特許第6812852号(P6812852)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 三菱マテリアル株式会社の特許一覧

特許6812852防食端子材及び防食端子並びに電線端末部構造
<>
  • 特許6812852-防食端子材及び防食端子並びに電線端末部構造 図000004
  • 特許6812852-防食端子材及び防食端子並びに電線端末部構造 図000005
  • 特許6812852-防食端子材及び防食端子並びに電線端末部構造 図000006
  • 特許6812852-防食端子材及び防食端子並びに電線端末部構造 図000007
  • 特許6812852-防食端子材及び防食端子並びに電線端末部構造 図000008
  • 特許6812852-防食端子材及び防食端子並びに電線端末部構造 図000009
  • 特許6812852-防食端子材及び防食端子並びに電線端末部構造 図000010
  • 特許6812852-防食端子材及び防食端子並びに電線端末部構造 図000011
  • 特許6812852-防食端子材及び防食端子並びに電線端末部構造 図000012
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6812852
(24)【登録日】2020年12月21日
(45)【発行日】2021年1月13日
(54)【発明の名称】防食端子材及び防食端子並びに電線端末部構造
(51)【国際特許分類】
   H01R 13/03 20060101AFI20201228BHJP
   C25D 7/00 20060101ALI20201228BHJP
   C25D 5/10 20060101ALI20201228BHJP
   C25D 5/12 20060101ALI20201228BHJP
   C23F 15/00 20060101ALI20201228BHJP
   H01R 4/62 20060101ALI20201228BHJP
   H01R 4/18 20060101ALI20201228BHJP
   H01B 7/28 20060101ALI20201228BHJP
   H01B 7/00 20060101ALI20201228BHJP
【FI】
   H01R13/03 D
   C25D7/00 H
   C25D5/10
   C25D5/12
   C23F15/00
   H01R4/62 A
   H01R4/18 A
   H01B7/28 F
   H01B7/00 306
   H01B7/00 301
【請求項の数】9
【全頁数】14
(21)【出願番号】特願2017-42713(P2017-42713)
(22)【出願日】2017年3月7日
(65)【公開番号】特開2018-147777(P2018-147777A)
(43)【公開日】2018年9月20日
【審査請求日】2019年9月25日
(73)【特許権者】
【識別番号】000006264
【氏名又は名称】三菱マテリアル株式会社
(74)【代理人】
【識別番号】100101465
【弁理士】
【氏名又は名称】青山 正和
(72)【発明者】
【氏名】久保田 賢治
(72)【発明者】
【氏名】樽谷 圭栄
(72)【発明者】
【氏名】中矢 清隆
【審査官】 高橋 裕一
(56)【参考文献】
【文献】 特開2016−169439(JP,A)
【文献】 特開2015−141784(JP,A)
【文献】 特開2015−162374(JP,A)
【文献】 特開2008−248332(JP,A)
【文献】 特開2009−152052(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01R 4/00− 4/22
H01R 4/58− 4/72
H01R13/00−13/08
H01R13/15−13/35
C23F15/00
C25D 5/10
C25D 5/12
C25D 7/00
H01B 7/00
H01B 7/28
(57)【特許請求の範囲】
【請求項1】
銅又は銅合金からなる基材の上に皮膜が積層されているとともに、端子に成形されたときに電線の心線が接触される心線接触予定部と、接点部となる接点予定部とが形成されており、前記心線接触予定部に形成される前記皮膜は、亜鉛及びニッケルを含有する亜鉛ニッケル合金層と、錫又は錫合金からなる錫層と、金属亜鉛層とがこの順に積層されており、前記接点予定部に形成される前記皮膜は、前記亜鉛ニッケル合金層、前記錫層、前記金属亜鉛層のうち、前記錫層を有し、前記亜鉛ニッケル合金層及び前記金属亜鉛層を有しないことを特徴とする防食端子材。
【請求項2】
前記金属亜鉛層は端子として成形された後の表面に対する被覆率が30%以上80%以下であることを特徴とする請求項1記載の防食端子材。
【請求項3】
前記金属亜鉛層は、亜鉛濃度が5at%以上40at%以下で厚みがSiO2換算で1nm以上10nm以下であることを特徴とする請求項1又は2記載の防食端子材。
【請求項4】
前記亜鉛ニッケル合金層は、ニッケル含有率が5質量%以上35質量%以下であることを特徴とする請求項1から3のいずれか一項記載の防食端子材。
【請求項5】
前記心線接触予定部における前記錫層は亜鉛を0.4質量%以上15質量%以下含有する錫合金からなることを特徴とする請求項1から4のいずれか一項記載の防食端子材。
【請求項6】
前記基材と前記亜鉛ニッケル合金層との間に、ニッケル又はニッケル合金からなる下地層が形成されていることを特徴とする請求項1から5のいずれか一項記載の防食端子材。
【請求項7】
帯板状に形成されるとともに、その長さ方向に沿うキャリア部に、前記心線接触予定部及び前記接点予定部を有する端子用部材が前記キャリア部の長さ方向に間隔をおいて複数連結されていることを特徴とする請求項1から6のいずれか一項記載の防食端子材。
【請求項8】
請求項1から7のいずれか一項記載の防食端子材からなることを特徴とする防食端子。
【請求項9】
請求項8記載の防食端子がアルミニウム又はアルミニウム合金からなる電線の端末に圧着されていることを特徴とする電線端末部構造。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、アルミニウム線材からなる電線の端末に圧着される端子として用いられ、電食の生じにくい防食端子材及びその端子材からなる防食端子、並びにその端子を用いた電線端末部構造に関する。
【背景技術】
【0002】
従来、銅又は銅合金で構成されている電線の端末部に、銅又は銅合金で構成された端子を圧着し、この端子を機器に設けられた端子に接続することにより、その電線を機器に接続することが行われている。また、電線の軽量化等のために、電線の心線を、銅又は銅合金に代えて、アルミニウム又はアルミニウム合金で構成している場合がある。
例えば、特許文献1には、アルミニウム合金からなる自動車ワイヤーハーネス用アルミ電線が開示されている。
【0003】
ところで、電線(導線)をアルミニウム又はアルミニウム合金で構成し、端子を銅又は銅合金で構成すると、水が端子と電線との圧着部に入ったときに、異金属の電位差による電食が発生することがある。そして、その電線の腐食に伴い、圧着部での電気抵抗値の上昇や圧着力の低下が生ずるおそれがある。
【0004】
この腐食の防止法としては、例えば特許文献2や特許文献3記載のものがある。
特許文献2には、第1の金属材料で構成された地金部と、第1の金属材料よりも標準電極電位の値が小さい第2の金属材料で構成され、地金部の表面の少なくとも一部にめっきで薄く設けられた中間層と、第2の金属材料よりも標準電極電位の値が小さい第3の金属材料で構成され、中間層の表面の少なくとも一部にめっきで薄く設けられた表面層とを有する端子が開示されている。第1の金属材料として銅又はこの合金、第2の金属材料として鉛又はこの合金、あるいは錫又はこの合金、ニッケル又はこの合金、亜鉛又はこの合金が記載されており、第3の金属材料としてはアルミニウム又はこの合金が記載されている。
【0005】
特許文献3には、被覆電線の端末領域において、端子金具の一方端に形成されるかしめ部が被覆電線の被覆部分の外周に沿ってかしめられ、少なくともかしめ部の端部露出領域及びその近傍領域の全外周をモールド樹脂により完全に覆ってなるワイヤーハーネスの端末構造が開示されている。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2004−134212号公報
【特許文献2】特開2013−33656号公報
【特許文献3】特開2011−222243号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかしながら、特許文献3記載の構造では腐食は防げるものの、樹脂モールド工程の追加により製造コストが増大し、さらに、樹脂による端子断面積増加によりワイヤーハーネスの小型化が妨げられるという問題があり、特許文献2記載の第3の金属材料であるアルミニウム系めっきを実施するためにはイオン性液体などを用いるため、非常にコストがかかるという問題があった。
【0008】
本発明は、前述の課題に鑑みてなされたものであって、アルミニウム心線を有する電線の端末に圧着される端子として銅又は銅合金基材を用いて電食の生じにくい防食端子材及びその端子材からなる防食端子、並びにその端子を用いた電線端末部構造を提供することを目的とする。
【課題を解決するための手段】
【0009】
本発明の防食端子材は、銅又は銅合金からなる基材の上に皮膜が積層されているとともに、端子に成形されたときに電線の心線が接触される心線接触予定部と、接点部となる接点予定部とが形成されており、前記心線接触予定部に形成される前記皮膜は、亜鉛及びニッケルを含有する亜鉛ニッケル合金層と、錫又は錫合金からなる錫層と、金属亜鉛層とがこの順に積層されており、前記接点予定部に形成される前記皮膜は、前記亜鉛ニッケル合金層、前記錫層、前記金属亜鉛層のうち、前記錫層を有し、前記亜鉛ニッケル合金層及び前記金属亜鉛層を有しない。
【0010】
この防食端子材は、心線接触予定部においては、金属亜鉛層が形成されており、この金属亜鉛の腐食電位がアルミニウムと近いので、アルミニウム製心線と接触した場合の電食の発生を抑えることができる。しかも、下地に亜鉛ニッケル合金層を有しており、その亜鉛が錫層の表面に拡散してくるので、金属亜鉛層が高濃度に維持される。万一、摩耗等により金属亜鉛層や錫層の全部又は一部が消失した場合でも、その下の亜鉛ニッケル合金層により電食の発生を抑えることができる。
一方で、金属亜鉛層が錫層の表面に存在すると、高温高湿環境下において接続信頼性が損なわれることがある。このため、接点予定部のみ金属亜鉛層がない構造とし、高温高湿環境に曝された際も接触抵抗の上昇を抑えることが可能となった。接点予定部においては、下地からの亜鉛の拡散による接続信頼性の低下を抑えるために錫層の下に亜鉛ニッケル合金層が存在しない。
【0011】
本発明の防食端子材において、前記金属亜鉛層は端子として成形された後の表面に対する被覆率が30%以上80%以下であるとよい。
【0012】
金属亜鉛層は、接点予定部には存在せず、心線接触予定部には存在している必要がある。これら以外の部分では、必ずしも存在している必要はないが、金属亜鉛層が存在している部位の比率が高い方が望ましく、表面全体の30%以上80%以下の被覆率で存在すると良い。
【0013】
本発明の防食端子材において、前記金属亜鉛層は、亜鉛濃度が5at%以上40at%以下で厚みがSiO換算で1nm以上10nm以下であるとよい。
【0014】
金属亜鉛層の亜鉛濃度は5at%未満では腐食電位を卑化する効果に乏しく、40at%を超えると接触抵抗が悪化するおそれがある。金属亜鉛層のSiO換算厚みが1nm未満では腐食電位を卑化する効果に乏しく、10nmを超えると接触抵抗が悪化するおそれがある。
【0015】
本発明の防食端子材において、前記亜鉛ニッケル合金層は、ニッケル含有率が5質量%以上35質量%以下であるとよい。
【0016】
亜鉛ニッケル合金層中のニッケル含有率は、5質量%未満では、錫層形成のための錫めっき時に置換反応が発生し、錫めっきの密着性が低下するおそれがある。35質量%を超えると表面の腐食電位を卑化させる効果が乏しくなる。
【0017】
本発明の防食端子材において、前記心線接触予定部における前記錫層は亜鉛を0.4質量%以上15質量%以下含有する錫合金からなるとよい。
【0018】
錫層が亜鉛を含有していると、腐食電位を卑化してアルミニウム心線を防食する効果があるが、その亜鉛濃度が0.4質量%未満では防食効果に乏しく、15質量%を超えると錫層の耐食性が低下し、腐食環境に曝されると錫層が腐食され接触抵抗が悪化するおそれがある。
【0019】
本発明の防食端子材において、前記基材と前記亜鉛ニッケル合金層との間に、ニッケル又はニッケル合金からなる下地層が形成されているとよい。
【0020】
基材と亜鉛ニッケル合金層との間の下地層は熱負荷がかかった際に基材から皮膜表面へ銅が拡散し、接触抵抗が上がることを抑制する効果がある。
【0021】
また、本発明の防食端子材において、帯板状に形成されるとともに、その長さ方向に沿うキャリア部に、前記心線接触予定部及び前記接点予定部を有する端子用部材が前記キャリア部の長さ方向に間隔をおいて複数連結されている。
そして、本発明の防食端子は、上記の防食端子材からなる端子であり、本発明の電線端末部構造は、その防食端子がアルミニウム又はアルミニウム合金からなる電線の端末に圧着されている。
【発明の効果】
【0022】
本発明によれば、心線接触予定部の表面に腐食電位がアルミニウムと近い金属亜鉛層が形成されているので、アルミニウム製心線と接触した場合の電食の発生を抑えることができ、しかも、錫層の下の亜鉛ニッケル合金層から亜鉛が錫層の表面部分に拡散してくるので、金属亜鉛層を高濃度に維持することができ、長期的に耐食性に優れており、さらに、万一、摩耗等により錫層の全部又は一部が消失した場合でも、その下の亜鉛ニッケル合金層により電食の発生を抑えることができ、電気抵抗値の上昇や心線への圧着力の低下を抑制することができる。一方、接点予定部においては、金属亜鉛層がないため、高温高湿環境に曝された際も接触抵抗の上昇を抑えることができる。
【図面の簡単な説明】
【0023】
図1】本発明の防食端子材の実施形態を模式的に示す断面図である。
図2】実施形態の防食端子材の平面図である。
図3】実施形態の防食端子材が適用される端子の例を示す斜視図である。
図4図3の端子を圧着した電線の端末部を示す正面図である。
図5】試料10の端子材の断面の顕微鏡写真である。
図6】試料12の端子材の断面の顕微鏡写真である。
図7】試料9の端子材の表面部分におけるXPS分析による深さ方向の各元素の濃度分布図である。
図8】試料7の端子材の表面部分における深さ方向の化学状態解析図であり、(a)が錫、(b)が亜鉛に関する解析図である。
図9】試料7の端子材、試料12の端子材、及びめっきを有しない銅製端子材のそれぞれのガルバニック腐食経過を測定したグラフである。
【発明を実施するための形態】
【0024】
本発明の実施形態の防食端子材、防食端子及び電線端末部構造を説明する。
本実施形態の防食端子材1は、図2に全体を示したように、複数の端子を成形するための帯板状に形成されたフープ材であり、その両側部に長さ方向に沿って形成されたキャリア部21の間に、端子として成形すべき複数の端子用部材22がキャリア部21の長さ方向に間隔をおいて配置され、各端子用部材22が細幅の連結部23を介してキャリア部21に連結されている。各端子用部材22は例えば図3に示すような端子の形状に成形され、連結部23から切断されることにより、防食端子10として完成する。
【0025】
この防食端子10は、図3の例ではメス端子を示しており、先端から、オス端子15(図4参照)が嵌合される接続部11、電線12の露出した心線12aがかしめられる心線圧着部13、電線12の被覆部12bがかしめられる被覆圧着部14がこの順で一体に形成されている。接続部11は角筒状に形成され、その先端から連続するばね片11aが折り込まれるように挿入されている(図4参照)。
図4は電線12に防食端子10をかしめた端末部構造を示しており、心線圧着部13の付近が電線12の心線12aに直接接触することになる。
前述したフープ材において、防食端子10に成形されたときに接続部11となる部分においてオス端子15に接触して接点となる部分を接点予定部25、心線圧着部13付近において心線12aが接触する部分の表面を心線接触予定部26とする。
この場合、接点予定部25は、実施形態のメス端子においては、角筒状に形成される接続部11の内面と、その接続部11内に折り込まれているばね片11aとの対向面に形成される。接続部11を展開した状態においては、接続部11の両側部の表面、ばね片11aの裏面が接点予定部25となる。
【0026】
そして、この防食端子材1は、図1に断面(図2のA−A線に沿う断面に相当する)を模式的に示したように、銅又は銅合金からなる基材2上に皮膜8が形成されており、その皮膜8は、接点予定部25を除く部分の表面では、ニッケル又はニッケル合金からなる下地層3、亜鉛ニッケル合金層4、錫層5がこの順に積層されるとともに、さらに、錫層5の上に、その最表面に形成される酸化物層6の下に、金属亜鉛層7が形成されている。一方、接点予定部25においては、下地層3、錫層5がこの順に積層されており、亜鉛ニッケル合金層4及び金属亜鉛層7は有していない。この金属亜鉛層7は、端子10として成形された後の表面(端子用部材22の表面)の30%以上80%以下の被覆率で存在するのが望ましい。
【0027】
基材2は、銅又は銅合金からなるものであれば、特に、その組成が限定されるものではない。
以下、皮膜8については、まず、接点予定部25を除く部分(心線接触予定部26を含む)について、層ごとに説明する。
下地層3は、厚さが0.1μm以上5.0μm以下で、ニッケル含有率は80質量%以上である。この下地層3は、基材2から亜鉛ニッケル合金層4や錫層5への銅の拡散を防止する機能があり、その厚みが0.1μm未満では銅の拡散を防止する効果に乏しく、5.0μmを超えるとプレス加工時に割れが生じ易い。下地層3の厚さは、0.3μm以上2.0μm以下がより好ましい。
また、そのニッケル含有率は80質量%未満では銅が亜鉛ニッケル合金層4や錫層5へ拡散することを防止する効果が小さい。このニッケル含有率は90質量%以上とするのがより好ましい。
【0028】
亜鉛ニッケル合金層4は、厚みが0.1μm以上5.0μm以下であり、亜鉛、ニッケルが含有されるとともに、錫層5に接しているので錫も含有している。この亜鉛ニッケル合金層4のニッケル含有率は5質量%以上35質量%以下である。
この亜鉛ニッケル合金層4の厚みが0.1μm未満では表面の腐食電位を卑化させる効果が乏しく、5.0μmを超えると端子10へのプレス加工時に割れが発生するおそれがある。亜鉛ニッケル合金層4の厚さは、0.3μm以上2.0μm以下がより好ましい。
亜鉛ニッケル合金層4のニッケル含有率が5質量%未満では、錫層5を形成するための後述する錫めっき時に置換反応が発生し、錫めっき(錫層5)の密着性が低下する。亜鉛ニッケル合金層4中のニッケル含有率が35質量%を超えると表面の腐食電位を卑化させる効果が少ない。このニッケル含有率は7質量%以上20質量%以下とするのがより好ましい。亜鉛ニッケル合金層は少なくとも心線接触予定部に形成され、下地からの亜鉛拡散による接点不良を防ぐために、接点予定部には存在しないことが好ましい。
【0029】
錫層5は、亜鉛濃度が0.4質量%以上15質量%以下である。この錫層5の亜鉛濃度が0.4質量%未満では腐食電位を卑化してアルミニウム線を防食する効果が乏しく、15質量%を超えると錫層5の耐食性が著しく低下するため腐食環境に曝されると錫層5が腐食され接触抵抗が悪化するおそれがある。この錫層5の亜鉛濃度は、1.5質量%以上6.0質量%以下がより好ましい。
また、錫層5の厚みは0.1μm以上10μm以下が好ましく、薄過ぎるとはんだ濡れ性の低下、接触抵抗の低下を招くおそれがあり、厚過ぎると、表面の動摩擦係数の増大を招き、コネクタ等での使用時の着脱抵抗が大きくなる傾向にある。
【0030】
金属亜鉛層7は、亜鉛濃度が5at%以上40at%以下で厚みがSiO換算で1nm以上10nm以下である。この金属亜鉛層の亜鉛濃度は5at%未満では腐食電位を卑化する効果がなく、40at%を超えると接触抵抗が悪化する。この金属亜鉛層7の亜鉛濃度は、10at%以上25at%以下がより好ましい。
一方、金属亜鉛層7のSiO換算厚みが1nm未満では腐食電位を卑化する効果が乏しく、10nmを超えると接触抵抗が悪化するおそれがある。このSiO換算厚みは1.25nm以上3nm以下がより好ましい。
なお、金属亜鉛層7の表面には、亜鉛や錫の酸化物層6が形成される。
【0031】
以上の層構成を有する皮膜8は、前述したように、接点予定部25を除く部分の表面に存在している。前述したように、この金属亜鉛層7を有する皮膜8は、端子10として成形されたときの表面の30%以上80%以下の被覆率で存在するのが望ましい。一方、接点予定部25においては、ニッケル又はニッケル合金からなる下地層3及び錫層5のみ存在する。下地層3及び錫層5のそれぞれの組成や膜厚等は、接点予定部25を除く部分の表面に存在する皮膜8を構成するものと同じである。
【0032】
次に、この防食端子材1の製造方法について説明する。
基材2として、銅又は銅合金からなる板材を用意する。この板材に裁断、穴明け等の加工を施すことにより、図2に示すような、キャリア部21に複数の端子用部材22を連結部23を介して連結されてなるフープ材に成形する。そして、このフープ材に脱脂、酸洗等の処理をすることによって表面を清浄にした後、その全面に下地層3を形成するためのニッケル又はニッケル合金めっきを施した後、接点予定部25をマスク(図示略)によって覆い、その状態で亜鉛ニッケル合金層4を形成するための亜鉛ニッケル合金めっきを施し、マスクを外して、全面に錫層5を形成するための錫又は錫合金めっきを施す。
【0033】
下地層3を形成するためのニッケル又はニッケル合金めっきは緻密なニッケル主体の膜が得られるものであれば特に限定されず、公知のワット浴やスルファミン酸浴、クエン酸浴などを用いて電気めっきにより形成することができる。ニッケル合金めっきとしてはニッケルタングステン(Ni−W)合金、ニッケルリン(Ni−P)合金、ニッケルコバルト(Ni−Co)合金、ニッケルクロム(Ni−Cr)合金、ニッケル鉄(Ni−Fe)合金、ニッケル亜鉛(Ni−Zn)合金、ニッケルボロン(Ni−B)合金などを利用することができる。
防食端子10へのプレス曲げ性と銅に対するバリア性を勘案すると、スルファミン酸浴から得られる純ニッケルめっきが望ましい。
【0034】
亜鉛ニッケル合金層4を形成するための亜鉛ニッケル合金めっきは、緻密な膜を所望の組成で得られるものであれば特に限定されず、公知の硫酸塩浴や塩化物塩浴、中性浴などを用いることができる。
【0035】
錫層5を形成するための錫又は錫合金めっきは、公知の方法により行うことができるが、例えば有機酸浴(例えばフェノールスルホン酸浴、アルカンスルホン酸浴又はアルカノールスルホン酸浴)、硼フッ酸浴、ハロゲン浴、硫酸浴、ピロリン酸浴等の酸性浴、或いはカリウム浴やナトリウム浴等のアルカリ浴を用いて電気めっきすることができる。
【0036】
このようにして、基材2の上にめっきをした後、熱処理を施す。
この熱処理は、素材の表面温度が30℃以上190℃以下となる温度で加熱する。この熱処理により、接点予定部25以外の部分では、亜鉛ニッケル合金めっき層中の亜鉛が錫めっき層内および錫めっき層上に拡散し、表面に薄く金属亜鉛層を形成する。亜鉛の拡散は速やかに起こるため、30℃以上の温度に24時間以上晒すことで金属亜鉛層7を形成することができる。ただし、亜鉛ニッケル合金は溶融錫をはじき、錫層5に錫はじき箇所を形成するため、190℃を超える温度には加熱しない。
【0037】
このようにして製造された防食端子材1は、基材2の上にニッケル又はニッケル合金からなる下地層3が形成され、マスクにより覆っておいた接点予定部25においては、下地層3の上に錫層5が形成されており、接点予定部25以外の部分では、下地層3の上に亜鉛ニッケル合金層4、錫層5、金属亜鉛層7が形成され、その金属亜鉛層7の表面に酸化物層6が薄く形成されている。
そして、プレス加工等によりフープ材のまま図3に示す端子の形状に加工され、連結部23が切断されることにより、防食端子10に形成される。
図4は電線12に端子10をかしめた端末部構造を示しており、心線かしめ部13付近が電線12の心線12aに直接接触することになる。
【0038】
この防食端子10は、心線接触予定部26においては、錫層5に亜鉛を含み、錫層5の最表面の酸化物層6の下に金属亜鉛層7が形成されているので、アルミニウム製心線12aに圧着された状態であっても、金属亜鉛の腐食電位がアルミニウムと非常に近いことから、電食の発生を防止することができる。この場合、図2のフープ材の状態でめっき処理し、熱処理したことから、端子10の端面も基材2が露出していないので、優れた防食効果を発揮することができる。
しかも、錫層5の下に亜鉛ニッケル合金層4が形成されており、その亜鉛が錫層5の表面部分に拡散してくるので、摩耗等による金属亜鉛層7の消失を抑制し、金属亜鉛層7が高濃度に維持される。また、万一、摩耗等により錫層5の全部又は一部が消失した場合でも、その下の亜鉛ニッケル合金層4はアルミニウムと腐食電位が近いので、電食の発生を抑えることができる。
【0039】
一方で、金属亜鉛層7が錫層5の表面に存在すると、高温高湿環境下において接続信頼性が損なわれることがあるが、この実施形態においては、接点予定部25には金属亜鉛層7が存在しない構造としたことにより、高温高湿環境に曝された際も接触抵抗の上昇を抑えることができる。
【0040】
なお、本発明は上記実施形態に限定されることはなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、実施形態では、接点予定部25に金属亜鉛層7を形成しない方法として、実施形態では接点予定部25をマスクで覆った状態で亜鉛ニッケル合金めっき等を施したが、接点予定部25を含む全面に亜鉛ニッケル合金めっきを施し、部分エッチングにより接点予定部25の亜鉛ニッケル合金めっき層を除去する方法としてもよい。
また、接点予定部25以外の部分において、表面の金属亜鉛層7を亜鉛ニッケル合金層4からの拡散によって形成したが、錫層5の表面に亜鉛めっきにより金属亜鉛層7を形成してもよい。この亜鉛めっきは公知の方法により行うことができるが、例えばジンケート浴、硫酸塩浴、塩化亜鉛浴、シアン浴を用いて電気めっきすることができる。この場合、亜鉛ニッケル合金層4は、接点予定部25には存在しない方が好ましいが、存在していてもかまわない。
【実施例】
【0041】
基材の銅板を図2に示すフープ材に打抜いて、脱脂、酸洗した後、図2の接点予定部25を除き、亜鉛ニッケル合金めっきを施した。さらに、その後、全面に錫めっきを実施し、30℃〜190℃の温度で1時間〜36時間の範囲で熱処理をして亜鉛を下地から表面へ拡散させ、金属亜鉛層7を形成することにより、接点予定部25を除く部分に金属亜鉛層7を有する防食端子材1を得た。
比較例として、接点予定部25をマスクで覆うことなく、全面に亜鉛ニッケル合金めっきを施して、接点予定部25にも金属亜鉛層7を形成したもの(試料11)、及び、接点予定部25以外の部分も含めて亜鉛ニッケル合金めっきを実施せず、銅板を脱脂、酸洗した後、ニッケルめっき、錫めっきの順に施したもの(試料12)も作製した。
【0042】
各めっきの条件は以下のとおりとし、亜鉛ニッケル合金めっきのニッケル含有率は硫酸ニッケル六水和物と硫酸亜鉛七水和物の比率を変量して調整した。下記の亜鉛ニッケル合金めっき条件は、ニッケル含有率が15質量%となる例である。また、試料1〜9は下地層3としてのニッケルめっきを施さなかったが、試料10はニッケルめっきを施して下地層3を形成した。
【0043】
<ニッケルめっき条件>
・めっき浴組成
スルファミン酸ニッケル:300g/L
塩化ニッケル:5g/L
ホウ酸:30g/L
・浴温:45℃
・電流密度:5A/dm
【0044】
<亜鉛ニッケル合金めっき条件>
・めっき浴組成
硫酸亜鉛七水和物:75g/L
硫酸ニッケル六水和物:180g/L
硫酸ナトリウム:140g/L
・pH=2.0
・浴温:45℃
・電流密度:5A/dm
【0045】
<錫めっき条件>
・めっき浴組成
メタンスルホン酸錫:200g/L
メタンスルホン酸:100g/L
光沢剤
・浴温:25℃
・電流密度:5A/dm
【0046】
得られた試料について、亜鉛ニッケル合金層4中のニッケル含有率、錫層5中の亜鉛濃度、金属亜鉛層7中の厚さと亜鉛濃度、金属亜鉛層7の被覆率をそれぞれ測定した。
亜鉛ニッケル合金層4のニッケル含有率は、セイコーインスツル株式会社製の集束イオンビーム装置:FIB(型番:SMI3050TB)を用いて、試料を100nm以下に薄化した観察試料を作製し、この観察試料を日本電子株式会社製の走査透過型電子顕微鏡:STEM(型番:JEM−2010F)を用いて、加速電圧200kVで観察を行い、STEMに付属するエネルギー分散型X線分析装置:EDS(Thermo社製)を用いて測定した。
錫層5中の亜鉛濃度は日本電子株式会社製の電子線マイクロアナライザー:EPMA(型番JXA−8530F)を用いて、加速電圧6.5V、ビーム径φ30μmとし、試料表面を測定した。
【0047】
金属亜鉛層7の厚みと亜鉛濃度については、各試料について、アルバック・ファイ株式会社製のXPS(X−ray Photoelectron Spectroscopy)分析装置:ULVAC PHI model−5600LSを用い、試料表面をアルゴンイオンでエッチングしながらXPS分析により測定した。その分析条件は以下の通りである。
X線源:Standard MgKα 350W
パスエネルギー:187.85eV(Survey)、58.70eV(Narrow)
測定間隔:0.8eV/step(Survey)、0.125eV(Narrow

試料面に対する光電子取り出し角:45deg
分析エリア:約800μmφ
【0048】
厚みについては、あらかじめ同機種で測定したSiOのエッチングレートを用いて、測定に要した時間から「SiO換算膜厚」を算出した。
SiOのエッチングレートの算出方法は、20nmの厚さであるSiO膜を2.8×3.5mmの長方形領域でアルゴンイオンでエッチングを行い20nmをエッチングするのに要した時間で割ることによって算出した。上記分析装置の場合には8分要したためエッチングレートは2.5nm/minである。XPSは深さ分解能が約0.5nmと優れるが、Arイオンビームでエッチングされる時間は各材料により異なるため、膜厚そのものの数値を得るためには、膜厚が既知かつ平坦な試料を調達し、エッチングレートを算出しなければならない。上記は容易でないため、膜厚が既知であるSiO膜にて算出したエッチングレートで規定し、エッチングに要した時間から算出される「SiO換算膜厚」を利用した。このため「SiO換算膜厚」は実際の酸化物の膜厚と異なる点に注意が必要である。SiO換算エッチングレートで膜厚を規定すると、実際の膜厚は不明であっても、一義的であるため定量的に膜厚を評価することができる。
なお、このSiO換算膜厚は金属亜鉛濃度が所定値以上となっている部分の膜厚であり、金属亜鉛の濃度を部分的に測定できる場合でも、その層が極めて薄く分散している場合にはSiO換算膜厚としては測定できない場合がある。
これらの測定結果を表1に示す。表1中、試料1〜3、11の金属亜鉛層のSiO換算膜厚は、測定できなかったことを示している。
【0049】
【表1】

【0050】
得られた試料を090型端子に成形し、純アルミニウム線をかしめた。この純アルミニウム線をかしめた端子を腐食環境、高温高湿環境、高熱環境にそれぞれ放置した後に、アルミニウム線と端子間の接触抵抗、または、端子同士を嵌合した際の端子間の接触抵抗を測定した。
<腐食環境放置試験>
純アルミニウム線をかしめた090型のメス端子を23℃の5%塩化ナトリウム水溶液に24時間浸漬後、85℃、85%RHの高温高湿下に24時間放置した。その後、アルミニウム線と端子間の接触抵抗を四端子法により測定した。電流値は10mAとした。
<高温高湿環境試験>
純アルミニウム線をかしめた090型のメス端子を85℃、85%RHに96時間放置した。その後、アルミニウム線と端子間の接触抵抗を四端子法により測定した。電流値は10mAとした。
<高熱環境放置試験>
純アルミニウム線をかしめた端子を150℃に500時間放置した。その後、090型の錫めっきを実施したオス端子を嵌合し端子間の接触抵抗を四端子法により測定した。
これらの結果を表2に示す。
【0051】
【表2】

【0052】
図5は、試料10についての心線接触部における断面の電子顕微鏡写真であり、基材側から下地層(ニッケル層)、亜鉛ニッケル合金層、錫層が形成されていることが確認できるが、錫層の最表面部については判別できない。一方、図6は試料12の心線接触部における断面の電子顕微鏡写真であり、亜鉛ニッケル合金層を有していない。
【0053】
図7は、試料9の心線接触部におけるXPS分析による表面部分における深さ方向の各元素の濃度分布図であり、亜鉛濃度が5at%〜43at%の金属亜鉛層がSiO換算厚みで5.0nm存在しており、亜鉛濃度は22at%である。金属亜鉛層の亜鉛濃度はXPSにより5at%以上の金属亜鉛が検出されている部位の厚み方向の亜鉛濃度の平均値をとった。本発明における金属亜鉛層の亜鉛濃度は、XPS分析により5at%以上の金属亜鉛が検出されている部位の厚み方向の亜鉛濃度の平均値である。
【0054】
図8は、試料7の心線接触部における深さ方向の化学状態解析図である。結合エネルギーのケミカルシフトから、最表面から1.25nmまでの深さでは酸化物主体であり、2.5nm以降は金属亜鉛主体であると判断できる。
【0055】
これらの結果から、アルミニウム心線が接触する部分には、表面に金属亜鉛層が形成されていることで、優れた防食性を有することがわかる。そのうち、金属亜鉛層の亜鉛濃度が5at%以上40at%以下でSiO換算厚みが1nm以上10nm以下である試料4〜10は、いずれも腐食環境放置試験後の接触抵抗が試料1〜3よりも低かった。特に、基材と亜鉛ニッケル合金層との間にニッケルの下地層を有する試料10は試料1〜10のなかで最も優れた防食性を有している。
これに対して、比較例の試料11は、接点部に金属亜鉛層を有していたため、高温高湿放置、高熱放置の試験で接触抵抗が増大した。また、試料12は、心線接触部に金属亜鉛層を有していなかったため、腐食環境放置試験で激しい腐食が認められ、接触抵抗が著しく増加した。
【0056】
なお、図9は試料7及び試料12の心線接触部における腐食電流の測定結果を示す。参考として、めっきを施さない無酸素銅(C1020)の端子材についても値を示している。腐食電流が正の値で大きいほどアルミニウム線がガルバニック腐食を受けており、この図9で示されるように実施例の試料7は腐食電流が小さく、電食の発生を抑制できることがわかる。
【符号の説明】
【0057】
1 防食端子材
2 基材
3 下地層
4 亜鉛ニッケル合金層
5 錫層
6 酸化物層
7 金属亜鉛層
10 端子
11 接続部
12 電線
12a 心線
12b 被覆部
13 心線圧着部
14 被覆圧着部
25 接点予定部
26 心線接触予定部
図1
図2
図3
図4
図5
図6
図7
図8
図9