利用可能であり、かつ直径が500Å超の孔の細孔体積からなる。有効細孔体積は、1,000,000ダルトン未満のタンパク質に選択的に利用可能であり、かつ直径が10,000〜40,000Åの範囲内の細孔からなる。大型細孔体積は、1,000,000ダルトン超のタンパク質に利用可能であり、直径が40,000Å超の細孔の体積からなる。小型細孔体積は、直径が10,000Å未満の細孔の体積であって、約40,000ダルトン超のタンパク質には利用できない。
【0083】
[0087]表7は、実施例1〜18の細孔体積及び細孔体積の比を示している。
【0084】
【表11】
【0085】
[0089]表8は、実施例1〜18の細孔体積の比を示している。
【0086】
【表12】
【0087】
実施例21:in vitro C.ディフィシル毒素A(rTcdA)
[0091]本研究の主目的は、クロストリジウム・ディフィシルに結合するポリマービーズ(多孔質ビーズID:TDG−057−118、RJR−090−136、RJR−090−091、RJR−090−137、RJR−090−023、及びRJR−090−178、及び非多孔質ビーズID:RT−075−1−14)の能力を評価することである。細孔のあるものとないもの、8種類のビーズを用いた。rTcdAは濃度100μg/mlで評価した。ビーズなし、及び非多孔質ビーズと多孔質ビーズをそれぞれ20μLずつを、2mLのねじ蓋付き試験管内で、最終作業体積を0.3mlの100(理想的には64.65)μg/mlのrTcdAのリン酸緩衝剤生理食塩水溶液とともに、恒温放置した。毒素を添加した直後、ビーズなし、非多孔質ビーズ、または多孔質ビーズを含む各群のそれぞれの試験管を0.583時間静置した。これらの試験管から試料を225μl採取した。これらを0.583時間試料として示す。1.5時間試料及び2.5時間試料を採取した後、試験管を試験管回転台に設置した。これらの試験管から試料を225μl取り出した。すべての試料を使用するまでの間−20℃で保存した。その後、すべての試料を回収し、各試料に残ったタンパク質の濃度をビシンコニン酸(bicinchoninic acid, BCA)タンパク質試験(サーモフィッシャー・サイエンティフィック社、カタログNo
.23225)を用いて評価した。結果を以下に示す。ビーズTDG−057−118及
びRJR−090−136が最もよく毒素を取り除くことが分かった。
【0088】
[0092]表9は実施例21に用いたポリマーの重量を示している。
【0089】
【表13】
【0090】
[0094]C.ディフィシル毒素Aの吸着の結果を表10に示す。
【0091】
【表14】
【0092】
[0096]
図2は、C.ディフィシル毒素A除去の経時変化を示す。
実施例22:in vitro C.ディフィシル毒素B(rTcdB)
[0097]この研究の主目的は、毒素濃度が25μg/mL及び100μg/mLであるクロストリジウム・ディフィシルrTcdB毒素を in vitro で結合して取り除くポリマービーズ(多孔質ビーズID:RJR−090−016、及び非多孔質ビーズID:RJR−090−014)の能力を、ビーズを用いない対照と比較して評価することである。すなわち、ビーズなし、または所定の体積(それぞれ46μL)の非多孔性(乾燥ビーズ重量でほぼ37.0μg)または多孔質ビーズ(乾燥ビーズ重量でほぼ12.1μg)のいずれかを、2mLねじ蓋付き微量遠心管内で、最終作業体積0.3mlの25μg/mlまたは100μg/mlのrTcdBのリン酸緩衝剤生理食塩水溶液と共に恒温放置した。実験は、(ビーズの外側)間隙容量定数を0.3mLに保って行った。多孔質ビーズの重量は、非多孔質ビーズに比べて高い孔隙率の度合いを反映している。毒素を加えた直後
、ビーズなし、非多孔質ビーズ、または多孔質ビーズを含む各群のそれぞれの試験管を45分間撹拌することなく放置して、重力によりビーズを静置した。これらの管から試料を225μl採取して、−20℃で保存した。これらを0.75時間試料と表示する。さらにそれぞれ1.75時間及び2.75時間と表示された試料の入った管を試験管回転台に置き連続的に混合した。実験開始から1.0時間後及び2.0時間後に、管を回転台から取り外して、45分間ラックに置きビーズを静置した。これらの管から試料を225μl取り出した。使用するまですべての試料を−20℃で保存した。その後、すべての試料を回収し、各試料に残ったタンパク質の濃度をビシンコニン酸(bicinchoninic acid, BCA
)タンパク質試験(サーモフィッシャー・サイエンティフィック社、カタログNo.23225)を用いて評価した。表11に示す結果は、分割したそれぞれの試料中のrTcdB毒素の経時濃度を表している。非多孔質ビーズはこの毒素にある程度結合することを示しているが、特に高濃度での多孔質ビーズの寄与がはっきりと示されている。高濃度では非多孔質ビーズは飽和しているが多孔質ビーズでは飽和は観察されない。
【0093】
[0098]C.ディフィシル毒素Bの吸着の結果を表11に示す。
【0094】
【表15】
【0095】
実施例23:in vitro C.ディフィシル毒素B(TcdB)
[0100]本発明の主目的は、クロストリジウム・ディフィシルrTcdBと結合するCytosorbentsのビーズ(多孔質ビーズID:TDG−057−118、RJR−090−136、RJR−090−091、RJR−090−137、RJR−090−023、及びRJR−090−087、及び非多孔質ビーズID:RT−075−1−14)の能力を評価することである。細孔があるものとないもの、7種のビーズとビーズを用いない対照を使用した。rTcdBは100μg/mlの濃度で評価した。ビーズなし、及び20μL(試料の乾燥重量、以下の表11を参照)の非多孔質ビーズ及び多孔質ビーズのそれぞれを、2mLのねじ蓋付き試験管内で、最終作業体積0.3mlの100(理想的には99.76)μg/mlのrTcdBのリン酸緩衝剤生理食塩水溶液とともに恒温放置した。
【0096】
[0101]実施例19で用いたポリマーの重量を表12に示す。
【0097】
【表16】
【0098】
[0103]毒素を添加した直後、ビーズなし、非多孔質ビーズ、または多孔質ビーズを含む各群のそれぞれの試験管を0.583時間置いてビーズを静置した。これらの試験管から試料を225μl採取した。これらを0.583時間試料として表示する。1.5時間試料及び2.5時間試料を採取した後、試験管を試験管回転台に設置した。これらの試験管から試料を225μl取り出した。すべての試料を使用するまでの間−20℃で保存した。その後、すべての試料を回収し、各試料に残ったタンパク質の濃度をビシンコニン酸(bicinchoninic acid, BCA)タンパク質試験(サーモフィッシャー・サイエンティフィッ
ク社、カタログNo.23225)を用いて評価した。結果を以下に示す。ビーズRJR−090−136が最もよく、次いでTDG−057−118及び/またはRJR−090−137がよく毒素を取り除くことが分かった。
【0099】
[0104]C.ディフィシル毒素Bの吸着結果を表13に示す。
【0100】
【表17】
【0101】
[0106]
図3は、C.ディフィシル毒素B除去の経時変化を示している。
実施例24:in vitro ボツリヌス神経毒素A1型(BoNT/A1)の研究
[0107]本研究の主目的は、ポリマービーズ(多孔質ビーズID:TDG−057−118、及び非多孔質ビーズID:RT−075−14−1)の能力を評価することである。多孔質ビーズ、非多孔質ビーズの2種類を使用した。BoNT/A1は、リン酸緩衝剤生理食塩水中10μg/ml、50μg/ml、及び100μg/mlの濃度で評価した。ビーズなし、または所定の体積40μLの非多孔質ビーズ(乾燥ビーズ重量でほぼ32.1μg)または多孔質ビーズ(乾燥ビーズ重量でほぼ5.5μg)を、2mLのねじ蓋付き微量遠心管内で、最終作業体積0.3mlの10μg/ml、50μg/ml、または100μg/mlのBoNT/A1と共に恒温放置した。実験は、(ビーズの外側)間隙容量定数を0.3mLに保って行った。多孔質ビーズの重量は、非多孔質ビーズに比べて高い孔隙率の度合いを反映している。BoNT/A1を加えた直後、ビーズなし、非多孔質ビーズ、または多孔質ビーズを含む各群のそれぞれの試験管から試料を225μl採取して、−20℃で保存した。これらを0時間試料として表示する。さらにそれぞれ1時間試料及び2時間試料に対応する試験管を試験管回転台に置き、連続して混合した。室温で1時間または2時間恒温放置した後、各試験管から試料を225μl取り出した。すべての試料を使用するまでの間−20℃で保存した。その後、すべての試料を回収し、各試料に残ったタンパク質の濃度をビシンコニン酸(bicinchoninic acid, BCA)タンパク質試
験(サーモフィッシャー・サイエンティフィック社、カタログNo.23225)を用いて評価した。表14に示す結果から、ビーズを用いない対照や非多孔質ビーズに比べ、濃度が100μg/mLまでは多孔質ビーズがBoNT/A1毒素の95%超を取り除くことが分かった。
【0102】
[0108]ボツリヌス神経毒素A1型の吸着結果を表14に示す。
【0103】
【表18】
【0104】
実施例25:体外志賀様毒素1の研究
[0110]本研究の主目的は、志賀様毒素1に結合するCytoSorbentsポリマービーズ(多孔質ビーズID:TDG−071−167、大孔ビーズID:RJR−090−013及び非多孔質ビーズID:RT−075−14−1)の能力を評価することである。細孔のあるものとないもの、3種のビーズを使用した。志賀様毒素1は、リン酸緩衝剤生理食塩水中50μg/ml及び100μg/mlの濃度で評価した。ビーズなし、及び42μLの多孔質ビーズ(乾燥ビーズ重量でほぼ12.5μg)、42μLの大孔ビーズ(乾燥ビーズ重量でほぼ9.5μg)、及び42μLの非多孔質ビーズ(乾燥ビーズ重量でほぼ33.8μg)を、2mLのねじ蓋付き微量遠心管内で、最終作業体積0.3mlの50μg/mlまたは100μg/mlの志賀様毒素1と共に恒温放置した。
【0105】
[0111]志賀様毒素1を加えた直後、ビーズなし、非多孔質ビーズ、または多孔質ビーズを含む各群のそれぞれの試験管から試料を225μl採取して、−20℃で保存した。これらを0.25時間試料として表示する。さらにそれぞれ1.25時間試料及び2.25時間試料に対応する試験管を試験管回転台に置き、連続して混合した。室温で1.25時間または2.25時間常温放置した後、各試験管から試料を225μl取り出した。すべての試料を使用するまでの間−20℃で保存した。その後、すべての試料を回収し、各試料に残ったタンパク質の濃度をビシンコニン酸(bicinchoninic acid, BCA)タンパク質
試験(サーモフィッシャー・サイエンティフィック社、カタログNo.23225)を用いて評価した。非多孔質ビーズに比べて、標準孔及び大孔の多孔質ビーズがより良好な除去動態を有することが分かった。
【0106】
[0112]志賀様毒素1の吸着結果を表15に示す。
【0107】
【表19】
【0108】
実施例26:in vitro 志賀様毒素2の研究
本研究の主目的は、志賀様毒素2に結合するCytoSorbentsポリマービーズ(多孔質ビーズID:TDG−071−167、大孔ビーズID:RJR−090−013、及び非多孔質ビーズID:RT−075−14−1)の能力を評価することである。細孔のあるものとないもの、3種のビーズを使用した。志賀様毒素2は、リン酸緩衝剤生理食塩水中50μg/ml及び100μg/mlの濃度で評価した。ビーズなし、及び42μLの多孔質ビーズ(乾燥ビーズ重量でほぼ12.5μg)、42μLの大孔ビーズ(乾燥ビーズ重量でほぼ9.5μg)、及び42μLの非多孔質ビーズ(乾燥ビーズ重量でほぼ33.8μg)を、2mLのねじ蓋付き微量遠心管内で、最終作業体積0.3mlの50μg/mlまたは100μg/mlの志賀様毒素2と共に恒温放置した。志賀様毒素2を加えた直後、ビーズなし、非多孔質ビーズ、または多孔質ビーズを含む各群のそれぞれの試験管から試料を225μl採取して、−20℃で保存した。これらを0.25時間試料として表示する。さらにそれぞれ1.25時間試料及び2.25時間試料に対応する試験管を試験管回転台に置き、連続して混合した。室温で1.25時間または2.25時間恒温放置した後、各試験管から試料を225μl取り出した。すべての試料を使用するまでの間−20℃で保存した。その後、すべての試料を回収し、各試料に残ったタンパク質の濃度をビシンコニン酸(bicinchoninic acid, BCA)タンパク質試験を用いて評価し
た。非多孔質ビーズに比べて、標準孔及び大孔の多孔質ビーズがより良好な除去動態を有することが分かった。
【0109】
[0114]志賀様毒素2の吸着結果を表16に示す。
【0110】
【表20】
【0111】
実施例27:in vitro リシン毒素の研究
[0116]本研究の主目的は、リシン毒素に結合するCytoSorbentsポリマービーズ(小孔ビーズID:TDG−057−145、修飾、バッチ1、−106/+45、大孔ビーズID:RJR−090−016、及び非多孔質ビーズID:RJR−090−014)の能力を評価することである。細孔のあるものとないもの、3種のビーズを使用した。リシン毒素は、リン酸緩衝剤生理食塩水中100μg/ml及び1000μg/mlの濃度で評価した。ビーズなし、及び43μLの多孔質ビーズ(乾燥ビーズ重量でほぼ14.6μg)、43μLの大孔ビーズ(乾燥ビーズ重量でほぼ11.3μg)、及び44μLの非多孔質ビーズ(乾燥ビーズ重量でほぼ35.4μg)を、2mLのねじ蓋付き微量遠心管内で、最終作業体積0.3mlの100μg/mlまたは1000μg/mlのリシン毒素と共に恒温放置した。リシン毒素を加えた直後、ビーズなし、非多孔質ビーズ、または多孔質ビーズを含む各群のそれぞれの試験管から試料を225μl採取して、−20℃で保存した。これらを0.75時間試料として表示する。さらにそれぞれ1.75時間試料及び2.75時間試料に対応する試験管を試験管回転台に置き、連続して混合した。室温で1.75時間または2.75時間で恒温放置した後、各試験管から試料を225μl取り出した。すべての試料を使用するまでの間−20℃で保存した。その後、すべての試料を回収し、各試料に残ったタンパク質の濃度をビシンコニン酸(bicinchoninic acid, BCA)タンパク質試験(サーモフィッシャー・サイエンティフィック社、カタロ
グNo.23225)を用いて評価した。大孔ビーズに比べて小孔ビーズはより良好な初期の除去動態を有することが分かった。ビーズを用いない対照は毒素をまったく取り除かなかった。また非多孔質ビーズの毒素除去率は9%以下であった。
【0112】
[0117]リシン毒素の吸着結果を表17に示す。
【0113】
【表21】
【0114】
実施例28:in vitro コレラ毒素の研究
[0119]本研究の主目的は、コレラ毒素に結合するCytoSorbents(登録商標)ポリマービーズ(小孔ビーズID:TDG−057−145、修飾、バッチ1、−106/+45、大孔ビーズID:RJR−090−016、及び非多孔質ビーズID:RJR−090−014)の能力を評価することである。細孔のあるものとないもの、3種のビーズを使用した。コレラ毒素は、リン酸緩衝剤生理食塩水中50μg/ml及び100μg/mlの濃度で評価した。ビーズなし、及び43μLの標準多孔質ビーズ(乾燥ビーズ重量でほぼ14.6μg)、43μLの大孔ビーズ(乾燥ビーズ重量でほぼ11.3μg)、及び44μLの非多孔質ビーズ(乾燥ビーズ重量でほぼ35.4μg)を、2mLのねじ蓋付き微量遠心管内で、最終作業体積0.3mlの50μg/mlまたは100μg/mlのコレラ毒素とともに恒温放置した。コレラ毒素を加えた直後、ビーズなし、非多孔質ビーズ、または多孔質ビーズを含む各群のそれぞれの試験管から試料を225μl採取して、−20℃で保存した。これらを0.75時間試料として表示する。さらにそれぞれ1.75時間試料及び2.75時間試料に対応する試験管を試験管回転台に置き、連続して混合した。室温で1.75時間または2.75時間恒温放置した後、各試験管から試料を225μl取り出した。すべての試料を使用するまでの間−20℃で保存した。その後、すべての試料を回収し、各試料に残ったタンパク質の濃度をビシンコニン酸(bicinchoninic acid, BCA)タンパク質試験(サーモフィッシャー・サイエンティフィック社
、カタログNo.23225)を用いて評価した。大孔ビーズに比べて小孔ビーズはより良好な除去動態を有することが分かった。ビーズを用いない対照は毒素をまったく取り除かなかった。また非多孔質ビーズの毒素除去率は25%未満であった。
【0115】
[0120]コレラ毒素の吸着結果を表18に示す。
【0116】
【表22】
【0117】
実施例29:in vitro クロストリジウム・パーフリンジェンス腸毒素の研究
[0122]本研究の主目的は、クロストリジウム・パーフリンジェンス腸毒素に結合するCytoSorbentsポリマービーズ(多孔質ビーズID:TDG−071−167、大孔ビーズID:TDG−057−118、及び非多孔質ビーズID:RT−075−14−1)の能力を評価することである。細孔のあるものとないもの、3種のビーズを使用した。クロストリジウム・パーフリンジェンス腸毒素は、リン酸緩衝剤生理食塩水中50及び100(理想的には11.46及び31.42)μg/mlの濃度で評価した。ビーズなし、及び40μLの多孔質ビーズ(乾燥ビーズ重量でほぼ11.9μg)、40μLの大孔ビーズ(乾燥ビーズ重量でほぼ9.0μg)、及び40μLの非多孔質ビーズ(乾燥ビーズ重量でほぼ32.1μg)を、2mLのねじ蓋付き微量遠心管内で、最終作業体積0.3mlの50または100(理想的には11.46及び31.42)μg/mlのクロストリジウム・パーフリンジェンス腸毒素とともに恒温放置した。クロストリジウム・パーフリンジェンス腸毒素を加えた直後、ビーズなし、非多孔質ビーズ、または多孔質ビーズを含む各群のそれぞれの試験管から試料を225μl採取して、−20℃で保存した。これらを0.5時間試料として表示する。さらにそれぞれ1.5時間試料及び2.5時間試料に対応する試験管を試験管回転台に置き、連続して混合した。室温で1.5時間または2.5時間恒温放置した後、各試験管から試料を225μl取り出した。すべての試料を使用するまでの間−20℃で保存した。その後、すべての試料を回収し、各試料に残ったタンパク質の濃度をビシンコニン酸(bicinchoninic acid, BCA)タンパク質試験
(サーモフィッシャー・サイエンティフィック社、カタログNo.23225)を用いて評価した。標準多孔質ビーズ及び非多孔質ビーズに比べて、大孔ビーズは31.42mg/mLの毒素のより良好な除去動態を有することが分かった。ビーズを用いない対照または非多孔質ビーズは毒素をまったく取り除かなかった。
【0118】
[0123]クロストリジウム・パーフリンジェンス腸毒素の吸着結果を表19に示す。
【0119】
【表23】
【0120】
実施例30:in vitro ブドウ球菌腸毒素Bの研究
[0125]本研究の主目的は、ブドウ球菌腸毒素Bに結合するCytoSorbentsポリマービーズ(小孔ビーズID:TDG−057−145、及び非多孔質ビーズID:RJR−090−014)の能力を評価することである。細孔のあるものとないもの、2種類のビーズを使用した。ブドウ球菌腸毒素Bは、リン酸緩衝剤生理食塩水中50及び100(理想的には43.02及び97.85)μg/mlの濃度で評価した。ビーズなし、及び43μLの多孔性ビーズ(乾燥重量でほぼ14.6μg)、及び44μLの非多孔質ビーズ(乾燥重量でほぼ35.4μg)を、2mLのねじ蓋付き微量遠心管内で、最終作業体積0.3mlの50または100(理想的には43.02及び97.85)μg/mlのブドウ球菌腸毒素と共に恒温放置した。ブドウ球菌腸を加えた直後、ビーズなし、非多孔質ビーズ、または多孔質ビーズを含む各群のそれぞれの試験管から試料を225μL採取して、−20℃で保存した。これらを0.75時間試料として表示する。さらにそれぞれ1.75時間試料及び2.75時間試料に対応する試験管を試験管回転台に置き、連続して混合した。室温で1.75時間または2.75時間恒温放置した後、各試験管から試料225μLを取り出した。すべての試料を使用するまでの間−20℃で保存した。その後、すべての試料を回収し、各試料に残ったタンパク質の濃度をBCA(ビシンコニン酸)タンパク質試験にて評価した。非多孔質ビーズに比べて、小孔ビーズはより良好な除去動態(0.75時間までは98%以上)を有することが分かった。ビーズを用いない対照または非多孔質ビーズは毒素を効率的に取り除かなかった。
【0121】
[0126]ブドウ球菌腸毒素Bの吸着結果を表20に示す。
【0122】
【表24】
【0123】
実施例31:in vitro 黄色ブドウ球菌α−溶血素
[0128]本研究の主目的は、黄色ブドウ球菌α−溶血素に結合する異なる2種類のCytoSorbents多孔性ビーズ(小孔ビーズ:RJR−100−144、大孔ビーズ:RJR−100−168)、及び非多孔質ビーズ(RJR−090−158)の能力を評価することである。黄色ブドウ球菌α−溶血素は、リン酸緩衝剤生理食塩水中50μg/ml及び100μg/mlの濃度で評価した。ビーズなし、及び40μLの多孔質ビーズ(乾燥ビーズ重量でほぼ11.9μg)、40μLの大孔ビーズ(乾燥ビーズ重量でほぼ9.0μg)、及び40μLの非多孔質ビーズ(乾燥ビーズ重量でほぼ32.1μg)を、1.5のmLねじ蓋付き試験管内で、最終作業体積0.3mlの50μg/mlまたは100μg/mlの毒素と共に恒温放置した。黄色ブドウ球菌α−溶血素腸毒素を加えた直後、ビーズなし、非多孔質ビーズ、または多孔質ビーズを含む各群のそれぞれの試験管から試料を225μl採取して、ただちに−20℃で保存した。さらにそれぞれ0.5時間試料、1.5時間試料、及び2.5時間試料に対応する試験管を試験管回転台に置き、連続して混合した。室温で0.5時間、1.5時間、または2.5時間恒温放置した後、各試験管から試料を225μl取り出した。すべての試料を使用するまでの間−20℃で保存した。その後、すべての試料を回収し、各試料に残ったタンパク質の濃度をビシンコニン酸(bicinchoninic acid, BCA)タンパク質試験(サーモフィッシャー・サイエンテ
ィフィック社、カタログNo.23225)を用いて評価した。BCA試験において、ビーズを用いない対照及び非多孔質ビーズに比べて、多孔性ポリマーのどちらもより良好な除去動態を示すことが分かった。
【0124】
[0129]BCAタンパク質試験及びNanoDrop測定器による黄色ブドウ球菌α−溶血素の吸着結果を以下の表21に示す。
【0125】
【表25】
【0126】
実施例32:in vitro 大腸菌STa毒素
[0131]本研究の主目的は、大腸菌STa毒素に結合する各種CytoSorbents多孔性ビーズ(ビーズ#1:SFA−102−106、ビーズ#2:CytoSorb Lot 08311、ビーズ#3:TDG−057−118)及び非多孔質ビーズ(RT−075−14−1)の能力を評価することである。大腸菌STa毒素は、リン酸緩衝剤生理食塩水中50μg/mL及び100μg/mLの濃度で評価した。ビーズなし、40μLのSFA−102−106(乾燥ビーズ重量でほぼ9.0μg)、40μLのCytoSorb Lot 083111(乾燥ビーズ重量でほぼ11.9μg)、40μLのTDG−057−118(乾燥ビーズ重量でほぼ9.0μg)、及び40μLの非多孔質ビーズ(乾燥ビーズ重量でほぼ32.1μg)を、1.5mLのねじ蓋付き試験管内で、最終作業体積0.3mlの50μg/mlまたは100μg/mlの大腸菌STa毒素と共に恒温放置した。大腸菌STa毒素を加えた直後、ビーズなし、非多孔質ビーズ、または多孔質ビーズを含む各群のそれぞれの試験管から試料を225μl採取して、ただちに−20℃で保存した。さらにそれぞれ0.5時間試料、1.5時間試料、及び2.5時間
試料に対応する試験管を試験管回転台に置き、連続して混合した。室温で0.5時間、1.5時間、または2.5時間恒温放置した後、各試験管から試料を225μl取り出した。すべての試料を使用するまでの間−20℃で保存した。その後、すべての試料を回収し、各試料に残ったタンパク質の濃度をビシンコニン酸(bicinchoninic acid, BCA)タン
パク質試験(サーモフィッシャー・サイエンティフィック社、カタログNo.23225)を用いて評価した。BCA試験において、ビーズを用いない対照及び非多孔質ビーズに比べて、これら3種類の多孔性ポリマーはすべて、より良好な除去動態を示すことが分かった。
【0127】
[0132]大腸菌STa毒素の吸着結果を表22に示す。
【0128】
【表26】
【0129】
1.生体物質における1種以上の毒素による汚染を低減する方法であって、
a.該生体物質を、該毒素を収着することができる有効量の収着剤であって、50Å〜40,000Åの複数の細孔を含み0.5cc/g〜5.0cc/gの細孔体積と0.05mm〜2cmの大きさを有する収着剤と接触させること;及び
b.該毒素を収着すること
を含む方法。
2.1種以上の毒素による汚染を処置する方法であって、それを必要としている対象において、
a.該対象の生体物質を、該毒素を収着することができる有効量の収着剤であって、50Å〜40,000Åの複数の細孔を含み0.5cc/g〜5.0cc/gの細孔体積と0.05mm〜2cmの大きさを有する収着剤と接触させること;及び
b.該毒素を収着すること
を含む方法。
3.1または2に記載の方法であって、該収着剤が生体適合性である方法。
4.1または2に記載の方法であって、該収着剤が非生体適合性である方法。
5.1〜4のいずれか1に記載の方法であって、該収着剤がポリマーである方法。
6.5に記載の方法であって、該ポリマーが大孔性ポリマー収着剤である方法。
7.上記のいずれか1に記載の方法であって、該収着が in vivo で起こる方法。
8.1〜6のいずれか1に記載の方法であって、該収着が ex vivo で起こる方法。
9.上記のいずれか1に記載の方法であって、該毒素が予め形成されている方法。
10.1〜8のいずれか1に記載の方法であって、該毒素が in vivo で、または該生体物質の存在下で形成される方法。
11.上記のいずれか1に記載の方法であって、該毒素が生物学的供給源に由来する方法。
12.11に記載の方法であって、該生物学的供給源が1種以上の細菌、ウイルス、真菌、植物、または動物を含む方法。
13.12に記載の方法であって、該細菌の種が、黄色ブドウ球菌、溶血性ブドウ球菌、クロストリジウム・パーフリンジェンス、破傷風菌、ボツリヌス菌、腸管出血性大腸菌、腸管毒素原性大腸菌、腸管毒素原性LT大腸菌、病原性大腸菌、腸管侵入性大腸菌、腸管凝集性大腸菌、拡散付着性大腸菌、赤痢菌、フレキシネル赤痢菌、ボイド赤痢菌、ソンネ赤痢菌、コレラ菌、腸炎ビブリオ、ビブリオ・バルニフィカス、セレウス菌、炭疽菌、チフス菌、パラチフス菌、サルモネラ・ダブリン、サルモネラ・エンテリティディス、リステリア・モノサイトゲネス、腸炎エルシニア、仮性結核菌、ストレプトコッカス・ディフィシリス、糞便レンサ球菌、化膿レンサ球菌、マルタ熱菌、ウシ流産菌、ブタ流産菌、カンピロバクター・ジェジュニ、プレジオモナス・シゲロイデス、アエロモナス・ハイドロフィラ、アエロモナス・キャビエ、アエロモナス・ソブリア、トロフェリマ・ホウィッペリ、またはマイコプラズマを含む方法。
14.13に記載の方法であって、該大腸菌が大腸菌の病原体株である方法。
15.14に記載の方法であって、該大腸菌の病原体株が大腸菌OE157:H7または大腸菌O104:H4である方法。
16.12に記載の方法であって、該ウイルスの種がロタウイルスを含む方法。
17.12に記載の方法であって、該真菌の種が、カンジダ・アルビカンス(Candida albicans)、カンジダ性食道炎(C. esophagitis)、シャグマアミガサタケ(Gyromitra esculenta)、アマニタ・テヌイフォリア(Amanita tenuifolia)、アマニタ・ビスポリゲラ(A. bisporigera)、アマニタ・ビローサ(A. virosa)、ガレリナ・オータムナリス(Galerina autumnalis)、レウコアガリクス・ブルネア(Leucoagaricus brunnea)、レピオタ・ヨセランデイ(Lepiota josserandii)、レピオタ・ヘルベオラ(L. helveola)、レピオタ・スビンカルナータ(L. subincarnata)、オオシロカラカサタケ(Chlorophyllum molybdites)、エントローマ・リビダム(Entoloma lividum)、トリコローマ・パルジナム(Tricholoma pardinum)、オムファロス・オレアリウス(Omphalotus olearius)、パキシラス・インボルタス(Paxillus involutus)、アマニタ・ファロイデス(Amanita phalloides)、アマニタ・ブルネセンス(A. brunnescens)、アスペルギルス・フラバス(Aspergillus flavus)、またはアスペルギルス・パラジチカス(A. parasiticus)を含む方法。
18.12に記載の方法であって、該植物の種が、トウゴマ、マメ、ウシノケグサ、小麦、インゲン豆、または穀類を含む方法。
19.12に記載の方法であって、該動物の種が、ハタ、フエダイ、ブリ、カマス、フグ、マグロ、カツオ、カジキ、サバ、ムール貝、ホタテ貝、エビ、カキ、ヒト、またはニワトリを含む方法。
20.1〜8または11のいずれか1に記載の方法であって、該毒素が、大腸菌腸管毒素原性STa、腸管毒素原性STb、ブドウ球菌毒素B、α毒素、または毒素性ショック症候群毒素−1、クロストリジウム・パーフリンジェンス腸毒素またはα毒素、大腸菌志賀様毒素STX−1、志賀様毒素STX−2、ベロ毒素、志賀様志賀毒素、コレラ毒素、腸管毒素原性LT、破傷風毒素、ボツリヌス毒素、クロストリジウム・ディフィシル毒素B、C.ディフィシル毒素A、シアノ毒素、シュードモナス菌外毒素A、及び百日咳毒素である方法。
21.11〜20のいずれか1に記載の方法であって、該毒素が人工毒素である方法。
22.11〜21のいずれか1に記載の方法であって、該毒素または毒素群がさらに修飾されて毒性を強めている方法。
23.1〜8のいずれか1に記載の方法であって、該毒素が内毒素である方法。
24.1〜8のいずれか1に記載の方法であって、該毒素が細菌細胞壁の一部である方法。
25.1〜8のいずれか1に記載の方法であって、該毒素がロタウイルスNSP4毒素である方法。
26.1〜8のいずれか1に記載の方法であって、該毒素が、付着因子、アフラトキシン、またはアマトキシンである方法。
27.1〜8のいずれか1に記載の方法であって、該毒素が、リシン毒素、ピロリジジンアルカロイド、フィトヘマグルチニン、嘔吐毒素、またはグラヤノトキシンである方法。
28.1〜8のいずれか1に記載の方法であって、該毒素が、シガテラ毒魚毒素、テトロドトキシン、サバ毒素、貝毒素、炎症性サイトカインまたは細胞断片である方法。
29.28に記載の方法であって、該炎症性サイトカインまたは媒介物質が、通常見られるよりも高レベルで該生体物質に存在する方法。
30.28に記載の方法であって、該炎症性サイトカインが通常見られるよりも高レベルで該生体物質に存在し、ヒトの病気と関係する方法。
31.30に記載の方法であって、該ヒトの病気が自己免疫疾患である方法。
32.28〜31に記載のいずれか1に記載の方法であって、該炎症性サイトカインが、TNF−α、IL−1、IL−6、IL−8、MCP−1、IL−lra、またはIL−10である方法。
33.1〜8のいずれか1に記載の方法であって、該毒素が分泌毒液である方法。
34.1〜8または33のいずれか1に記載の方法であって、該毒素が、ヒアルロニダーゼ、デオキシリボヌクレアーゼ、リボヌクレアーゼ、アルカリ性ホスファターゼ、リパーゼ、アミラーゼ、またはトリプシンを含む酵素または病原性因子である方法。
35.上記のいずれか1に記載の方法であって、該毒素が有機物質である方法。
36.35に記載の方法であって、該有機物質が、タンパク質、ペプチド、炭水化物、脂質、核酸、またはこれらの組み合わせである方法。
37.上記のいずれか1に記載の方法であって、該生体物質が、細胞、または唾液、鼻咽頭液、血液、血漿、血清、唾液、胃腸液、胆汁、脳脊髄液、心膜液、膣液、精液、前立腺液、腹水、胸膜液、尿、滑液、間質液、細胞内液、細胞外液、リンパ液、粘液または硝子体液などの生理液を含む方法。
38.1または8に記載の方法であって、該生体物質が卵または細胞培地である方法。
39.38に記載の方法であって、さらにワクチンを製造する工程を含む方法。
40.1または8に記載の方法であって、さらに、血液生成物または生物学的生成物を生成または精製することを含む方法。
41.40に記載の方法であって、該血液生成物が、全血、濃厚赤血球、血小板、血漿、クリオプレシピテート、白血球、多能性幹細胞、T−細胞、B−細胞、または骨髄またはリンパ系由来のその他の細胞及びこれらの前駆細胞である方法。
42.上記のいずれか1に記載の方法であって、該生体物質が哺乳類に由来する方法。
43.42に記載の方法であって、該哺乳類がヒトである方法。
44.42に記載の方法であって、該哺乳類が、イヌ、ネコ、ウサギ、ウシ、ヒツジ、ウマ、ブタ、またはヤギである方法。
45.1〜7のいずれか1に記載の方法であって、該毒素による汚染が全身または局所である方法。
46.1〜7のいずれか1に記載の方法であって、該収着剤が体腔から導入される方法。
47.46に記載の方法であって、該収着剤が口から導入される方法。
48.46に記載の方法であって、該収着剤が、膣、直腸、または鼻から導入される方法。
49.46に記載の方法であって、該収着剤が栄養管から導入される方法。
50.1〜7のいずれか1に記載の方法であって、該収着剤が局所的に導入される方法。
51.50に記載の方法であって、該収着剤が炎症性大腸炎を発症した対象に局所的に導入される方法。
52.1〜7に記載のいずれか1に記載の方法であって、該収着剤が血液灌流により導入される方法。
53.1〜6または8のいずれか1に記載の方法であって、該収着剤が、唾液、血液、血漿、血清、胃腸液、脳脊髄液、膣液、腹水、胸膜液、尿、滑液、リンパ液、肺胞粘液、または硝子体液を含む生体物質の体外処置に用いられる方法。
54.1〜12のいずれか1に記載の方法であって、該収着剤が、50Å〜40,000Åの大きさの細孔の合計細孔体積が0.5cc/g〜5.0cc/g乾燥収着剤より大きく、該収着剤の50Å〜40,000Å(孔径)の間の細孔体積の100Å〜1,000Å(孔径)の間の細孔体積に対する比が3:1より小さい細孔構造を有する方法。
55.54に記載の方法であって、該毒素が重量で約50,000ダルトン(50kDa)以下である方法。
56.1〜12のいずれか1に記載の方法であって、該収着剤が、50Å〜40,000Åの大きさの細孔の合計細孔体積が0.5cc/g〜5.0cc/g乾燥収着剤より大きく、該収着剤の50Å〜40,000Å(孔径)の間の細孔体積の1,000Å〜10,000Å(孔径)の間の細孔体積に対する比が2:1より小さい細孔構造を有する方法。
57.56に記載の方法であって、該毒素が約50,000ダルトン〜約450,000ダルトンの範囲の分子量を有する方法。
58.1〜12のいずれか1に記載の方法であって、該収着剤が、50Å〜40,000Åの大きさの細孔の合計細孔体積が0.5cc/g〜5.0cc/g乾燥収着剤より大きく、該収着剤の50Å〜40,000Å(孔径)の間の細孔体積の10,000Å〜40,000Å(孔径)の間の細孔体積に対する比が3:1より小さい細孔構造を有する方法。
59.58に記載の方法であって、該毒素の分子量が約1,000,000ダルトン以下である方法。
60.上記のいずれか1に記載の方法であって、該収着剤が、少なくとも1種の架橋剤、少なくとも1種のモノマー、少なくとも1種の分散剤、及び少なくとも1種の細孔形成剤を含む複数の細孔を含む方法。
61.60に記載の方法であって、該分散剤が、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ポリメタクリル酸ヒドロキシエチル、ポリアクリル酸ヒドロキシエチル、ポリメタクリル酸ヒドロキシプロピル、ポリアクリル酸ヒドロキシプロピル、ポリメタクリル酸ジメチルアミノエチル、ポリアクリル酸ジメチルアミノエチル、ポリメタクリル酸ジエチルアミノエチル、ポリアクリル酸ジエチルアミノエチル、ポリビニルアルコール、ポリ−N−ビニルピロリジノン、ポリメタクリル酸の塩、またはポリアクリル酸の塩の1種以上である方法。
62.60に記載の方法であって、該架橋剤が、ジビニルベンゼン、トリビニルベンゼン、ジビニルナフタレン、トリビニルシクロヘキサン、ジビニルスルホン、三メタクリル酸トリメチロールプロパン、二メタクリル酸トリメチロールプロパン、三アクリル酸トリメチロールプロパン、二アクリル酸トリメチロールプロパン、二メタクリル酸ペンタエリトリトール、三メタクリル酸ペンタエリトリトール、四メタクリル酸ペンタエリトリトール、二アクリル酸ペンタエリトリトール、三アクリル酸ペンタエリトリトール、四アクリル酸ペンタエリトリトール、二メタクリル酸ジペンタエリトリトール、三メタクリル酸ジペンタエリトリトール、四メタクリル酸ジペンタエリトリトール、二アクリル酸ジペンタエリトリトール、三アクリル酸ジペンタエリトリトール、四アクリル酸ジペンタエリトリトール、またはジビニルホルムアミドの1種以上である方法。
63.54〜62に記載のいずれか1に記載の方法であって、該収着剤がポリマーである方法。
64.60に記載の方法であって、該モノマーが、ジビニルベンゼン、エチルビニルベンゼン、スチレン、エチルスチレン、アクリロニトリル、メタクリル酸ブチル、メタクリル酸オクチル、アクリル酸ブチル、アクリル酸オクチル、メタクリル酸セチル、アクリル酸セチル、メタクリル酸エチル、アクリル酸エチル、ビニルトルエン、ビニルナフタレン、ビニルベンジルアルコール、ビニルホルムアミド、メタクリル酸メチル、アクリル酸メチル、トリビニルベンゼン、ジビニルナフタレン、トリビニルシクロヘキサン、ジビニルスルホン、三メタクリル酸トリメチロールプロパン、二メタクリル酸トリメチロールプロパン、三アクリル酸トリメチロールプロパン、二アクリル酸トリメチロールプロパン、二メタクリル酸ペンタエリトリトール、三メタクリル酸ペンタエリトリトール、四メタクリル酸ペンタエリトリトール、二アクリル酸ペンタエリトリトール、三アクリル酸ペンタエリトリトール、四アクリル酸ペンタエリトリトール、二メタクリル酸ジペンタエリトリトール、三メタクリル酸ジペンタエリトリトール、四メタクリル酸ジペンタエリトリトール、二アクリル酸ジペンタエリトリトール、三アクリル酸ジペンタエリトリトール、四アクリル酸ジペンタエリトリトール、ジビニルホルムアミド、及びこれらの混合物の1種以上である方法。
65.60に記載の方法であって、該細孔形成剤が、ベンジルアルコール、シクロヘキサン、シクロヘキサノール、シクロヘキサノール/トルエン混合物、シクロヘキサノン、デカン、デカン/トルエン混合物、リン酸ジ−2−エチルヘキシル、フタル酸ジ−2−エチルへキシ、2−エチル−1−ヘキサン酸、2−エチル−1−ヘキサノール、2−エチル−1−ヘキサノール/n−ヘプタン混合物、2−エチル−1−ヘキサノール/トルエン混合物、イソアミルアルコール、n−ヘプタン、n−ヘプタン/酢酸エチル、n−ヘプタン/酢酸イソアミル、n−ヘプタン/テトラリン混合物、n−ヘプタン/トルエン混合物、n−ヘキサン/トルエン混合物、ペンタノール、ポリ(スチレン−co−メタクリル酸メチル)/フタル酸ジブチル、ポリスチレン/2−エチル−1−ヘキサノール混合物、ポリスチレン/フタル酸ジブチル、ポリスチレン/n−ヘキサン混合物、ポリスチレン/トルエン混合物、トルエン、リン酸トリ−n−ブチル、1,2,3−トリクロロプロパン/2−エチル−1−ヘキサノール混合物、2,2,4−トリメチルペンタン(イソオクタン)、トリメチルペンタン/トルエン混合物、ポリプロピレングリコール/トルエン混合物、ポリプロピレングリコール/シクロヘキサノール混合物、及びポリプロピレングリコール/2−エチル−1−ヘキサノール混合物の1種以上である方法。
66.3に記載の方法であって、該生体適合性収着剤が、生分解性ポリマー、再吸収性ポリマー、または両方の特性を有する方法。
67.1〜53のいずれか1に記載の方法であって、該収着剤が2種以上の異なる細孔大きさを有する収着剤の混合物である方法。
68.1〜53、67のいずれか1に記載の方法であって、該収着剤が、粉末、錠剤、カプセル、溶液、ゲル錠、分散体、スラリー、坐薬、または懸濁液として配合される方法。
69.1〜7のいずれか1に記載の方法であって、該収着剤が、食品、流体、またはこれらの任意の組み合わせと混合されている方法。
70.生体物質における1種以上の毒素による汚染を低減するキットであって、
a.毒素を収着することができる収着剤であって、50Å〜40,000Åの複数の細孔を含み0.5cc/g〜5.0cc/gの細孔体積と0.05mm〜2cmの大きさを有する収着剤;及び
b.使用しない時に該収着剤を該収着剤の包装とともに保存する容器
を含むキット。
71.70に記載のキットであって、該収着剤が生体適合性であるキット。
72.70に記載のキットであって、該収着剤が非生体適合性であるキット。
73.70〜72のいずれか1に記載のキットであって、さらに、該収着剤の使用についての指示を含むキット。
74.70〜73のいずれか1に記載のキットであって、該収着剤が、50Å〜40,000Åの大きさの細孔の合計細孔体積が0.5cc/g〜5.0cc/g乾燥収着剤より大きく、該収着剤の50Å〜40,000Å(孔径)の間の細孔体積の100Å〜1,000Å(孔径)の間の細孔体積に対する比が3:1より小さい細孔構造を有するキット。
75.70〜73のいずれか1に記載のキットであって、該収着剤が、50Å〜40,000Åの大きさの細孔の合計細孔体積が0.5cc/g〜5.0cc/g乾燥収着剤より大きく、該収着剤の50Å〜40,000Å(孔径)の細孔体積の1,000Å〜10,000Å(孔径)の間の細孔体積に対する比が2:1より小さい細孔構造を有するキット。
76.70〜73のいずれか1に記載のキットであって、該収着剤が、50Å〜40,000Åの大きさの細孔の合計細孔体積が0.5cc/g〜5.0cc/g乾燥収着剤より大きく、該収着剤の50Å〜40,000Å(孔径)の間の細孔体積の10,000Å〜40,000Å(孔径)の間の細孔体積に対する比が3:1より小さい細孔構造を有するキット。
77.生体物質における1種以上の毒素による汚染を低減する装置であって、
a.毒素を収着することができる収着剤であって、50Å〜40,000Åの複数の細孔を含み0.5cc/g〜5.0cc/gの細孔体積と0.05mm〜2cmの大きさを有する収着剤;及び
b.容器であって、該生体物質が該容器内に直接導入されることができるように該収着剤が該容器の内部に配置されている容器
を含む装置。
78.68に記載の装置であって、該生体物質が血液である装置。
79.77または78に記載の装置であって、該収着剤が生体適合性である装置。
80.77または78に記載の装置であって、該収着剤が非生体適合性である装置。
81.医薬組成物であって、
a.毒素を収着することができる収着剤であって、50Å〜40,000Åの複数の細孔を含み0.5cc/g〜5.0cc/gの細孔体積と0.05mm〜2cmの大きさを有する収着剤;及び
b.食品
を含む組成物。
82.医薬組成物であって、
a.毒素を収着することができる収着剤であって、50Å〜40,000Åの複数の細孔を含み0.5cc/g〜5.0cc/gの細孔体積と0.05mm〜2cmの大きさを有する収着剤;及び
b.携帯可能な液体
を含む組成物。
83.81または82に記載の医薬組成物であって、該収着剤が生体適合性である組成物。
84.81または82に記載の医薬組成物であって、該収着剤が非生体適合性である組成物。
85.生体物質における1種以上の毒素による汚染を低減する方法であって、
a.該生体物質を、1種以上の非毒性サブユニットを収着することができる有効量の収着剤と接触させること、この際、2種以上のそれらサブユニットが結合すると毒素が形成されるものとし、そして、該収着剤が、50Å〜40,000Åの複数の細孔を含み0.5cc/g〜5.0cc/gの細孔体積と0.05mm〜2cmの大きさを有する;及び
b.該1種以上の非毒性サブユニットを収着すること
を含む方法。
86.1種以上の毒素による汚染を処置する方法であって、それを必要としている対象において、
a.該対象の生体物質を、1種以上の非毒性サブユニットを収着することができる有効量の収着剤と接触させること、この際、2種以上のそれらサブユニットが結合すると毒素が形成されるものとし、そして、該収着剤が、50Å〜40,000Åの複数の細孔を含み0.5cc/g〜5.0cc/gの細孔体積と0.05mm〜2cmの大きさを有する;及び
b.該1種以上の非毒性サブユニットを収着すること
を含む方法。
87.85または86に記載の方法であって、該収着剤が生体適合性である方法。
88.85または86に記載の方法であって、該収着剤が非生体適合性である方法。
89.85〜88のいずれか1に記載の方法であって、該収着が in vivo で起こる方法。
90.85〜88のいずれか1に記載の方法であって、該収着が ex vivo で起こる方法。
91.85〜90のいずれか1に記載の方法であって、該毒素が該生体物質の存在下で形成される方法。
92.85〜91のいずれか1に記載の方法であって、該1種以上の非毒性サブユニットが生物学的供給源由来である方法。
93.92に記載の方法であって、該非毒性サブユニットが、炭疽菌に由来する非毒性の致死因子、浮腫因子及び/または防御抗原を含む方法。