【実施例】
【0296】
本発明を以下の実施例によって更に説明するが、これらの実施例を、本発明を限定するものとして解釈すべきではない。当業者であれば、単なる日常的な実験を用いて、本明細書に記載の特定の物質及び手順に対する多数の等価物を認識し、又は確認することができるであろう。このような等価物は、以下の実施例に従った特許請求の範囲に包含されることが意図される。
【0297】
実施例1;TRC認識配列を認識及び切断するメガヌクレアーゼの特徴付け
【0298】
1.TRC1−2認識配列を認識および切断するメガヌクレアーゼ
本明細書で「TRC1−2メガヌクレアーゼ」と総称される組換えメガヌクレアーゼ(配列番号8〜27)は、ヒトT細胞受容体アルファ定常領域中に存在するTRC1−2認識配列(配列番号3)を認識及び切断するように操作されていた。各TRC1−2組換えメガヌクレアーゼは、SV40由来N末端ヌクレアーゼ局在化シグナル、第1のメガヌクレアーゼサブユニット、リンカー配列、及び第2のメガヌクレアーゼサブユニットを含む。各TRC1−2メガヌクレアーゼの第1のサブユニットは、配列番号3のTRC1認識半部位に結合し、第2のサブユニットはTRC2認識半部位に結合する(
図1Aを参照されたい)。
【0299】
図2及び
図3に示すように、TRC1結合サブユニット及びTRC2結合サブユニットは各々、それぞれHVR1及びHVR2と呼ばれる56塩基対の超可変領域を含む。TRC1結合サブユニットは、80位又は271位(Q又はE残基を含む)を除いてHVR1領域の外側で同一であり、HVR1領域内では高度に保存されている。同様に、TRC2結合サブユニットもまた、80位又は271位(Q又はE残基を含む)、並びにメガヌクレアーゼTRC1−2x.87EE、TRC1−2x.87QE、TRC1−2x.87EQ、TRC1−2x.87、及びTRC1−2x.163の
139位(R残基を含む)(網掛けの灰色及び下線)を除いて、HVR2領域の外側で同一である。HVR1領域と同様に、HVR2領域も高度に保存されている。
【0300】
配列番号8〜27のTRC1結合領域を
図2に示し、それぞれ配列番号33〜52として提供する。配列番号33〜52はそれぞれ、メガヌクレアーゼTRC1−2x.87EE(配列番号8)のTRC1結合領域である配列番号33と少なくとも90%の配列同一性を共有する。配列番号8〜27のTRC2結合領域を
図3に示し、それぞれ配列番号58〜77として提供する。配列番号58〜77はそれぞれ、メガヌクレアーゼTRC1−2x.87EE(配列番号8)のTRC2結合領域である配列番号58と少なくとも90%の配列同一性を共有する。
【0301】
2.TRC3−4認識配列を認識及び切断するメガヌクレアーゼ
本明細書で「TRC3−4メガヌクレアーゼ」と総称される組換えメガヌクレアーゼ(配列番号28及び29)は、ヒトT細胞受容体アルファ定常領域中に存在するTRC3−4認識配列(配列番号4)を認識及び切断するように操作されていた。各TRC3−4組換えメガヌクレアーゼは、SV40由来N末端ヌクレアーゼ局在化シグナル、第1のメガヌクレアーゼサブユニット、リンカー配列、及び第2のメガヌクレアーゼサブユニットを含む。各TRC3−4メガヌクレアーゼの第1のサブユニットは、配列番号4のTRC3認識半部位に結合し、第2のサブユニットはTRC4認識半部位に結合する(
図1Aを参照されたい)。
【0302】
図4及び
図5に示すように、TRC3結合サブユニット及びTRC4結合サブユニットは各々、それぞれHVR1及びHVR2と呼ばれる56塩基対の超可変領域を含む。TRC3結合サブユニットは、80位又は271位(Q又はE残基を含む)を除いてHVR1領域の外側で同一であり、HVR1領域内では高度に保存されている。同様に、TRC4結合サブユニットもまた、80位又は271位(Q又はE残基を含む)を除いてHVR2領域の外側で同一であり、HVR2領域内では高度に保存されている。
【0303】
配列番号28及び29のTRC3結合領域を
図4に示し、それぞれ配列番号53及び54として提供する。配列番号53及び54は、96.6%の配列同一性を共有する。配列番号28及び29のTRC4結合領域を
図5に示し、それぞれ配列番号78及び79として示す。配列番号78及び79もまた、96.6%の配列同一性を共有する。
【0304】
3.TRC7−8認識配列を認識および切断するメガヌクレアーゼ
本明細書で「TRC7−8メガヌクレアーゼ」と総称される組換えメガヌクレアーゼ(配列番号30〜32)は、ヒトT細胞受容体アルファ定常領域中に存在するTRC7−8認識配列(配列番号5)を認識及び切断するように操作されていた。各TRC7−8組換えメガヌクレアーゼは、SV40由来N末端ヌクレアーゼ局在化シグナル、第1のメガヌクレアーゼサブユニット、リンカー配列、及び第2のメガヌクレアーゼサブユニットを含む。各TRC7−8メガヌクレアーゼの第1のサブユニットは、配列番号5のTRC7認識半部位に結合し、第2のサブユニットはTRC8認識半部位に結合する(
図1Aを参照されたい)。
【0305】
図6及び
図7に示すように、TRC7結合サブユニット及びTRC8結合サブユニットは各々、それぞれHVR1及びHVR2と呼ばれる56塩基対の超可変領域を含む。TRC7結合サブユニットは、80位又は271位(Q又はE残基を含む)を除いてHVR1領域の外側で同一であり、HVR1領域内では高度に保存されている。同様に、TRC8結合サブユニットもまた、80位又は271位(Q又はE残基を含む)を除いてHVR2領域の外側で同一であり、HVR2領域内では高度に保存されている。
【0306】
配列番号30〜32のTRC7結合領域を
図6に示し、それぞれ配列番号55〜57として提供する。配列番号55〜57はそれぞれ、メガヌクレアーゼTRC7−8x.7(配列番号30)のTRC7結合領域である配列番号55と少なくとも90%の配列同一性を共有する。配列番号30〜32のTRC8結合領域を
図7に示し、それぞれ配列番号80〜82として提供する。配列番号80−82はそれぞれ、メガヌクレアーゼTRC7−8x.7(配列番号30)のTRC8結合領域である配列番号80と少なくとも90%の配列同一性を共有する。
【0307】
4.CHO細胞レポーターアッセイにおけるヒトT細胞受容体アルファ定常領域認識配列の切断
TRC1−2、TRC3−4、及びTRC7−8メガヌクレアーゼがそれぞれの認識配列(それぞれ配列番号3、4、及び5)を認識及び切断することができるかどうかを決定するために、各組換えメガヌクレアーゼを、先に記載のCHO細胞レポーターアッセイ(国際公開第/2012/167192号パンフレット及び
図8を参照されたい)を使用して評価した。アッセイを実施するために、細胞のゲノムに組み込まれた非機能性緑色蛍光タンパク質(GFP)遺伝子発現カセットを保有するCHO細胞レポーター株を作製した。各細胞株のGFP遺伝子は、メガヌクレアーゼによるいずれかの認識配列の細胞内切断が機能性GFP遺伝子をもたらす相同組換え事象を刺激するように、一対の認識配列によって分断された。
【0308】
この研究のために開発されたCHOレポーター細胞株において、GFP遺伝子に挿入された1つの認識配列は、TRC1−2認識配列(配列番号3)、TRC3−4認識配列(配列番号4)、又はTRC7−8認識配列(配列番号5)であった。GFP遺伝子に挿入された第2の認識配列は、「CHO−23/24」と呼ばれる対照メガヌクレアーゼによって認識及び切断されるCHO−23/24認識配列であった。TRC1−2認識配列及びCHO−23/24認識配列を含むCHOレポーター細胞は、本明細書では「TRC1−2細胞」と呼ばれる。TRC3−4認識配列及びCHO−23/24認識配列を含むCHOレポーター細胞は、本明細書では「TRC3−4細胞」と呼ばれる。TRC7−8認識配列及びCHO−23/24認識配列を含むCHOレポーター細胞は、本明細書では「TRC7−8細胞」と呼ばれる。
【0309】
CHOレポーター細胞を、それらの対応する組換えメガヌクレアーゼをコードするプラスミドDNAをトランスフェクトし(例えば、TRC1−2細胞にはTRC1−2メガヌクレアーゼをコードするプラスミドDNAをトランスフェクトした)、又はCHO−23/34メガヌクレアーゼをコードするプラスミドDNAをトランスフェクトした。各アッセイにおいて、製造者の指示に従ってLipofectamine2000(ThermoFisher)を使用して、96ウェルプレートにおいて、4e
5のCHOレポーター細胞に50ngのプラスミドDNAをトランスフェクトした。トランスフェクションの48時間後、細胞をフローサイトメトリにより評価して、トランスフェクトされていない陰性対照(TRC1−2bs)と比較したGFP陽性細胞のパーセンテージを決定した。
図9に示すように、TRC1−2、TRC3−4、及びTRC7−8メガヌクレアーゼは全て、対応する認識配列を含む細胞株において、陰性対照を有意に超える頻度でGFP陽性細胞を産生することが見出された。
【0310】
TRC1−2x.87QE、TRC1−2x.87EQ、及びTRC1−2x.87EEメガヌクレアーゼの効力も、時間依存的様式で決定した。この研究では、TRC1−2細胞(1e
6)に1細胞あたり1e
6のメガヌクレアーゼmRNAコピーを、製造元の指示に従ってBioRad Gene Pulser Xcellを使用して電気穿孔した。トランスフェクションの1、4、6、8、及び12日後、細胞をフローサイトメトリによって評価して、GFP陽性細胞のパーセンテージを決定した。
図10に示すように、各TRC1−2メガヌクレアーゼはトランスフェクションの2日後に高効率を示し、50%を超えるGFP陽性細胞が観察された。この効果は12日間にわたって持続し、細胞毒性の証拠は観察されなかった。
【0311】
5.結論
これらの研究は、本発明に包含されるTRC1−2メガヌクレアーゼ、TRC3−4メガヌクレアーゼ、及びTRC7−8メガヌクレアーゼが、それらのそれぞれの認識配列を細胞内で効率的に標的とし、切断できることを実証した。
【0312】
実施例2;T細胞におけるTRC認識配列の切断及び細胞表面T細胞受容体発現の抑制
【0313】
1.Jurkat細胞におけるTRC1−2認識配列の切断
この研究は、本発明に包含されるTRC1−2メガヌクレアーゼが、Jurkat細胞(不死化ヒトTリンパ球細胞株)においてTRC1−2認識配列を切断できることを実証した。1e
6のJurkat細胞に1細胞あたり8e
6の所与のTRC1−2メガヌクレアーゼmRNAコピーを、BioRad Gene Pulser Xcellを製造元の指示に従って使用して電気穿孔した。トランスフェクションの72時間後に、ゲノムDNA(gDNA)を細胞から採取し、T7エンドヌクレアーゼI(T7E)アッセイを実施して内因性TRC1−2認識配列(
図11)における遺伝子改変を推定した。T7Eアッセイでは、TRC1−2認識部位に隣接するプライマーを使用してTRC1−2遺伝子座をPCRにより増幅する。TRC1−2遺伝子座内にインデル(ランダムな挿入又は欠失)がある場合、得られたPCR産物は、野生型対立遺伝子及び突然変異対立遺伝子の混合物からなると思われる。PCR産物を変性させ、ゆっくりと再アニーリングする。ゆっくりとした再アニーリングは、野生型及び突然変異対立遺伝子からなるヘテロ二重鎖の形成を可能にし、ミスマッチ塩基及び/又はバルジを生じる。T7E1酵素は、ミスマッチ部位で切断し、ゲル電気泳動によって可視化され得る切断産物を生じる。
図11は、TRC1−2メガヌクレアーゼの13の異なるバージョンがT7E1アッセイにおいて陽性結果を生じ、内因性TRC1−2認識配列におけるインデルの効果的な生成を示していることを明確に実証した。
【0314】
TRC1−2メガヌクレアーゼの切断特性を更に調べるために、用量反応実験をJurkat細胞で行った。1e
6のJurkat細胞に1細胞あたり3μg又は1μgの所与のTRC1−2メガヌクレアーゼmRNAコピーを、BioRad Gene Pulser Xcellを製造元の指示に従って使用して電気穿孔した。トランスフェクションの96時間後、gDNAを回収し、T7E1アッセイを上記のように行った。
図12に見られるように、TRC1−2x.87メガヌクレアーゼの3つの異なるバージョンを含む15種類の異なるTRC1−2メガヌクレアーゼは、内因性TRC1−2認識部位での切断を示した。TRC1−2x.87EEは特にうまく機能し、T7E1アッセイにおいて強いシグナルを生成し、Jurkat細胞で毒性がほとんど又は全くなかった。
【0315】
2.ヒトT細胞におけるTRC1−2認識配列の切断
この研究は、本発明に包含されるTRC1−2メガヌクレアーゼが、ドナーから得られたヒトT細胞においてTRC1−2認識配列を切断できることを実証した。CD3
+T細胞を抗CD3抗体及び抗CD28抗体で3日間刺激し、次いでAmaxa4D−Nucleofector(Lonza)を製造元の指示に従って使用して、TRC1−2x.87EEメガヌクレアーゼをコードするmRNAを電気穿孔した。トランスフェクションの3日後及び7日後、gDNAを回収し、T7E1アッセイを上記のように行った。
図13Aは、TRC1−2x.87EEがヒトT細胞において内因性TRC1−2認識配列に突然変異を効果的に導入し、メガヌクレアーゼがTRC1−2認識配列を認識及び切断したことを示すことを実証している。切断産物の強度は、トランスフェクションの3日目後と7日目後との間で変化がないと思われ、TRC1−2x.87EEメガヌクレアーゼによる毒性はほとんど又は全くないことを示唆している。内因性TRC1−2認識配列における突然変異がT細胞受容体の表面発現を排除するのに十分であるかどうかを決定するために、抗CD3抗体を使用したフローサイトメトリによって細胞を分析した。
図13Bは、トランスフェクトされたT細胞の約50%がCD3に対して陰性に染色されことを示し、T細胞受容体のノックアウトを示している。CD3陰性集団は、トランスフェクション後3日目と7日目との間で有意に変化せず、TRC1−2x.87EEメガヌクレアーゼに関連する毒性はほとんど若しくはまったくないか、又はT細胞受容体発現の喪失を更に示した。
【0316】
CD3発現の消失がTRC1−2認識部位の突然変異によるものであることを検証するために、トランスフェクトされたT細胞からgDNAを回収し、TRC1−2認識部位遺伝子座をPCRにより増幅した。PCR産物を、Zero Blunt PCRクローニングキット(Thermo Fisher)を製造者の指示に従って使用して、pCR−平滑末端ベクターにクローニングした。個々のコロニーを拾い、ミニプレッププラスミドを配列決定した。
図14は、TRC1−2認識配列で観察された、いくつかの代表的な欠失の配列を示す。観察された配列は、エンドヌクレアーゼによって生成されたDNA二本鎖切断の非相同末端結合修復から生じる欠失の典型的なものである。
【0317】
TRC1−2x.87EEに加えて、TRC1−2x.55、及びTRC1−2x.72を含む他のTRC1−2メガヌクレアーゼは、ヒトT細胞においてT細胞受容体をノックアウトすることができたが、TRC1−2x.87EEについて以前に観察されたノックアウトよりも程度は低かった(表5及び6)。TRC1−2x.72Q47Eは、メガヌクレアーゼの活性部位(アミノ酸47)に突然変異を有し、陰性対照として機能する。
【0318】
【表5】
【0319】
【表6】
【0320】
3.結論
これらの研究は、本発明に包含されるTRC1−2メガヌクレアーゼが、Jurkat細胞(不死化Tリンパ球細胞株)及びヒトドナーから得られたT細胞の両方において、TRC1−2認識配列を認識及び切断することができることを実証した。更に、これらの研究は、インデルの出現によって証明されるように、NHEJがメガヌクレアーゼ切断部位に生じることを実証した。更に、TRC1−2メガヌクレアーゼは、ドナーから得られたヒトT細胞上のT細胞受容体の細胞表面発現を低下させることが示された。
【0321】
実施例3;外因性核酸をヒトT細胞に導入するための組換えAAVベクター
【0322】
1.組換えAAVベクター
本研究において、2つの組換えAAVベクター(AAV405及びAAV406と呼ばれる)を、EagI制限部位を含む外因性核酸配列を相同組換えによりTRC1−2認識配列においてヒトT細胞のゲノムに導入するように設計した。各組換えAAVベクターは、細胞株に、複製を支持するのに必要な「ヘルパー」成分(例えばアデノウイルス)をコードする第1のプラスミド、cap及びrep遺伝子を含む第2のプラスミド、並びにウイルスにパッケージングされる介在DNA配列(例えば外因性核酸配列)を含むウイルス性逆位末端反復配列(ITR)を含む第3のプラスミドをトランスフェクトする三重トランスフェクションプロトコルを使用して調製される(Cots D、Bosch A、Chillon M(2013年)Curr.Gene Ther.13(5):370〜81頁を参照されたい)。
図15は、外因性核酸配列をヌクレアーゼ切断部位で細胞ゲノムに導入するために組換えAAVベクターを使用するための一般的なアプローチを示す。
【0323】
図16に示すプラスミドを使用して、AAV405(配列番号107)を調製した。示されるように、AAV405プラスミドは、一般に、5’ITR、CMVエンハンサー及びプロモータ配列、5’相同アーム、EagI制限部位を含む核酸配列、SV40ポリ(A)シグナル配列、3’相同アーム、及び3’ITRを含む。
図17に示すプラスミドを使用して、AAV406(配列番号108)を調製した。示されるように、AAV406プラスミドは、AAV405と同様の配列を含むが、5’相同アームの上流のCMVエンハンサー及びプロモータ配列を欠く。本AAV研究は、AAV形質導入効率の陽性対照として組み込まれた、GFPをコードするAAVベクター(GFP−AAV)の使用をさらに含んでいた。
【0324】
2.TRC1−2認識配列への外因性核酸配列の導入
TRC1−2メガヌクレアーゼによる二本鎖切断の発生後にAAV鋳型が相同組換え修復(homology directed repair)(HDR)に適しているかどうかを試験するために、ヒトT細胞を使用して一連の実験を行った。第1の実験では、TRC1−2RNAの電気穿孔のタイミング及び組換えAAVベクターの形質導入を決定した。ヒトCD3
+T細胞を、抗CD3抗体及び抗CD28抗体で3日間刺激し、次いで、Amaxa 4D−Nucleofector(Lonza)を製造者の指示に従って使用して、TRC1−2x.87EEメガヌクレアーゼをコードするmRNA(1μg)を電気穿孔した。トランスフェクションの2、4、又は8時間後に、細胞にGFP−AAV(1e
5のウイルスゲノム/細胞)を形質導入した。細胞を、形質導入の72時間後にGFP発現についてフローサイトメトリによって分析した。
図18に示すように、トランスフェクションの2時間後に細胞を形質導入した場合、最も高い形質導入効率が観察された(GFP陽性細胞88%)。形質導入効率は、トランスフェクションと形質導入との間の時間が増加するにつれて有意に減少し、4時間でGFP陽性細胞78%及び8時間でGFP陽性細胞65%であった。
【0325】
トランスフェクションの2時間後に細胞を形質導入した場合、効率的なウイルス形質導入が起こったと判断したので、AAV405及びAAV406ベクターをヒトT細胞においてHDR鋳型として使用した。CD3
+T細胞を刺激し、上記のように1μgのTRC1−2x.87EEmRNAをトランスフェクトした。トランスフェクションの2時間後に、細胞にAAV405又はAAV406(1e
5のウイルスゲノム/細胞)のいずれかを形質導入した。形質導入のみの対照として、細胞に(水を)擬似トランスフェクションし、AAV405又はAAV406(1e
5のウイルスゲノム/細胞)のいずれかを形質導入した。メガヌクレアーゼのみの対照のために、細胞にTRC1−2x.87EEをトランスフェクションし、次いでトランスフェクションの2時間後に(水を)擬似形質導入した。
【0326】
AAVベクターがHDR鋳型として機能するかどうかを決定するために、gDNAを細胞から回収し、AAVベクター中の相同領域を超える配列を認識するプライマーを使用して、PCRによりTRC1−2遺伝子座を増幅させた。相同領域の外側のPCRプライマーは、AAVベクターからではなく、T細胞ゲノムの増幅のみを可能にした。PCR産物を精製し、EagIで消化した。
図19は、TRC1−2x.87EEをトランスフェクトされ、いずれかのAAVベクターを形質導入された細胞から増幅されたPCR産物の切断を示し(矢印を参照されたい)、TRC1−2認識配列へのEagI部位の挿入を示している。全ての対照細胞集団由来のPCR産物はEagIによって切断されず、EagI部位の挿入がTRC1−2メガヌクレアーゼによるDNA二本鎖切断の生成を必要とすることを実証している。
【0327】
ヒトT細胞へのEagI部位の挿入を更に明確にするために、バルクPCR産物からの個々の産物を調べた。上記実験から生成された未消化PCR産物を、Zero Blunt PCRクローニングキット(Thermo Fisher)を製造者の指示に従って使用してpCR−平滑ベクターにクローニングした。コロニーPCRを、M13フォワード及びリバースプライマーを使用して実施し(pCR平滑末端はインサートに隣接するM13フォワード及びリバースプライミング部位を含む)、TRC1−2x.87EE及びAAV405又はAAV406をトランスフェクトされた細胞由来のPCR産物の一部をゲル電気泳動により分析した(それぞれ
図20A及び21A)。どちらの場合も、完全長PCR産物(約1600bp)、より小さいインサート、及びいくつかの空のプラスミド(約300bp)が混在している。このアッセイでは、完全長よりも小さいが空のプラスミドよりも大きいバンドは、しばしば、TRC1−2認識配列内に大きな欠失を含む配列である。平行して、PCR産物の別の部分をEagIで消化して、TRC1−2認識配列に挿入されたEagI認識部位を含むクローンのパーセントを決定した。
図20B及び21Bは、いくつかのPCR産物がEagIで切断され(例えば、
図20B、第2列、左から6レーン)、約700及び800bpの予想される断片を生成することを示す。これらのゲルから、EagI挿入が、AAV405及びAAV406についてそれぞれ約25%及び6%(空のベクターに対して調整)であると推定することができる。
【0328】
未切断及びEagIにより消化されたPCR産物のゲル電気泳動からの観察を確認するために、各PCR産物の残りの部分を配列決定した。
図22Aは、TRC1−2認識配列で観察されたいくつかの代表的な欠失及び挿入の配列を示す。これらの配列は、エンドヌクレアーゼによって生成されたDNA二本鎖切断の非相同末端結合修復から生じる配列に典型的なものである。EagIで切断されたPCR産物は全て、TRC1−2認識配列に挿入されたEagI部位を含んでいた(
図22B)。
【0329】
3.AAV形質導入効率の向上
AAV形質導入をトランスフェクションの2時間後に実施した場合が、それより後に実施した場合よりも効率的であるという観察の観点から、トランスフェクションおよび形質導入のタイミングを最適化するための実験を行った。ヒトCD3
+T細胞を、抗CD3抗体及び抗CD28抗体で3日間刺激し、次いでAmaxa 4D−Nucleofector(Lonza)を製造者の指示に従って使用して、TRC1−2x.87EEメガヌクレアーゼ(1μg)を電気穿孔した。トランスフェクションの直後又はトランスフェクションの2時間後に、細胞にGFP−AAV(1e
5のウイルスゲノム/細胞)を形質導入した。更に、未刺激細胞に、GFP−AAV(1e
5のウイルスゲノム/細胞)を形質導入した。形質導入の72時間後に、細胞をGFP発現についてフローサイトメトリによって分析した。
図23は、トランスフェクションの2時間後に行ったGFP−AAV形質導入が90%のGFP陽性細胞をもたらしたが、トランスフェクション直後の形質導入は98%のGFP陽性細胞を生じたことを示す。休止T細胞はAAV形質導入を受け入れないと思われ、GFP陽性細胞は約0%であった。非形質導入細胞はまた、約0%のGFP陽性細胞を示した。
【0330】
4.概要
これらの研究は、AAVベクターを組換えメガヌクレアーゼと併せて使用して、相同組換えを介して、外因性核酸配列をTCRアルファ定常領域の切断部位に組み込むことができることを実証する。
【0331】
実施例4;ヒトT細胞においてキメラ抗原受容体をコードする外因性核酸を導入するための組換えAAVベクター
【0332】
1.組換えAAVベクター
本研究において、2つの組換えAAVベクター(AAV−CAR100及びAAV−CAR763と呼ばれる)を、キメラ抗原受容体をコードする外因性核酸配列を相同組換えによりTRC1−2認識配列においてヒトT細胞のゲノムに導入するように設計した。各組換えAAVベクターは、先に記載した三重トランスフェクションプロトコルを使用して調製した。
【0333】
AAV−CAR100(本明細書ではAAV408とも呼ぶ)は、
図24に示すプラスミド(配列番号109)を使用して調製した。示されるように、AAV−CAR100(AAV408)は、自己相補的なAAVベクターを作製するために設計され、一般に、5’ITR、5’相同アーム、抗CD19キメラ抗原受容体をコードする核酸配列、SV40ポリ(A)シグナル配列、3’相同アーム、及び3’ITRを含む。
図25(配列番号110)に示すプラスミドを使用してAAV−CAR763(本明細書ではAAV412とも呼ぶ)を調製した。示されるように、AAV−CAR763(AAV412)プラスミドは、一般に、AAV−CAR100(AAV408)と同じ配列を含むが、一本鎖AAVベクターを作製するために設計される。一本鎖AAVベクターはより大きなペイロードを収容することができるので、5’相同アーム及び3’相同アームは、AAV−CAR763(AAV412)においてAAV−CAR100(AAV408)よりも長い。本AAV研究は、AAV形質導入効率の陽性対照として組み込まれた、GFPをコードするAAVベクター(GFP−AAV)の使用を更に含む。
【0334】
2.TRC1−2認識配列へのキメラ抗原受容体配列の導入
キメラ抗原受容体配列をTCRアルファ定常領域遺伝子に挿入し、同時に内因性TCR受容体の細胞表面発現をノックアウトするための組換えAAVベクターの使用効率を決定するための研究を行う。
【0335】
形質導入効率を確認するために、ヒトCD3
+T細胞を得て、抗CD3及び抗CD28抗体で3日間刺激し、次いで、Amaxa 4D−Nucleofector(Lonza)を製造者の指示に従って使用して、TRC1−2x.87EEメガヌクレアーゼをコードするmRNA(1μg)を電気穿孔した。細胞に、上記のようにトランスフェクションの直後にGFP−AAV(1e
5のウイルスゲノム/細胞)を形質導入する。細胞を、形質導入の72時間後に、GFP発現についてフローサイトメトリによって分析し、形質導入効率を決定する。
【0336】
AAV−CAR100(AAV408)及びAAV−CAR763(AAV412)ベクターは、抗CD19キメラ抗原受容体配列の挿入のためにヒトT細胞においてHDR鋳型として使用される。ヒトCD3
+T細胞を刺激し、上記のように1μgのTRC1−2x.87EEmRNAをトランスフェクトする。次いで、トランスフェクションの直後又はトランスフェクションの0〜8時間以内のいずれかに、細胞にAAV−CAR100(AAV408)又はAAV−CAR763(AAV412)(1e
5のウイルスゲノム/細胞)を形質導入する。形質導入のみの対照として、細胞に(水を)擬似トランスフェクションし、AAV−CAR100(AAV408)又はAAV−CAR763(AAV412)(1e
5のウイルスゲノム/細胞)のいずれかを形質導入した。メガヌクレアーゼのみの対照のために、細胞にTRC1−2x.87EEをコードするmRNAをトランスフェクションし、次いでトランスフェクションの直後に(水を)擬似形質導入する。
【0337】
キメラ抗原受容体配列の挿入は、TCRアルファ定常領域遺伝子中の切断部位の配列決定によって確認する。キメラ抗原受容体の細胞表面発現は、抗Fab又は抗CD19抗体を使用して、フローサイトメトリによって確認する。内因性T細胞受容体の細胞表面でのノックアウトは、前述のフローサイトメトリによって決定される。
【0338】
実施例5;キメラ抗原受容体の挿入及び発現
【0339】
1.キメラ抗原受容体配列のTRC1−2認識配列への挿入
本研究では、AAVが、キメラ抗原受容体配列をTCRアルファ定常領域遺伝子に挿入し、同時に内因性TCR受容体の細胞表面発現をノックアウトするために使用できるHDR鋳型を提供できるかどうかを試験する。第1の実験では、上記のようにヒトCD3
+T細胞(1e
6細胞)を刺激し、TRC1−2x.87EEメガヌクレアーゼをコードするmRNA(2μg)を電気穿孔し、次いでAAV412(1e
5ウイルスゲノム/細胞)を直ちに形質導入した。対照として、細胞に擬似電気穿孔し、次いでAAV412を形質導入するか、又はTRC1−2x.87EEをコードするmRNAを電気穿孔し、次いで擬似形質導入した。擬似電気穿孔し、擬似形質導入した細胞の更なる対照も含んでいた。
【0340】
AAV HDR鋳型がTRC1−2認識配列における二本鎖切断の修復に利用されたかどうかを決定するための、PCRに基づくアッセイを開発した。3組のプライマー対をPCR分析に使用した。第1のセットは、AAV412の相同アームを有する領域を増幅するように設計された。この第1プライマーセット(表7において「内部ホモログアーム/CAR領域」と称される)は相同領域内にあるので、ゲノムの非改変TRC1−2認識配列座(349bp)、AAV412ベクターインプット(2603bp)、又はCAR遺伝子が挿入されたTRC1−2認識配列(2603bp)のいずれかを増幅する。第2のプライマーセット(表7において「外側5’相同アーム」と称される)は、AAV412 HDR鋳型のCAR領域内にアニーリングする1つのプライマー、AAV412 HDR鋳型の5’相同アームの外側のヒトゲノムにアニーリングする1つのプライマーを含み、CAR遺伝子がTRC1−2認識配列内にうまく挿入された場合にのみ、1872bpの断片を増幅する。第3のプライマーセット(表7において「外側3’相同アーム」と称される)は、AAV412 HDR鋳型のCAR領域内にアニーリングする1つのプライマー、及びAAV412 HDR鋳型の3’相同アームの外側のヒトゲノムにアニーリングする1つのプライマーを含む。第2のプライマーセットと同様に、第3のプライマーセットは、CAR遺伝子がTRC1−2認識配列にうまく挿入された場合にのみ1107bpの断片を増幅する。まとめると、3つ全てのプライマーセットによるPCR産物は、CAR配列が細胞内に存在するかどうか(プライマーセット1)、及びそれがTRC1−2認識配列に挿入されているかどうか(プライマーセット2及び3)を示す。
【0341】
形質導入後4日目に、上記のPCRプライマー対を使用して細胞を分析した。簡潔には、約3000個の細胞を回収し、ペレット化し、溶解し、PCRを行って、CAR遺伝子がTRC1−2認識配列に挿入されたかどうかを決定した。PCR産物を、
図26に示すアガロースゲルにおいて分離した(レーンの説明は表7に示す)。レーン1〜3は、TRC1−2x.87EEをコードするmRNAを電気穿孔し、擬似形質導入したサンプル由来のPCR産物である。
【0342】
予想通り、最初のプライマー対(「内部ホモログアーム/CAR領域」)は、非改変TRC1−2認識配列座を増幅し、レーン1に示される349bpのバンドを生成した。レーン2及び3は、CAR遺伝子がTRC1−2認識配列に挿入されている場合にのみ産物を生成するプライマー対に対応し、産物は示されていない。レーン7〜9は、擬似電気穿孔、及び擬似形質導入されたサンプルを表し、上述のTRC1〜2x.87EEmRNAのみの対照と同じバンドを示す。レーン4〜6は、TRC1−2x.87EEmRNAを電気穿孔し、AAV412を形質導入されたサンプル由来のPCR産物を示す。レーン4は、第1のプライマー対(「内部ホモログ/CAR領域」)により生成された2つのバンドを示し、ゲノムの非改変TRC1−2認識配列座(349bp)及びAAV412ベクターインプット(2603bp)、又はCAR遺伝子が挿入されたTRC1−2認識配列(2603bp)の増幅を示す。レーン5及び6は、CAR核酸配列がTRC1−2x.87EE認識部位に挿入されている場合にのみ、産物を増幅するプライマー対によって生成される産物を示す。両方のバンドは予測されるサイズ(それぞれ1872及び1107bp)である。レーン10〜12は、擬似電気穿孔し、AAV412を形質導入したサンプルを表す。レーン10は、第1プライマー対(「内部ホモログ/CAR領域」)によって生成された2つのバンドを示し、ゲノムの非改変TRC1−2認識配列座(349bp)及びAAV412ベクターインプット(2603bp)の増幅を示す。レーン11及び12は、CAR遺伝子がTRC1−2認識配列に挿入されている場合にのみ産物を生成するプライマー対に対応し、産物は示されていない。レーン11及び12(相同アームの外側のプライマーを含む)にバンドが存在しないことは、レーン10の2603bpバンドがAAV412インプットの増幅から生成されたことを示す。
【0343】
まとめると、PCR分析は、TRC1−2x.87EEmRNA及びAAV412の両方が細胞中に存在する場合、CAR遺伝子がTRC1−2x.87EE認識部位に導入されることを明らかに実証している。従って、本発明者らは、AAV412がTRC1−2x.87EE認識配列にCAR遺伝子を挿入するのに使用できる適切なHDR鋳型を産生するのに役立つと結論する。
【0344】
第2の実験では、上記のようにヒトCD3
+T細胞を刺激し、TRC1−2x.87EEメガヌクレアーゼをコードするmRNAを電気穿孔した後、直ちに漸増量のAAV408(0μL、3.125μL、6.25μL、12.5μL、又は約25μL、これは約0、3.125e
3、6.250e
3、1.25e
4、及び2.5e
4ウイルスゲノム/細胞に対応する)を形質導入した。対照として、細胞に擬似電気穿孔し、次に漸増量のAAV408を形質導入した。更なる対照には、擬似電気穿孔し、擬似形質導入した細胞、並びにTRC1−2x.87EEmRNAを電気穿孔し、次に擬似形質導入した細胞が含まれた。形質導入後4日目に、細胞を回収し、上記のように分析したが、CAR遺伝子がTRC1−2認識配列に挿入されている場合にのみ産物を増幅するプライマー対のみを使用した。
図27に示すように、PCR産物をアガロースゲルにおいて分離した。
図27Aは、CAR遺伝子がTRC1−2認識配列座に挿入されている場合にのみ、その遺伝子座の5’末端に産物を増幅する上記のプライマー対(「外側5’相同アーム」)を使用して生成されたPCR産物を示す。
図27Bは、CAR遺伝子がTRC1−2認識配列座に挿入されている場合にのみ、その遺伝子座の3’末端に産物を増幅する上記のプライマー対(「外側3’相同アーム」)を使用して生成されたPCR産物を示す。レーンの説明は表8に示す。
図27A及び27Bの両方のレーン1〜5は、擬似電気穿孔又は擬似電気穿孔し、次いで擬似形質導入したサンプルを表す。擬似電気穿孔した細胞においてPCR産物を見ることはできず、AAV408によって生成されたHDR鋳型が、TRC1−2x.87EEmRNAの不在下でTRC1−2認識配列にCAR遺伝子を挿入できないことを示している。レーン6は、TRC1−2x.87EEmRNAを電気穿孔し、擬似形質導入したサンプルを表す。PCR産物を見ることはできず、TRC1−2認識配列にCAR遺伝子が挿入されていないことを示している。レーン7〜10は、TRC1−2x.87EEmRNAを電気穿孔し、漸増量のAAV408を形質導入したサンプルを表す。各PCRの適切なサイズのバンドが明らかであり、これは、AAV408がTRC1−2認識配列の修復のためのHDRドナーを産生でき、CAR遺伝子の挿入をもたらし得ることを示している。
【0345】
【表7】
【0346】
【表8】
【0347】
上記のPCRベースのアッセイは、CAR遺伝子がTRC1−2認識配列に挿入されたかどうかを決定するのに有用であるが、効率に関する情報を与えない。CAR挿入の効率を決定するために、本発明者らは、デジタルPCRベースのアッセイを開発した(
図28Aに概略を示す)。このアッセイでは、2つのプライマーセットを使用する。第1のセットは、無関係の遺伝子配列を増幅し、鋳型数を制御する参照配列を供給する。第2のセットは、CAR遺伝子がTRC1−2認識配列に挿入されている場合にのみ産物が増幅されるように、CAR遺伝子内にアニーリングする1つのプライマーと3’相同アームの外側にアニーリングする1つのプライマーからなる。VIC標識プローブは、第1のプライマーセットから生成されたアンプリコン内にアニーリングし、FAM標識プローブは、第2のプライマーセットによって生成されたアンプリコン内にアニーリングする。FAM標識プローブによって検出されたアンプリコンの数を、VIC標識プローブによって検出された参照配列アンプリコンの数で割ることにより、CAR遺伝子の挿入によって改変されたTRC1−2認識配列座のパーセントを正確に定量することが可能となる。
【0348】
図28Bは、擬似電気穿孔し、次いで形質導入したサンプル、TRC1−2x.87EEmRNAを電気穿孔し、次いで擬似形質導入したサンプル、又はTRC1−2x.87EEmRNAを電気穿孔し、次いで漸増量のAAV408を形質導入したサンプルのいずれかについてのデジタルPCRの結果を示す。デジタルPCRは、形質導入の約1週間後に細胞から単離したゲノムDNAを用いて行った。
図27に記載されたPCRからの観察と一致して、両方の対照サンプル(形質導入のみ、又は電気穿孔のみ)は、TRC1−2x.87EE認識配列に挿入されたCAR遺伝子が0%であったことが判明した。TRC1−2x.87EEをコードするmRNAを電気穿孔し、次いで漸増量のAAV408を形質導入したサンプルは、約1.5%〜7%を有することが判明した。アッセイは2つの異なる機器(商標QX200及びQS3D)で実施され、このデジタルPCRベースのアッセイの感度及び精度を実証する顕著な一致を示した。
【0349】
2.T細胞上の抗CD19キメラ抗原受容体の発現
CARの挿入が分子レベルで起こったかどうかを決定することに加えて、AAV408をHDR鋳型として使用してTRC1−2認識配列にCAR遺伝子を挿入した細胞における抗CD19キメラ抗原受容体の発現レベルを決定しようと努めた。更に、CARのTRC1−2x.87EE認識配列への挿入がT細胞受容体のノックアウトをもたらす効率を調べた。上記並びに
図27及び28で分析したサンプルも、フローサイトメトリによってCAR及びCD3の発現について分析した。形質導入の約4日後、細胞を抗CD19CAR(抗Fab−Alexa647)又はCD3(CD3−BB515)を認識する抗体で標識し、フローサイトメトリによって分析した。
図29Aは、Y軸に抗CAR標識を示し、X軸に抗CD3標識を示すフローサイトメトリプロットを示す。擬似電気穿孔及び擬似形質導入した細胞(MOI−0)は、圧倒的にCD3
+/CAR
−であった(右下の象限、98.7%)。擬似電気穿孔し、次に漸増量のAAV408を形質導入した細胞は、対照細胞と本質的に同一と思われ、CD3
+/CAR
−集団は98.8%、99、99%、及び99.1%であった。従って、本発明者らは、AAV408ウイルス単独では検出可能なレベルのCAR発現を駆動しておらず、T細胞受容体の発現を破壊することもできないと結論する。
【0350】
図29Bは、TRC1−2x.87EEをコードするmRNAを電気穿孔した後、擬似形質導入したサンプル、又はTRC1−2x.87EEを電気穿孔した後、漸増量のAAV408を形質導入した細胞のフローサイトメトリプロットを示す。電気穿孔し、次いで擬似形質導入した細胞は、47.1%のCD3
−細胞を示し、T細胞受容体複合体の効率的なノックアウトを示す。抗CD19CARで標識したバックグラウンドは非常に低く、CD3
−集団で0.6%、CD3
+集団で0.78%であった。TRC1−2x.87EEをコードするmRNAを電気穿孔し、次いで漸増量のAAV408を形質導入したサンプルは、CD3
−集団において2.09%〜5.9%の範囲のCAR標識を示した。また、CD3
+集団におけるCAR標識のわずかな増加もあり、1.08%から1.91%に及ぶ。本発明者らは、CD3
+集団におけるCAR
+細胞の増加の原因を特定しなかったが、CARが非発現T細胞受容体対立遺伝子に挿入された可能性がある(T細胞受容体アルファ鎖の1つの対立遺伝子のみが発現され、T細胞受容体複合体へ組み込まれている)。
【0351】
これらのデータは、上記の定量的デジタルPCRベースのアッセイとよく相関していた。例えば、AAV408の最高MOI(2.5e
4ウイルスゲノム/細胞)において、デジタルPCRアッセイは約6%のCAR挿入を示し、フローサイトメトリアッセイは5.9%のCAR
+/CD3
−細胞を示した。CAR
+/CD3
+集団を考慮に入れると、このデータは、フローサイトメトリアッセイが示す約7.8%CAR
+はデジタルPCRによる6%と比較していまだ全く同等である。
【0352】
実施例6;更なるAAVベクターの特徴付け
【0353】
1.キメラ抗原受容体配列のTRC1−2認識配列への挿入
AAVベクターがCAR遺伝子をTRC1−2x.87EE認識配列に挿入するのに適したHDR鋳型を提供できることを示したので、本発明者らはAAVベクターの構成を最適化しようと努めた。本発明者らは、TRC1−2認識配列座及びAAV ITRに対する短い相同領域に隣接する、JeTプロモータによって駆動されるCAR遺伝子発現カセットを含む自己相補的AAVゲノムを作製するために使用できるベクターを作製した。このベクターはAAV421(
図30;配列番号123)と呼ばれる。自己相補的AAVのパッケージング能力が限られているため、短い相同アームが必要であった。更に、長い相同アーム及びAAV ITRに隣接する、CMVプロモータによって駆動されるCAR遺伝子発現カセットを含む一本鎖AAVゲノムを作製するために使用できるベクターを作製した。このベクターはAAV422(
図31;配列番号124)と呼ばれる。一本鎖AAVゲノムはより大きなカーゴ容量を有するので、自己相補的ベクターよりも長い相同アームを利用することができた。
【0354】
AAV421及びAAV422がCAR遺伝子のTRC1−2認識配列への挿入を標的とするのに有用であるかどうかを試験するために、上記と同様のいくつかの実験をヒトCD3
+T細胞で行った。第1の実験では、ヒトCD3
+T細胞(1e
6細胞)に擬似電気穿孔し、次いで漸増量のAAV421若しくは422を形質導入するか、又はTRC1−2x.87EEmRNA(2μg)を電気穿孔し、次いで漸増量のAAV421又はAAV422を形質導入するかのいずれかを行った。前述のAAV408による実験は、MOIが高いほどより効率的なCAR挿入をもたらすことを示唆したので、AAV422 MOIは、上記の実験よりこの実験においてAAV421より有意に高かった(およそMOIは1.25e
4、2.5e
4、5e
4、及び1e
5ウイルスゲノム/細胞であった)。AAV421ウイルスストックは、前述の実験より有意に高い力価を可能にするほど十分に濃縮されていなかった。対照として、細胞を電気穿孔(擬似又はTRC1〜2x.87EEmRNAで)し、次いで擬似形質導入した。この実験の追加成分として、「大規模」条件を実施し、10e
6細胞(典型的な実験よりも10倍多い)にTRC1−2x.87EEmRNAを電気穿孔し、次いでAAV422(2.5e
4ウイルスゲノム/細胞)を形質導入した)。最後に、本発明者らはまた、第1のウイルスストックと比較するために、AAV421の第2のウイルスストックを試験した。
【0355】
CAR遺伝子の挿入は、CAR遺伝子がTRC1−2x.87EE認識配列に挿入されている場合にのみ産物を増幅するプライマー対を使用して、上記のようにPCRによって決定した。PCRを、
図32A及び32Bに示されるアガロースゲルによって分離した(レーンの説明は、表9及び10に示す)。
図32Aのサンプル1には擬似電気穿孔し、次いで擬似形質導入し、サンプル2〜5には擬似電気穿孔し、次いでAAV421を形質導入した。ゲルは、これらのサンプルが全てPCR産物を生成せず、TRC1−2x.87EEmRNAの不在下で、AAV421がCAR遺伝子のTRC1−2認識配列への挿入を駆動できないことを示している。更に、TRC1−2x.87EEmRNAを電気穿孔し、次いで擬似形質導入した対照サンプル(サンプル6)は、PCR産物を示さなかった。
図32Aのサンプル7〜10には、TRC1−2x.87EEmRNAを電気穿孔し、次に漸増量のAAV421を形質導入した。ゲルは、5’及び3’相同アームの両方を越えて伸長した産物のPCRバンドを示し(各サンプル番号の下の2つのバンド)、CAR遺伝子のTRC1−2認識配列への組み込みを実証している。最後に、
図32Aにおいて、レーン11及び12は、それぞれ1e
6又は10e
6細胞/サンプルのいずれかで開始した、TRC1−2x.87EEmRNAを電気穿孔し、次いでAAV422を形質導入されたサンプルを表す。両方のPCRバンド(相同アームが長いことを考慮して異なるプライマーが使用されたため、最初のセットのほうがより大きい)の存在は、CAR遺伝子のTRC1−2認識配列への挿入が成功したことを示す。
【0356】
図32Bのサンプル1には擬似電気穿孔し、次いで擬似形質導入し、サンプル2〜5には擬似電気穿孔し、次いで漸増量のAAV422を形質導入した。(表10)。ゲルは、これらのサンプルが全てPCR産物を生成せず、TRC1−2x.87EEmRNAの不在下で、AAV422がCAR遺伝子のTRC1−2認識配列への挿入を駆動できないことを示している。
図32Bのサンプル7〜10には、TRC1−2x.87EEmRNAを電気穿孔し、次に漸増量のAAV422を形質導入した。ゲルは、5’及び3’相同アームの両方を越えて伸長した産物のPCRバンドを示し、CAR遺伝子のTRC1−2認識配列への組み込みを実証している。最後に、サンプル11は、TRC1−2x.87EEmRNAを電気穿孔し、次いで
図32Aに示されるサンプルとは異なるウイルスストック由来のAAV421を形質導入したサンプルを表す。バンドの存在は、CAR遺伝子のTRC1−2認識配列への挿入を示し、異なるウイルスストック間の再現性を裏付けている。まとめると、
図32は、AAV421及びAAV422の両方が、CAR遺伝子をTRC1−2認識配列に挿入するのに適したHDR鋳型を生成できることを明確に実証している。
【0357】
【表9】
【0358】
【表10】
【0359】
2.AAV421を使用したT細胞上の抗CD19キメラ抗原受容体の発現
ここでは、AAV421を用いてCAR遺伝子をTRC1−2認識配列に挿入した細胞における、抗CD19キメラ抗原受容体の発現レベルを決定するよう努めた。上記及び
図32Aで分析したサンプルも、フローサイトメトリによってCAR及びCD3の発現について分析した。形質導入の約4日後、細胞を抗CD19CAR又はCD3を認識する抗体で標識し、フローサイトメトリによって分析した。
図33Aは、擬似電気穿孔し、AAV421を形質導入した細胞と、擬似電気穿孔し、擬似形質導入した対照細胞とについてのフローサイトメトリプロットを示す。擬似電気穿孔および擬似形質導入した細胞(MOI−0)は、圧倒的にCD3
+/CAR
−であった(右下の象限、98.8%)。擬似電気穿孔し、次に漸増量のAAV421を形質導入した細胞は、対照細胞と本質的に同一と思われ、CD3
+/CAR
−集団は98.8%、98.6%、98.8%、及び97.9%であった。従って、本発明者らは、AAV421ウイルス単独では検出可能なレベルのCAR発現を駆動しておらず、T細胞受容体の発現を破壊することもできないと結論づける。
【0360】
図33Bは、TRC1−2x.87EEmRNAを電気穿孔した後、擬似形質導入したサンプル、又はTRC1−2x.87EEを電気穿孔した後、漸増量のAAV421を形質導入した細胞のフローサイトメトリプロットを示す。電気穿孔し、次いで擬似形質導入した細胞は、56.7%のCD3
−細胞を示し、T細胞受容体複合体の効率的なノックアウトを示す。抗CD19CARで標識したバックグラウンドは非常に低く、CD3
−集団で0.48%、CD3
+集団で0.36%であった。TRC1−2x.87EEをコードするmRNAを電気穿孔し、次いで漸増量のAAV412を形質導入したサンプルは、CD3
−集団において4.99%〜13.4%の範囲の有意な量のCAR標識を示した。また、CD3
+集団におけるCAR標識のわずかな増加もあり、1.27%から3.95%に及ぶ。上記のように、CAR遺伝子が非発現T細胞受容体対立遺伝子に挿入されている可能性がある。また、AAV408を用いた実験とは対照的に、CAR
+集団はより高い平均蛍光強度で、より良好に定義され、JeFプロモータがeF1αコアプロモータよりも高い発現を駆動することが示唆された。
【0361】
AAV421をTRC1−x.87EEと併せて使用するCAR遺伝子の挿入を評価する一方で、本発明者らはCD3
−/CAR
+集団を優先的に増殖及び濃縮させる方法を決定しようと努めた。上記及び
図33に示す実験から、本発明者らは、TRC1−2x.87EEmRNA(2μg)を電気穿孔し、次いでAAV421(3.13e
4ウイルスゲノム/細胞)を形質導入した細胞を使用した。対照試料は、上記及び
図33に示す実験から採取した、擬似電気穿孔及び擬似形質導入、擬似電気穿孔及びAAV421の形質導入、又はTRC1−2x.87EEの電気穿孔及び擬似形質導入を行ったものであった。対照の濃縮及び増殖プロセスとして、これらの細胞を、IL−7及びIL−15(いずれも10ng/mL)を補充した完全成長培地において6日間インキュベートした。次いで、細胞を抗CD19CAR及びCD3に対する抗体で標識し、フローサイトメトリによって分析した(
図34A)。擬似電気穿孔し、擬似形質導入した細胞は、CD3
−/CAR
+象限において低レベルのバックグラウンド染色を示した(0.13%)。CD3
−/CAR
+集団は、擬似電気穿孔し、次いでAAVを形質導入したサンプル、又はTRC1−2x.87EEmRNAを電気穿孔し、次いで擬似形質導入したサンプルにおいて本質的に同じであった(それぞれ0.16%及び0.55%)。TRC1−2x.87EEmRNAを電気穿孔し、擬似形質導入した細胞は53.2%のCD3
−/CAR
−集団を有し、
図33Bに示されたこの実験の最初の部分で染色された量に非常に近い(56.7%)。TRC1−2x.87EEを電気穿孔し、AAVを形質導入した細胞は12.6%のCD3
−/CAR
+細胞を示し、
図33に示されるこれらの細胞の元の標識とほぼ同一であり(13.4%)、IL−7とIL−15の混合物が、特異的CD3
−/CAR
+細胞集団を濃縮又は増殖させるには不十分であることを実証した。
【0362】
次に、上記の4つのサンプルを、細胞表面上にCD19を提示するIM−9細胞と共にインキュベートすることにより、抗原特異的様式でCD3
−/CAR
+集団を濃縮しようと努めた。IM−9細胞をマイトマイシンCで前処理することによって不活性化し、1:1の比でサンプルと共に、IL−7及びIL−15(10ng/mL)の存在下で6日間インキュベートした。次いで、細胞を、CD3及び抗CD19CARに対する抗体で標識し、フローサイトメトリによって分析した(
図34B)。擬似電気穿孔し、擬似形質導入した細胞は、CD3
−/CAR
+象限において低レベルのバックグラウンド染色を示した(0.2%)。CD3
−/CAR
+集団は、擬似電気穿孔し、次いでAAVを形質導入したサンプルにおいて同じであり(0.2%)、TRC1−2x.87EEを電気穿孔し、擬似形質導入した細胞においてわずかに高かった(1.24%)。TRC1−2x.87EE単独対照のCD3
−/CAR
+細胞の増加は、CAR核酸がシステムに導入されていないため、バックグラウンドと見なされる。TRC1−2x.87EEmRNAを電気穿孔し、擬似形質導入した細胞は、42.5%のCD3
−/CAR
−集団を有し、増殖前(56.7%、
図33)より有意に低く、CD
+細胞がこのシステムにおいて増殖優位性を有し得ることを示唆している。しかし、TRC1−2x.87EEを電気穿孔し、AAVを形質導入した細胞は、49.9%のCD3
−/CAR
+細胞を示し、
図33に示すこれらの細胞の元の標識(13.4%)と比較して劇的に増加し、IL−7及びIL−15の存在下におけるこのサンプルとIM−9細胞とのインキュベーションが、CD3
−/CAR
+集団を濃縮及び増殖させるのに非常に有効であることを実証している。CD3
+/CAR
+集団もまた同じ条件下で増殖させ、擬似電気穿孔/AAV形質導入サンプル及びTRC1−2x.87EE電気穿孔/AV形質導入サンプルは、それぞれ2.53%及び15.3%のCD3
+/CAR
+を示す。
【0363】
TRC1−2x.87EEを電気穿孔し、次いでAAV421を形質導入した細胞では、CD3−集団の24.2%が増殖前にCAR
+であった(
図33B)。IL−7及びIL−15を補充した培地中でのインキュベーション後、CD3
−細胞の25.3%がCAR
+であり(
図34A)、遺伝子ノックイン対遺伝子ノックアウトの比率は変化しなかったことが示された。しかし、IL−7及びIL−15に加えてIM−9細胞と共にインキュベートした後、CD3
−細胞の80%以上(80.35%、
図34B)がCAR
+であり、IM−9細胞とのインキュベーションが抗原特異的濃縮をもたらすことを実証している。
【0364】
マイトマイシン(mitocmyin)Cは細胞を非常に強力に活性化し、IM−9細胞は混合培養物中で長く生き残れないので、IM−9細胞の2回目の注入は更にCD3
−/CAR
+細胞の濃縮を増加させる可能性があると推論した。上記及び
図34Bに示す細胞のいくつかを、IL−7及びIL−15を含有する培地において新鮮なIM−9細胞(マイトマイシン(mitocmycin)Cで前処理)と混合し、更に6日間インキュベートした。次いで、細胞をCD3及び抗CD19CARについて染色し、フローサイトメトリによって分析した(
図34C)。対照サンプルのいずれかにおけるCD3
−/CAR
+細胞のパーセンテージは、IM−9細胞についての第1ラウンドの濃縮と比較して本質的に変わらなかった。
【0365】
しかし、TRC1−2x.87EEを電気穿孔し、AAV421を形質導入した細胞は、CD3
−/CAR
+細胞の有意な濃縮を示し、49.9%(IM−9細胞とのインキュベーションの第1ラウンド後、
図34B)から65.7%であった(
図34C)に増加した。重要なことに、CD3
−集団の93.75%はCAR
+であり、更なる抗原特異的増殖を示している。
【0366】
3.AAV422を使用したT細胞上の抗CD19キメラ抗原受容体の発現
本発明者らは、AAV422を使用してHDR鋳型を提供する細胞(上記、PCR結果は
図32Bに示す)からの抗CD19CARの発現も調べた。形質導入の約4日後、細胞を抗CD19CAR又はCD3を認識する抗体で標識し、フローサイトメトリによって分析した。
図35Aは、擬似電気穿孔し、漸増量のAAV422を形質導入した細胞と、擬似電気穿孔し、擬似形質導入した対照細胞とについてのフローサイトメトリプロットを示す。擬似電気穿孔および擬似形質導入した細胞(MOI−0)は、圧倒的にCD3
+/CAR
−であった(右下の象限、98.8%)。擬似電気穿孔し、次いで漸増量のAAV422を形質導入した細胞は、対照細胞と本質的に同一と思われ、CD3
+/CAR
−集団は98.6%、98.6%、98.9%、及び98.4%であった。従って、本発明者らは、AAV422ベクター単独では検出可能なレベルのCAR発現を駆動しておらず、T細胞受容体の発現を破壊することもできない。
【0367】
図35Bは、TRC1−2x.87EEmRNAを電気穿孔した後、擬似形質導入したサンプル、又はTRC1−2x.87EEを電気穿孔した後、漸増量のAAV422を形質導入した細胞のフローサイトメトリプロットを示す。電気穿孔し、次いで擬似形質導入した細胞は、59.3%のCD3
−細胞を示し、T細胞受容体複合体の効率的なノックアウトを示す。抗CD19CARで標識したバックグラウンドは非常に低く、CD3
−集団で1.47%、CD3
+集団で0.52%であった。TRC1−2x.87EEをコードするmRNAを電気穿孔し、次いで漸増量のAAV422を形質導入したサンプルは、CD3
−集団において14.7%〜20.3%の範囲の有意な量のCAR標識を示した。また、CD3
+集団におけるCAR標識のわずかな増加もあり、2.3%から2.7%に及ぶ。
【0368】
驚くべきことに、本発明者らはAAV422の存在下でT細胞受容体ノックアウト効率の顕著な増加を観察した。漸増AAV422による全体のCD3ノックアウト効率は、TRC1−2x.87EEの電気穿孔単独では59.3%であったのに対し、71.6%、74.9%、77.8%、及び74.4%であった。対照的に、漸増AAV421による全体のCD3ノックアウト効率は、TRC1−2x.87EEの電気穿孔単独では57.18%であったのに対し、56.99%、56.62%、57.4%、及び55.4%であった(
図33B)。従って、一本鎖AAVゲノムの存在下でのTRC1−2x.87EEの電気穿孔は、TRC1−2x.87EEヌクレアーゼの全体的なノックアウト効率の増加をもたらすが、自己相補的AAVゲノムの存在下ではもたらさないと思われる。この増加のために、CAR
+であるCD3
−細胞のパーセントは、CD3
−/CAR
+細胞の数がより多いにもかかわらず、AAV421及びAAV422で形質導入された細胞間で有意に異ならない。AAV421を使用したCAR
+のCD3
−細胞の最も高いパーセントは24.18%であり、(MOI=3.13e
4ウイルスゲノム/細胞)、これと比較してAAV422によるものは26.48%(MOI=1e
5ウイルスゲノム/細胞)であった。この観察は、AAV421とAAV422との間のMOIの大きな差を考慮すると特に興味深い。
【0369】
この実験からの細胞を使用してIM−9細胞を利用してCD3
−/CAR
+細胞を特異的に濃縮する構想を試験した。この場合もまた、パネル全体を試験するのではなく、本発明者らは、擬似電気穿孔し、次いでAAV422を形質導入した細胞、又はTRC1−2x.87EEを電気穿孔し、次いでAAV422(2.5e
4ウイルスゲノム細胞)を形質導入した細胞のいずれかの濃縮のみを、新しい実験において試みた。
図36Aは、形質導入後およそ4日目のフローサイトメトリプロットを示す。擬似電気穿孔/形質導入細胞は、0.13%のCD3
−/CAR
+細胞のバックグラウンド染色を示した。これと比較して、TRC1−2x.87EEを電気穿孔し、AAV422を形質導入した細胞は、4.44%のCD3
−/CAR
+細胞を示した。細胞を、上記のようにIL−7及びIL−15の存在下でIM−9細胞(マイトマイシンで前処理)と6日間インキュベートし、次いでフローサイトメトリによって分析した。
図36Bは、IM−9細胞とのインキュベーションが、AAV422形質導入細胞中のCD3
−/CAR
+集団を35.8%まで劇的に増加したことを示す。CAR
+細胞は、濃縮前の6.69%と比較して、全CD3
−集団の45.2%を構成する(
図36A)。上記のように、本発明者らはまた、IM−9細胞の第2の添加により更に濃縮した(
図36C)。IM−9細胞を用いた2回のインキュベーションの結果、65.1%のCD3
−/CAR
+細胞が得られた。CAR
+細胞は全CD3
−集団の78.25%を構成し、CD3
−/CAR
+細胞の有意な抗原依存性濃縮を示している。
【0370】
これらのデータは、上記のデータと併せて、TRC1−2認識配列に挿入された抗CD19CAR遺伝子を有していた細胞を、IL−7及びIL−15の存在下でIM−9細胞とインキュベーションすることによりうまく濃縮することができ、わずか12日の培養で90%超がCAR
+であるCD3
−集団をもたらし得ることを明確に実証している。
【0371】
4.一本鎖AAVベクターを使用した場合に観察されるノックアウト効率の増加
本研究では、一本鎖AAVベクターがTRC1−2x.87EEヌクレアーゼのノックアウト効率を増加させるという観察を追跡した。第1の実験では、細胞にTRC1−2x.87EE(2μg)を電気穿孔し、擬似形質導入又は漸増量のAAV412(6.25e
4、1.25e
4、2.5e
4、又は5e
4ウイルスゲノム/細胞)の形質導入のいずれかを行った。形質導入後4日目に、細胞をCD3に対する抗体で標識し、フローサイトメトリによって分析した(
図37A)。擬似形質導入細胞では、20.7%がCD3
−であり、これと比較して漸増AAV412を形質導入した細胞では21.6%、23.7%、25.5%、及び25%であり、TRC1−2x.87EEのノックアウト効率はAAV412の存在下で最大23%高い(25.5%を20.7%と比較)。
【0372】
このノックアウト効率の増加がヌクレアーゼ特異的であるかどうかを決定するために、更なる実験において、細胞に、β2−ミクログロブリン遺伝子を標的とするヌクレアーゼをコードするmRNA(2μg)を電気穿孔し、擬似形質導入又は漸増量のAAV412の形質導入のいずれかを行った。形質導入後4日目に、細胞をβ2−ミクログロブリンについて染色し、フローサイトメトリによって分析した(
図37B)。擬似形質導入細胞では、β2−ミクログロブリンノックアウト効率は64.5%であり、漸増量のAAV412を形質導入した細胞では68.6%、70.7%、77.2%、及び82.5%に増加し、ノックアウト効率は最大27.9%上昇した(82.5%を64.5%と比較)。
【0373】
平行した実験では、細胞にTRC1−2x.87EEmRNAを電気穿孔し、擬似形質導入又はAAV422(AAV412と同じMOIを使用)を形質導入のいずれかを行った。細胞をCD3に対する抗体で標識し、細胞をフローサイトメトリによって分析した(
図37C)。擬似形質導入細胞は62.2%のT細胞受容体ノックアウトを示し、漸増量のAAVによるものは、T細胞受容体ノックアウト頻度は72.6%、75.5%、78.3%、及び75.1%に増加した。ここで、AAV422の存在は、TRC1−2x.87EEのノックアウト効率を25.8%増加させている(78.3%を62.2%と比較)。2つの異なるヌクレアーゼおよび2つの異なるAAVベクターを使用して、これらの3つの実験の間で、ノックアウト効率のパーセント増加がほぼ同一であることは特筆すべきである。まとめると、これらのデータは、一本鎖AAVベクターによる細胞の形質導入が、ヌクレアーゼ又はAAVカーゴとは無関係に、本発明者らのヌクレアーゼのノックアウト効率を増加させることを強く示している。
【0374】
5.抗CD19キメラ抗原受容体を発現するT細胞の活性
上記の実験は、細胞にTRC1−2x.87EEmRNAを電気穿孔し、直後に細胞にAAV421を形質導入することによるCAR T細胞の生成、及びCD19発現IM−9細胞と共培養することによって、これらの細胞をCD3
−/CAR
+集団に関して濃縮できることを明確に実証している。次に、これらのCAR T細胞の標的細胞に対する活性を調べた。第1の実験では、上記及び
図34Cに示す細胞を、CD19
+Raji細胞又はCD19−U937細胞のいずれかが標的集団であるIFN−γELISPOTアッセイに用いた。
図38Aに示すように、抗CD19CAR T細胞をU937細胞と共にインキュベートした場合、それらは標的:エフェクター比にかかわらずIFN−γを分泌しなかった。しかし、CAR T細胞をRaji細胞と共にインキュベートすると、高レベルのIFN−γ分泌が用量依存的に起こり、IFN−γの分泌が抗原特異的であることが示された。
【0375】
これらのCAR T細胞を、ルシフェラーゼ標識Raji細胞を標的とする細胞死滅アッセイにも使用した。簡潔には、CAR T細胞をルシフェラーゼ標識Raji細胞と共に10:1の比でインキュベートした。いくつかの時点で、細胞を洗浄し、溶解して、何個の細胞が残っているかの尺度としてルシフェラーゼ活性を測定した。対照細胞は、5500任意単位を超えるルシフェラーゼ活性を示した(
図38B)。2時間、3時間、4時間、及び5時間の共インキュベーションにより、ルシフェラーゼ活性はそれぞれ4598、3292、2750、及び1932任意単位まで減少した。従って、共インキュベーションの5時間以内に、ルシフェラーゼ活性は約65%低下し、CAR T細胞の強力な細胞溶解活性を示した。
【0376】
まとめると、これらのデータは、本明細書に記載の方法に従って作製した抗CD19CAR T細胞がCD19
+細胞を死滅させるために有効であることを実証している。
【0377】
実施例7;線形化プラスミドDNA
【0378】
1.線形化プラスミドDNAからのキメラ抗原受容体の発現
AAVによって生成されるHDR鋳型は線形DNA分子であるので、任意の供給源由来の線形DNAが、CAR遺伝子をTRC1−2認識配列に挿入するのに適したHDR鋳型であり得ると仮定した。これを試験するために、本発明者らは、TRC1−2認識配列座に相同である相同アームに隣接する抗CD19CAR遺伝子を含むいくつかのプラスミドを作製した。いくつかのプラスミドでは異なるプロモータが使用され、相同アームは、自己相補的なAAVベクターを模倣する「短い」(5’相同アームで200bp及び3’相同アームで180bp)又は一本鎖AAVベクターを模倣する「長い」(5’相同アームで985bp及び3’相同アームで763bp)のいずれかであった。短い相同アームを有するプラスミドは「pDS」と名付け、長い相同アームを有するものは「pDI」と名付けた。更にいくつかのプラスミドは、CAR遺伝子の上流にイントロンを含んでいた。
【0379】
CARドナープラスミドをベクター骨格の制限部位において線形化し、ゲル精製した。ヒトCD3
+T細胞に、線形化されたCARドナープラスミド単独(精製された線状化プラスミドの濃度に応じて500ng〜1000ngの量が変化する)を電気穿孔するか、又はTRC 1−2.87EEmRNA(2μg)と共電気穿孔した。対照として、細胞に擬似電気穿孔又はTRC1−2x.87EE単独の電気穿孔を行った。
図39のグラフには、全ての電気穿孔ンの説明を表示している。電気穿孔の約4日後、細胞を、CD3及び抗CD19CARに対する抗体で標識し、フローサイトメトリによって分析した(
図39)。
図39Aは、0.15%のバックグラウンドCD3
−/CAR
+染色を示す。バックグラウンドCD3
+/CAR
+染色は4.31%で異常に高かったことに留意すべきである。
図39Bは、TRC1−2x.87EEmRNA単独を電気穿孔した細胞を示し、60.8%のCD3ノックアウトを実証している。
図39C及び39Dは、TRC1−2x.87EEmRNAと、EF1αコアプロモータ及びHTLVエンハンサーを有する長い相同アームベクター又はEF1αコアプロモータを有する短い相同アームベクター(エンハンサーを有さない)のいずれかとを、共電気穿孔したサンプルを示す。興味深いことに、EF1αコアプロモータのみを有する線形化CARドナーは、2.38%のCD3
−/CAR
+集団を生成したが、EF1αコアプロモータ及びHTLVエンハンサーを有するベクターは、有意なパーセンテージのCD3
−/CAR
+細胞を生成しなかった。TRC1−2x.87EEmRNAの不在下でこれらの2つのベクターを電気穿孔した細胞は、CD3
−/CAR
+集団の有意な増加を示さなかった(
図39E及び39F)。TRC1−2x.87EEの存在下でのEF1αコアプロモータベクターによるCD3
−/CAR
+集団の増加は、線形化プラスミドがTRC1−2認識配列における二本鎖切断を修復するためのHDR鋳型として機能できることを示唆した。
【0380】
図39G及び39Hは、両方ともCARの発現を駆動するMNDプロモータを含む2つの長い相同アーム構築物を示す。
図39Gに示すこれらの構築物の1つは、CAR遺伝子の5’末端にイントロンも含む。驚くべきことに、MNDプロモータ及びイントロンを有する長い相同アームプラスミドは、有意なCAR発現を示したが(
図39G、4.14%のCD3
−/CAR
+)、一方、イントロンレス構築物(
図39H)は、TRC1−2x.87EEmRNAを共電気穿孔した場合に検出可能なCAR発現を示さなかった。MNDプロモータを有するが、イントロンを有さない短い相同アームプラスミドもTRC1−2x.87EEmRNAを用いて試験して、CAR発現は実証されなかった(
図39I)。MNDプロモータ含有構築物はいずれもTRC1−2x.87EEmRNAの不在下ではいずれのCAR
+細胞も生成しなかった(
図39J、39K、及び39L)。
【0381】
最後にこの実験では、CARの発現を駆動するJeTプロモータを含んだ短い相同アーム構築物及びCARの発現を駆動するCMVプロモータを有する「長い」相同性アーム構築物を試験した。単独では、これらの線形化プラスミドのいずれも有意なCAR
+細胞をもたらさなかった(
図39O及び39P)。細胞にTRC1−2x.87EEmRNAを共電気穿孔した場合、JeT含有構築物は2.69%のCD3
−/CAR
+細胞を示し、CMV含有構築物は2.7%のCD3
−/CAR
+細胞を生じた。
【0382】
図39に示すフロープロットは、相同アームに隣接する、CARをコードする線形化プラスミドDNAが、TRC1−2x.87EEによって引き起こされるDNA切断を修復するためのHDR鋳型として機能し、CAR核酸の挿入をもたらすことを明確に実証している。プロモータ強度がCARの発現において重要な役割を果たし、遺伝子中にイントロンが存在する場合、いくつかのプロモータがより効率的な発現を駆動することは明らかである。
【0383】
線形化DNA構築物を使用したCARの挿入がTRC1−2認識配列座に特異的であることを確認するために、本発明者らはCAR内および相同アームの外側に位置するプライマーを使用して上記のように細胞を分析した(
図40、表11)。サンプル1及び2は、擬似電気穿孔又はTRC1−2x.87EEをコードするmRNAのみの電気穿孔のいずれかを行った細胞由来のPCR産物である。上記の結果と一致して、PCRバンドは存在せず、TRC1−2認識部位におけるCAR遺伝子の欠落を示す。サンプル3、4、及び5は、TRC1−2x.87EE及び線形化CAR相同プラスミドを共電気穿孔した細胞に由来する(サンプル名は
図40のものである)。各サンプルは、CAR遺伝子発現カセットのTRC1−2認識部位への挿入を示す予測サイズの2つのPCRバンドを示す。サンプル6、7、及び8は、サンプル3、4、及び5と同じ線形化CAR相同プラスミドを電気穿孔したが、TRC1−2x.87EEmRNAは含まない細胞に由来する。予想どおり、PCRバンドは存在しない。サンプル9及び10は、擬似電気穿孔又はTRC1−2x.87EEをコードするmRNAのみの電気穿孔のいずれかを行った細胞由来のPCR産物であり、PCRバンドは示していない。サンプル11、12、13、及び14は、TRC1−2x.87EE及び線形化CAR相同プラスミドを共電気穿孔した細胞に由来する(サンプル名は
図40のものである)。各サンプルは、CAR遺伝子のTRC1−2認識部位への挿入を示す予測サイズの2つのPCRバンドを示す。試料15、16、17、及び18は、サンプル11、12、13、及び14と同じ線形化CAR相同プラスミドを電気穿孔したが、TRC1−2x.87EEmRNAは含まない細胞に由来する。予想どおり、PCRバンドは存在しない。
【0384】
図39及び40は、TRC1−2x.87EEをコードするmRNA及び線形化CAR相同プラスミドをヒトCD3
+T細胞に共電気穿孔することが、CAR遺伝子をTRC1−2認識配列に挿入する有効な方法であることを明確に実証している。
【0385】
【表11】
【0386】
実施例8;更なるAAVベクターの特徴付け
【0387】
1.JeTプロモータ及び長い相同アームを有するAAVの使用
まとめると、上記のデータは、JeTプロモータを利用するベクターが、CARの高い一貫した発現を駆動し、相同アームが長いほど遺伝子挿入効率を上昇させ得ることを示す。本発明者らは、長い相同アーム及び抗CD19CARの発現を駆動するJeTプロモータを有する一本鎖AAV(本明細書ではAAV423)を作製するために使用される、
図41に示すベクター(配列番号125)を設計し、作製した。ヒトCD3
+T細胞にTRC1−2x.87EEをコードするmRNAを電気穿孔し、漸増量のAAV423を形質導入した。上記のデータが、MOIが高いほど挿入効率を上昇させ得ることを示唆したので、本発明者らは1.875e
4から1.5e
5の範囲の力価を使用した。対照として、細胞に、TRC1−2x.87EEをコードするmRNAを電気穿孔し、次いで擬似形質導入するか、又は擬似電気穿孔し、次いで漸増量のAAV423を形質導入した。形質導入の約6日後、細胞をCD3又は抗CD19CARを認識する抗体で標識し、フローサイトメトリによって分析した。
図42に示されるように、擬似電気穿孔し、次いで漸増量のAAV423を形質導入した細胞は、圧倒的にCD3
+/CAR
−(96.6%〜98.5%の範囲)である。TRC1−2x.87EEをコードするmRNAを電気穿孔し、擬似形質導入した細胞は、CD3
−が39%であり、T細胞受容体の効率的なノックアウトを示した。これらの細胞において、バックグラウンドCAR染色は非常に低かった(約2%)。TRC1−2x.87EEをコードするmRNAを電気穿孔し、次いで漸増量のAAV423を形質導入した細胞は、CD3のノックアウトと併せて劇的なCAR染色を示した。CD3
−/CAR
+集団は21.6%から22.7%の範囲であり、一方CD3
+/CAR
+集団は約2%であった。上記のように、一本鎖AAVの存在は、TRC1−2認識部位での全体の遺伝子改変効率を増加させ、総CD3−集団は、対照細胞における41.44%から電気穿孔し後、次いで漸増量のAV423を形質導入した細胞における57.6%、59.2%、58.7%、及び56.1%に増加した。CAR
+であるCD3
−細胞のパーセントは、37.5%から39.9%の範囲であり、上記のデータと比較して挿入効率の劇的な増加を示した。
【0388】
AAV423を使用したCARの挿入がTRC1−2認識配列座に特異的であることを確認するために、本発明者らはCAR内及び相同アームの外側に位置するプライマーを使用して上記のように細胞を分析した(
図43、表12)。
【0389】
【表12】
【0390】
サンプル1及び2は、擬似電気穿孔した細胞由来のPCR産物である。上記の結果と一致して、PCRバンドは存在せず、TRC1−2認識部位におけるCAR遺伝子の欠落を示す。サンプル3〜6は、擬似電気穿孔し、次いで漸増量のAAV423を形質導入した細胞に由来する。上記の結果と一致して、PCRバンドは存在していない。サンプル7は、TRC1−2x.87EEをコードするmRNAを電気穿孔し、次いで擬似形質導入した細胞に由来し、PCRバンドを示さない。サンプル8〜11は、TRC1−2x.87EEをコードするmRNAを電気穿孔し、次いで漸増量のAAV423を形質導入した細胞に由来し、CARがTRC1−2認識配列に挿入された場合に予想されるPCRバンドを示している。
【0391】
切断後にCAR配列をTRC1−2認識部位に挿入するAAV423の能力を考えると、ATRC1−2認識部位に組み込まれて、抗CD19CARをコードすることができる線形化DNA鋳型をT細胞にトランスフェクトすることができるように、AV423プラスミド(
図41)が1種の制限酵素による消化で線形化され、1又は複数の制限酵素による消化で細胞に送達され得ることがさらに想定される。
【0392】
実施例9;抗CD19 TCR−陰性CAR T細胞のインビボ有効性
【0393】
1.播種性B細胞リンパ腫のマウスモデル
遺伝子編集抗CD19CAR T細胞の有効性を、播種性B細胞リンパ腫のマウスモデルにおいて評価した。上記のように活性化T細胞にTRC1−2x.87EEmRNAを電気穿孔し、次にJeTプロモータにより駆動され、相同アームに隣接する抗CD19CAR発現カセットを含むAAV6ベクターを形質導入した。IL−2(10ng/mL)と共に5日間培養した後、細胞表面のCD3及び抗CD19CAR発現について、細胞を、以前に記載したようにフローサイトメトリによって分析した(
図44A)。CD3−細胞を、抗CD3磁気ビーズを使用してCD3
+細胞を枯渇させることにより濃縮した。次いで枯渇した細胞をIL−15(10ng/mL)及びIL−21(10ng/mL)中で3日間培養し、CD3及び抗CD19CARの細胞表面発現について再分析した(
図44B)。CD3
−集団の単離は非常に効率的であり、CD3
+細胞の枯渇後にフローサイトメトリによって測定して99.9%の純度を得た(
図44B)。精製されたCD3−集団は、56%のCD4
+及び44%のCD8
+細胞を含み(
図44C)、CD62L及びCD45ROに対する染色によって決定される、セントラルメモリー、移行性メモリーの表現型を主に有していた(
図44D)。
【0394】
Raji播種性リンパ腫モデルを利用する研究は、Charles River Laboratories International Inc.(Morrisville、NC、USA)によって実施された。ホタルルシフェラーゼ(ffLuc)44を安定に発現するCD19
+Raji細胞を、2.0×10
5細胞/マウスの用量で、1日目に5〜6週齢の雌NSGマウスに静脈注射した。4日目に、PBS、又は同じ健康なドナーPBMCから調製された遺伝子編集された対照TCR KO T細胞を含有するPBS、又は同じドナーから調製されたCAR T細胞の表示の用量を含有するPBSを、マウスに静脈注射した。表示の日に、生存マウスにルシフェリン基質(150mg/kg生理食塩水)を腹腔内注射し、麻酔し、7分後にIVIS SpectrumCT(Perkin Elmer、Waltham、MA)を使用してルシフェラーゼ活性を測定した。Living Imageソフトウェア4.5.1(Perkin Elmer、Waltham、MA)を使用してデータを分析し、エクスポートした。発光信号強度は、p/秒/cm
2/srの輝度で表される。
【0395】
2.結果
図45に示すように、CD19
+Raji細胞の成長は、8日目までに全てのマウスにおいて低レベルが明らかであり、11日目までに未処置及びTCR−対照群で有意に増加した。対照群では、有意な腫瘍成長が15日目まで観察され、18日目又は19日目までに全ての対照群を安楽死させた。対照的に、抗CD19CAR T細胞で処置したマウスの群は全て、11日目までに腫瘍成長の兆候を示さず、低用量群の単一のマウスを除いて、試験の29日まで依然として腫瘍が生じないままであった。腫瘍再成長は、36日目あたりで低用量コホートにおいて3匹のマウスで観察された。3匹のうちの1匹は42日目に死亡したが、画像化によりこの動物では低レベルの腫瘍しか認められなかったため、死亡が腫瘍関連であるとは考えにくい。
【0396】
3.結論
これらの結果は、遺伝子編集されたCD3−CAR T細胞によるCD19
+腫瘍細胞のインビボクリアランスの明確な証拠を提供し、同種異系CAR T細胞療法のためのこのプラットフォームの更なる前臨床開発を支援する。