【実施例】
【0076】
以下、実施例により本発明をさらに詳しく説明するが、本発明はこれらに限定されるものではない。なお、各種測定条件は次の通りである。
【0077】
(1)ポリマー電解質溶液の分子量
ポリマー溶液の数平均分子量及び重量平均分子量をGPCにより測定した。紫外検出器と示差屈折計の一体型装置として東ソー製HLC−8022GPCを、またGPCカラムとして東ソー製TSK gel SuperHM−H(内径6.0mm、長さ15cm)2本を用い、N−メチル−2−ピロリドン溶媒(臭化リチウムを10mmol/L含有するN−メチル−2−ピロリドン溶媒)にて、流量0.2mL/minで測定し、標準ポリスチレン換算により数平均分子量及び重量平均分子量を求めた。
【0078】
(2)XPSによる含フッ素高分子多孔質膜の親水化度合いの測定
最表面組成測定サンプルは、検体となる含フッ素高分子多孔質膜を超純水でリンスした後、室温、67Paにて10時間乾燥させることにより、準備した。粉末組成測定サンプルは、予め5mm角の大きさに切断した含フッ素高分子多孔質膜を超純水でリンスし、室温、67Paにて10時間乾燥させた後、液体窒素で30分冷却し、凍結粉砕機にて5分間の処理を2回実施することにより、準備した。準備したそれぞれのサンプルの組成を測定し、O/F比を算出した。測定装置、条件としては、以下の通りである。
測定装置: Quantera SXM
励起X線: monochromatic Al Kα1,2 線(1486.6eV)
X線径: 200μm
光電子脱出角度: 45 °
イオンエッチング
(3)イオン交換容量(IEC)
下記の手順に従い、中和滴定法により測定した。測定は3回実施し、その平均値をイオン交換容量とした。
1.プロトン置換し、純水で十分に洗浄した複合高分子電解質膜の膜表面の水分を拭き取った後、100℃にて12h以上真空乾燥し、乾燥重量を求めた。
2.電解質に5wt%硫酸ナトリウム水溶液を50mL加え、12h静置してイオン交換した。
3.0.01mol/L水酸化ナトリウム水溶液を用いて、生じた硫酸を滴定した。指示薬として市販の滴定用フェノールフタレイン溶液0.1w/v% を加え、薄い赤紫色になった点を終点とした。
4.IECは下記式により求めた。
IEC(meq/g)=〔水酸化ナトリウム水溶液の濃度(mmol/ml)×滴下量(ml)〕/試料の乾燥重量(g)
(4)複合層における芳香族炭化水素系ポリマー電解質の充填率
光学顕微鏡または走査形電子顕微鏡(SEM)で複合高分子電解質膜の断面を観察し芳香族炭化水素系ポリマー電解質と含フッ素高分子多孔質膜からなる複合層の厚みをT1、複合層の外側に別の層がある場合はそれらの厚みをT2、T3とした。複合化層を形成する電解質ポリマーの比重をD1、複合層の両側の別の層を形成する電解質ポリマーの比重をそれぞれのD2、D3、複合高分子電解質膜の比重をDとした。それぞれの層を形成するポリマーのIECをI1、I2、I3、複合高分子電解質膜のIECをIとすると、複合化層中の芳香族炭化水素系ポリマー電解質の含有率Y2(体積%)、は下式で求めた。
Y2=[(T1+T2+T3)×D×I−(T2×D2×I2+T3×D3×I3)]/(T1×D1×I1)×100
(5)透過型電子顕微鏡(TEM)トモグラフィーによる相分離構造の観察
染色剤として2wt%酢酸鉛水溶液中に試料片を浸漬させ、25℃下で48時間静置して染色処理を行った。染色処理された試料を取りだし、エポキシ樹脂で包埋し、可視光を30秒照射し固定した。ウルトラミクロトームを用いて室温下で薄片100nmを切削し、以下の条件に従って観察を実施した。
装 置:電界放出型電子顕微鏡 (HRTEM) JEOL 製 JEM2100F
画像取得:Digital Micrograph
システム:マーカー法
加速電圧 :200 kV
撮影倍率 :30,000 倍
傾斜角度 :+61°〜−62°
再構成解像度:0.71 nm/pixel
3次元再構成処理は、マーカー法を適用した。3次元再構成を実施する際の位置合わせマーカーとして、コロジオン膜上に付与したAuコロイド粒子を用いた。マーカーを基準として、+61°から−62°の範囲で、試料を1°毎に傾斜しTEM 像を撮影する連続傾斜像シリーズより取得した計124 枚のTEM像を基にCT再構成処理を実施し、3次元相分離構造を観察した。
【0079】
また、画像処理は、ルーゼックス(登録商標)AP(ニレコ社製)を使用して、TEM原画像に対し、オートモードで、濃度ムラ補正、濃度変換、空間フィルターの処理を実行した。さらに、処理された画像に対し、該装置のオートモードで、黒色から白色まで256階調で表現させ、0〜128を黒色、129〜256を白色と定義することにより(A1)を含むドメインと(A2)を含むドメインを色分けし、各ドメイン間距離を計測した上で、その平均値を平均ドメイン間距離とした。
【0080】
(6)熱水試験による寸法変化率測定
複合高分子電解質膜を約5cm×約5cmの正方形に切り取り、温度23℃±5℃、湿度50%±5%の調温調湿雰囲気下に24時間静置後、ノギスでMD方向の長さとTD方向の長さ(MD1とTD1)を測定した。当該電解質膜を80℃の熱水中に8時間浸漬後、再度ノギスでMD方向の長さとTD方向の長さ(MD2とTD2)を測定し、面内方向におけるMD方向とTD方向の寸法変化率(λ
MDとλ
TD)および面内方向の寸法変化率(λxy)(%)を下式より算出した。
λ
MD=(MD2−MD1)/MD1×100
λ
TD=(TD2−TD1)/TD1×100
λxy=(λ
MD+λ
TD)/2
(7)複合高分子電解質膜を使用した膜電極複合体(MEA)の作製
市販の電極、BASF社製燃料電池用ガス拡散電極“ELAT(登録商標)LT120ENSI”5g/m
2Ptを5cm角にカットしたものを1対準備し、燃料極、酸化極として複合高分子電解質膜を挟むように対向して重ね合わせ、150℃、5MPaで3分間加熱プレスを行い、評価用MEAを得た。
【0081】
(8)低加湿発電性能
上記(7)で作製したMEAを英和(株)製JARI標準セル“Ex−1”(電極面積25cm2)にセットし、セル温度90℃、燃料ガス:水素、酸化ガス:空気、ガス利用率:水素70%/酸素40%、加湿条件;アノード側30%RH/カソード30%RH、背圧0.1MPa(両極)において電流−電圧(I−V)測定した。1A/cm
2時の電圧を読み取り評価した。
【0082】
(9)乾湿サイクル耐久性
上記(7)で作製したMEAを英和(株)製JARI標準セル“Ex−1”(電極面積25cm2)にセットし、セル温度80℃の状態で、両極に160%RHの窒素を2分間供給し、その後両電極に0%RHの窒素(露点−20℃以下)を2分間供給するサイクルを繰り返した。1000サイクルごとに水素透過量の測定を実施し、水素透過電流が初期電流の10倍を越えた時点を乾湿サイクル耐久性とした。
【0083】
水素透過量の測定は、一方の電極に燃料ガスとして水素、もう一方の電極に窒素を供給し、加湿条件:水素ガス90%RH、窒素ガス:90%RHで試験を行った。開回路電圧が0.2V以下になるまで保持し、0.2〜0.7Vまで1mV/secで電圧を掃引し0.7Vにおける電流値を水素透過電流とした。
【0084】
合成例1
(下記式(G1)で表される2,2−ビス(4−ヒドロキシフェニル)−1,3−ジオキソラン(K−DHBP)の合成)
攪拌器、温度計及び留出管を備えた 500mlフラスコに、4,4′−ジヒドロキシベンゾフェノン49.5g、エチレングリコール134g、オルトギ酸トリメチル96.9g及びp−トルエンスルホン酸1水和物0.50gを仕込み溶解する。その後78〜82℃で2時間保温攪拌した。更に、内温を120℃まで徐々に昇温、ギ酸メチル、メタノール、オルトギ酸トリメチルの留出が完全に止まるまで加熱した。この反応液を室温まで冷却後、反応液を酢酸エチルで希釈し、有機層を5%炭酸カリウム水溶液100mlで洗浄し分液後、溶媒を留去した。残留物にジクロロメタン80mlを加え結晶を析出させ、濾過し、乾燥して2,2−ビス(4−ヒドロキシフェニル)−1,3−ジオキソラン52.0gを得た。この結晶をGC分析したところ99.9%の2,2−ビス(4−ヒドロキシフェニル)−1,3−ジオキソランと0.1%の4,4′−ジヒドロキシベンゾフェノンであった。
【0085】
【化3】
【0086】
合成例2
(下記式(G2)で表されるジソジウムー3,3’−ジスルホネート−4,4’−ジフルオロベンゾフェノンの合成)
4,4’−ジフルオロベンゾフェノン109.1g(アルドリッチ試薬)を発煙硫酸(50%SO
3)150mL(和光純薬試薬)中、100℃で10h反応させた。その後、多量の水中に少しずつ投入し、NaOHで中和した後、食塩200gを加え合成物を沈殿させた。得られた沈殿を濾別し、エタノール水溶液で再結晶し、下記一般式(G2)で示されるジソジウム3,3’−ジスルホネート−4,4’−ジフルオロベンゾフェノンを得た。純度は99.3%であった。
【0087】
【化4】
【0088】
合成例3
(下記式(G3)で表されるイオン性基を含有しないオリゴマーの合成)
かき混ぜ機、窒素導入管、Dean−Starkトラップを備えた1000mL三口フラスコに、炭酸カリウム16.59g(アルドリッチ試薬、120mmol)、前記合成例1で得たK−DHBP25.8g(100mmol)および4,4’−ジフルオロベンゾフェノン20.3g(アルドリッチ試薬、93mmol)を入れ、窒素置換後、N−メチルピロリドン(NMP)300mL、トルエン100mL中で160℃で脱水後、昇温してトルエン除去、180℃で1時間重合を行った。多量のメタノールに再沈殿精製を行い、イオン性基を含有しないオリゴマーa1(末端:ヒドロキシル基)を得た。数平均分子量は10000であった。
【0089】
かき混ぜ機、窒素導入管、Dean−Starkトラップを備えた500mL三口フラスコに、炭酸カリウム1.1g(アルドリッチ試薬、8mmol)、イオン性基を含有しない前記オリゴマーa1(末端:ヒドロキシル基)を20.0g(2mmol)を入れ、窒素置換後、N−メチルピロリドン(NMP)100mL、トルエン30mL中で100℃で脱水後、昇温してトルエンを除去し、デカフルオロビフェニル4.0g(アルドリッチ試薬、12mmol)を入れ、105℃で1時間反応を行った。多量のイソプロピルアルコールで再沈殿することで精製を行い、下記式(G3)で示されるイオン性基を含有しないオリゴマー(末端:フルオロ基)を得た。数平均分子量は11000であった。
【0090】
【化5】
【0091】
合成例4
(下記式(G4)で表されるイオン性基を含有するオリゴマーの合成)
かき混ぜ機、窒素導入管、Dean−Starkトラップを備えた1000mL三口フラスコに、炭酸カリウム27.6g(アルドリッチ試薬、200mmol)、前記合成例1で得たK−DHBP12.9g(50mmol)および4,4’−ビフェノール9.3g(アルドリッチ試薬、50mmol)、前記合成例2で得たジソジウム 3,3’−ジスルホネート−4,4’−ジフルオロベンゾフェノン39.3g(93mmol)、および18−クラウン−6 、17.9g(和光純薬82mmol)を入れ、窒素置換後、N−メチルピロリドン(NMP)300mL、トルエン100mL中で170℃で脱水後、昇温してトルエン除去、180℃で1時間重合を行った。多量のイソプロピルアルコールで再沈殿することで精製を行い、下記式(G4)で示されるイオン性基を含有するオリゴマー(末端:ヒドロキシル基)を得た。数平均分子量は16000であった。
【0092】
【化6】
【0093】
(式(G4)において、Mは、NaまたはKを表す。)
合成例5
(下記式(G5)で表される3−(2,5−ジクロロベンゾイル)ベンゼンスルホン酸ネオペンチルの合成)
攪拌機、冷却管を備えた3Lの三口フラスコに、クロロスルホン酸245g(2.1mol)を加え、続いて2,5−ジクロロベンゾフェノン105g(420mmolを加え、100℃のオイルバスで8時間反応させた。所定時間後、反応液を砕氷1000gにゆっくりと注ぎ、酢酸エチルで抽出した。有機層を食塩水で洗浄、硫酸マグネシウムで乾燥後、酢酸エチルを留去し、淡黄色の粗結晶3−(2,5−ジクロロベンゾイル)ベンゼンスルホン酸クロリドを得た。粗結晶は精製せず、そのまま次工程に用いた。
【0094】
2,2−ジメチル−1−プロパノール(ネオペンチルアルコール)41.1g(462mmol)をピリジン300mLに加え、約10℃に冷却した。ここに上記で得られた粗結晶を約30分かけて徐々に加えた。全量添加後、さらに30分撹拌し反応させた。反応後、反応液を塩酸水1000mL中に注ぎ、析出した固体を回収した。得られた固体を酢酸エチルに溶解させ、炭酸水素ナトリウム水溶液、食塩水で洗浄後、硫酸マグネシウムで乾燥後、酢酸エチルを留去し、粗結晶を得た。これをメタノールで再結晶し、下記式G5で表される3−(2,5−ジクロロベンゾイル)ベンゼンスルホン酸ネオペンチルの白色結晶を得た。
【0095】
【化7】
【0096】
合成例6
(下記式(G6)で表されるイオン性基を含有しないオリゴマーの合成)
撹拌機、温度計、冷却管、Dean−Stark管、窒素導入の三方コックを取り付けた1lの三つ口のフラスコに、2,6−ジクロロベンゾニトリル49.4g(0.29mol)、2,2−ビス(4−ヒドロキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン88.4g(0.26mol)、炭酸カリウム47.3g(0.34mol)をはかりとった。窒素置換後、スルホラン346ml、トルエン173mlを加えて攪拌した。フラスコをオイルバスにつけ、150℃に加熱還流させた。反応により生成する水をトルエンと共沸させ、Dean−Stark管で系外に除去しながら反応させると、約3時間で水の生成がほとんど認められなくなった。反応温度を徐々に上げながら大部分のトルエンを除去した後、200℃で3時間反応を続けた。次に、2,6−ジクロロベンゾニトリル12.3g(0.072mol)を加え、さらに5時間反応した。
【0097】
得られた反応液を放冷後、トルエン100mlを加えて希釈した。副生した無機化合物の沈殿物を濾過除去し、濾液を2lのメタノール中に投入した。沈殿した生成物を濾別、回収し乾燥後、テトラヒドロフラン250mlに溶解した。これをメタノール2lに再沈殿し、下記式(G6)で表される目的の化合物107gを得た。数平均分子量は11000であった。
【0098】
【化8】
【0099】
合成例7
(下記式(G7)で表されるテトラソジウム 3,5,3’,5’−テトラスルホネート−4,4’−ジフルオロベンゾフェノンの合成)
かき混ぜ機、濃縮管を備えた1000mL三口フラスコに、4,4’−ジフルオロベンゾフェノン109.1g(アルドリッチ試薬)、発煙硫酸(60%SO3)210mL(アルドリッチ試薬)を加え、濃縮管上部に接続した窒素導入管、および、系外に向けたバブラーに向けて、激しく窒素を流しながら、180℃で24h反応させた。この際、窒素を激しく流すことにより、三酸化硫黄の蒸発は抑制されていた。多量の水中に少しずつ投入し、NaOHで中和した後、エタノールで硫酸ナトリウムを3回析出させて除去し、下記式(G7)で示されるスルホン酸基含有芳香族化合物を得た。構造は1H−NMRで確認した。原料、ジスルホン化物、トリスルホン化物は全く認められず、高純度のテトラスルホン化物を得ることができた。
【0100】
【化9】
【0101】
合成例8
(下記式(G8)で表されるスルホン酸基を含有するオリゴマーの合成)
かき混ぜ機、窒素導入管、Dean−Starkトラップを備えた1000mL三口フラスコに、炭酸カリウム41.5g(アルドリッチ試薬、300mmol)、前記合成例1で得たK−DHBP12.9g(50mmol)および4,4’−ビフェノール9.3g(アルドリッチ試薬、50mmol)、前記実施例7で得たスルホン酸基含有芳香族化合物58.3g(93mmol)、および18−クラウン−6 、49.1g(和光純薬186mmol)を入れ、窒素置換後、N−メチルピロリドン(NMP)400mL、トルエン150mL中で170℃で脱水後、昇温してトルエン除去、220℃で1時間重合を行った。多量のイソプロピルアルコールで再沈殿することで精製を行い、下記式(G8)で示されるスルホン酸基を含有するオリゴマー(末端ヒドロキシル基)を得た。数平均分子量は16000であった。
【0102】
【化10】
【0103】
(式(G8)において、Mは、NaまたはKを表す。)
合成例9
(下記式(G10)で表されるセグメントと下記式(G11)で表されるセグメントからなるポリエーテルスルホン(PES)系ブロックコポリマー前駆体の合成)
無水塩化ニッケル1.62gとジメチルスルホキシド15mLとを混合し、70℃に調整した。これに、2,2’−ビピリジル2.15gを加え、同温度で10分撹拌し、ニッケル含有溶液を調製した。
【0104】
ここに、2,5−ジクロロベンゼンスルホン酸(2,2−ジメチルプロピル)1.49gと下記式(G9)で示される、スミカエクセルPES5200P(住友化学社製、Mn=40,000、Mw=94,000)0.50gとを、ジメチルスルホキシド5mLに溶解させて得られた溶液に、亜鉛粉末1.23gを加え、70℃に調整した。これに前記ニッケル含有溶液を注ぎ込み、70℃で4時間重合反応を行った。反応混合物をメタノール60mL中に加え、次いで、6mol/L塩酸60mLを加え1時間攪拌した。析出した固体を濾過により分離し、乾燥し、灰白色の下記式(G10)で表されるセグメントと下記式(G11)で表されるセグメントとを含むポリアリーレン1.62gを得た。重量平均分子量は20万であった。
【0105】
【化11】
【0106】
合成例10
(下記式(G12)で表されるポリスルホン(PSU)の合成)
撹拌機、窒素導入管、温度計、及び先端に受器を付したコンデンサーを備えた容量2000mlの重合槽に、4,4’−ジクロロジフェニルスルホン61.4g(214mmol)、ビスフェノールA47.8g(210mmol)、及び重合溶媒としてジフェニルスルホン78.4gを入れ、系内に窒素ガスを流通させながら180℃まで昇温した後、無水炭酸カリウム30.1gを加え、290℃まで徐々に昇温し、290℃で2時間反応させた。
【0107】
次いで、ジフェニルスルホン78.4gを加えて180℃まで降温させ、微粉状の無水炭酸カリウム198mgを添加し、5分間撹拌して分散させた後、水酸化アルミニウム(住友化学(株)製「CW−375HT」)500mgを添加し、15分間攪拌した。
【0108】
攪拌終了後、塩化メチルガスを30分吹き込み、直ちに反応液を150℃で熱時濾過して、水酸化アルミニウム残渣及び炭酸カリウム残渣を濾別し、その濾液を冷却固化させた後、粉砕し、中心粒径400μmの粉体を得た。この粉体を、アセトンとメタノールとの混合溶媒1000mlで2回の抽出洗浄を行い、さらに水1000mlを用いて2回洗浄した後、150℃で乾燥させて、白色粉末状のポリスルホンを得た。
【0109】
【化12】
【0110】
製造例1
(イオン性基を含有するセグメント(A1)として前記(G4)で表されるオリゴマー、イオン性基を含有しないセグメント(A2)として前記(G3)で表されるオリゴマーを含有するブロック共重合体b1からなるポリマー電解質溶液Aの製造例)
かき混ぜ機、窒素導入管、Dean−Starkトラップを備えた500mL三口フラスコに、炭酸カリウム0.56g(アルドリッチ試薬、4mmol)、イオン性基を含有するオリゴマーa2(末端:ヒドロキシル基)を16g(1mmol)入れ、窒素置換後、N−メチルピロリドン(NMP)100mL、シクロヘキサン30mL中で100℃で脱水後、昇温してシクロヘキサン除去し、イオン性基を含有しないオリゴマーa1(末端:フルオロ基)11g(1mmol)を入れ、105℃で24時間反応を行った。多量のイソプロピルアルコールへの再沈殿精製により、ブロック共重合体b1を得た。重量平均分子量は34万であった。
【0111】
得られたブロック共重合体b1を溶解させた5重量%N−メチルピロリドン(NMP)溶液を、久保田製作所製インバーター・コンパクト高速冷却遠心機(型番6930にアングルローターRA−800をセット、25℃、30分間、遠心力20000G)で重合原液の直接遠心分離を行った。沈降固形物(ケーキ)と上澄み液(塗液)がきれいに分離できたので上澄み液を回収した。次に、撹拌しながら80℃で減圧蒸留し、1μmのポリプロピレン製フィルターを用いて加圧ろ過し、ポリマー電解質溶液Aを得た。ポリマー電解質溶液Aの粘度は1300mPa・sであった。
【0112】
製造例2
(下記一般式(G13)で表されるポリアリーレン系ブロック共重合体b2からなるポリマー電解質溶液Bの製造例)
乾燥したN,N−ジメチルアセトアミド(DMAc)540mlを、3−(2,5−ジクロロベンゾイル)ベンゼンスルホン酸ネオペンチル135.0g(0.336mol)と、合成例6で合成した式(G6)で表されるイオン性基を含有しないオリゴマーを40.7g(5.6mmol)、2,5−ジクロロ−4’−(1−イミダゾリル)ベンゾフェノン6.71g(16.8mmol)、ビス(トリフェニルホスフィン)ニッケルジクロリド6.71g(10.3mmol)、トリフェニルホスフィン35.9g(0.137mol)、ヨウ化ナトリウム1.54g(10.3mmol)、亜鉛53.7g(0.821mol)の混合物中に窒素下で加えた。
【0113】
反応系を撹拌下に加熱し(最終的には79℃まで加温)、3時間反応させた。反応途中で系中の粘度上昇が観察された。重合反応溶液をDMAc730mlで希釈し、30分撹拌し、セライトを濾過助剤に用い、濾過した。
【0114】
前記濾液をエバポレーターで濃縮し、濾液に臭化リチウム43.8g(0.505mol)を加え、内温110℃で7時間、窒素雰囲気下で反応させた。反応後、室温まで冷却し、アセトン4lに注ぎ、凝固した。凝固物を濾集、風乾後、ミキサーで粉砕し、1N塩酸1500mlで攪拌しながら洗浄を行った。濾過後、生成物は洗浄液のpHが5以上となるまで、イオン交換水で洗浄後、80℃で一晩乾燥し、目的のポリアリーレン系ブロック共重合体23.0gを得た。この脱保護後のポリアリーレン系ブロック共重合体の重量平均分子量は、19万であった。得られたポリアリーレン系ブロック共重合体を、0.1g/gとなるように、N−メチルー2−ピロリドン/メタノール=30/70(質量%)有機溶媒に溶解してポリマー電解質溶液Bを得た。ポリマー電解質溶液Bの粘度は1200mPa・sであった。
【0115】
【化13】
【0116】
製造例3
(ランダム共重合体b3からなるポリマー電解質溶液Cの製造例)
撹拌機、窒素導入管、Dean−Starkトラップを備えた5Lの反応容器に、合成例1で合成した2,2−ビス(4−ヒドロキシフェニル)−1,3−ジオキソラン129g、4,4’−ビフェノール93g(アルドリッチ試薬)、および合成例2で合成したジソジウム−3,3’−ジスルホネート−4,4’−ジフルオロベンゾフェノン422g(1.0mol)を入れ、窒素置換後、N−メチル−2−ピロリドン(NMP)3000g、トルエン450g、18−クラウン−6 232g(和光純薬試薬)を加え、モノマーが全て溶解したことを確認後、炭酸カリウム304g(アルドリッチ試薬)を加え、環流しながら160℃で脱水後、昇温してトルエン除去し、200℃で1時間脱塩重縮合を行った。重量平均分子量は32万であった。
【0117】
次に重合原液の粘度が500mPa・sになるようにNMPを添加して希釈し、久保田製作所製インバーター・コンパクト高速冷却遠心機(型番6930にアングルローターRA−800をセット、25℃、30分間、遠心力20000G)で重合原液の直接遠心分離を行った。沈降固形物(ケーキ)と上澄み液(塗液)がきれいに分離できたので上澄み液を回収した。次に、撹拌しながら80℃で減圧蒸留し、ポリマー濃度が20重量%になるまでNMPを除去し、さらに5μmのポリエチレン製フィルターで加圧濾過してポリマー電解質溶液Cを得た。ポリマー電解質溶液Cの粘度は1000mPa・sであった。
【0118】
製造例4
(イオン性基を含有するセグメント(A1)として前記(G7)で表されるオリゴマー、イオン性基を含有しないセグメント(A2)として前記(G3)で表されるオリゴマーを含有するブロック共重合体b4からなるポリマー電解質溶液Dの製造例)
かき混ぜ機、窒素導入管、Dean−Starkトラップを備えた500mL三口フラスコに、炭酸カリウム5.5g、前記合成例1で得た2,2−ビス(4−ヒドロキシフェニル)−1,3−ジオキサン混合物5.2g、4,4’−ジフルオロベンゾフェノン2.2g、および前記実施例8で得た、上記式(G7)で示されるスルホン酸基含有芳香族化合物6.3g、18−クラウン−6−エーテル2.6gを用いて、N−メチルピロリドン(NMP)50mL/トルエン40mL中、180℃で脱水後、昇温してトルエン除去、240℃で3時間重合を行った。多量の水で再沈することで精製を行い、ケタール基を有する前駆体ポリマーを得た。重量平均分子量は22万であった。
【0119】
次に重合原液の粘度が500mPa・sになるようにNMPを添加して希釈し、久保田製作所製インバーター・コンパクト高速冷却遠心機(型番6930にアングルローターRA−800をセット、25℃、30分間、遠心力20000G)で重合原液の直接遠心分離を行った。沈降固形物(ケーキ)と上澄み液(塗液)がきれいに分離できたので上澄み液を回収した。次に、撹拌しながら80℃で減圧蒸留し、さらに1μmのポリエチレン製フィルターで加圧濾過してポリマー電解質溶液Dを得た。ポリマー電解質溶液Dの粘度は1000mPa・sであった。
【0120】
製造例5
(式(G11)で表されるセグメントと下記式(G14)で表されるセグメントからなるPES系ブロックコポリマーb5からなるポリマー電解質溶液Eの合成)
合成例9で得られたブロックコポリマー前駆体0.23gを、臭化リチウム1水和物0.16gとN−メチル−2−ピロリドン8mLとの混合溶液に加え、120℃で24時間反応させた。反応混合物を、6mol/L塩酸80mL中に注ぎ込み、1時間撹拌した。析出した固体を濾過により分離した。分離した固体を乾燥し、灰白色の式(G11)で示されるセグメントと下記式(G14)で表されるセグメントからなるブロックコポリマーb4を得た。得られたポリアリーレンの重量平均分子量は18万であった。
【0121】
次に重合原液の粘度が500mPa・sになるようにNMPを添加して希釈し、久保田製作所製インバーター・コンパクト高速冷却遠心機(型番6930にアングルローターRA−800をセット、25℃、30分間、遠心力20000G)で重合原液の直接遠心分離を行った。沈降固形物(ケーキ)と上澄み液(塗液)がきれいに分離できたので上澄み液を回収した。次に、撹拌しながら80℃で減圧蒸留し、さらに5μmのポリエチレン製フィルターで加圧濾過してポリマー電解質溶液Eを得た。ポリマー電解質溶液Eの粘度は1000mPa・sであった。
【0122】
【化14】
【0123】
製造例6
(イオン性基を含有するセグメント(A1)として前記(G4)で表されるオリゴマー、イオン性基を含有しないセグメント(A2)として前記(G3)で表されるオリゴマーを含有するブロック共重合体b1’からなるポリマー電解質溶液Fの製造例)
イオン性基を含有するオリゴマーa2(末端:ヒドロキシル基)を14g(0.9mmol)、イオン性基を含有しないオリゴマーa1(末端:フルオロ基)12g(1.1mmol)とした以外は、製造例1と同様にブロック共重合体b1’を製造した。ブロック共重合体b1’の重量平均分子量は29万であった。次に、製造例1と同様にポリマー電解質溶液Fを得た。ポリマー電解質溶液Fの粘度は950mPa・sであった。
【0124】
製造例7
(イオン性基を含有するセグメント(A1)として下記式(G15)で表される側鎖、イオン性基を含有しないセグメント(A2)として前記式(G12)で表されるポリマーを含有するグラフト共重合体b6からなるポリマー電解質前駆体溶液Gの製造例)
合成例10で得られたPSU粉末3.0gをコック付きのガラス製セパラブル容器に入れて脱気後、ガラス容器内をアルゴンガスで置換した。この状態で、PSU粉末に
60Co線源からのγ線を室温で100kGy照射した。引き続いて、このガラス容器中に、アルゴンガスのバブリングにより脱気したp−スチレンスルホン酸ナトリウム300g、イソプロピルアルコール300gからなる溶液を、照射されたPSU粉末が浸漬するよう添加し、アルゴンガスで置換した後、ガラス容器を密閉し、80℃で12時間放置した。得られたグラフトポリマーをイソプロピルアルコールで洗浄し乾燥した。
【0125】
得られたグラフトポリマー2gを、N−メチルピロリドン(NMP)30gに溶解させ、ポリマー電解質前駆体溶液Gを得た。ポリマー電解質溶液Gの粘度は1300mPa・sであった。
【0126】
【化15】
【0127】
製造例8
(含フッ素高分子多孔質膜Aの製造例)
ポアフロンHP−045−30(住友電工ファインポリマー株式会社製)を縦横方向に2.5倍延伸することにより、膜厚10μm、空孔率80%のポリテトラフルオロエチレン多孔質フィルムを作製した。露点−80℃のグローブボックス内において、金属ナトリウム−ナフタレン錯体/テトラヒドロフラン(THF)1%溶液10g、THF90gからなる溶液に前記ポリテトラフルオロエチレン多孔質フィルムを浸漬し、3秒経過後に引き上げ、すぐにTHFで十分洗浄した。得られた含フッ素高分子多孔質膜Aの、親水化度合いを示す最表面のO/F比は0.62であった。粉末のO/F比は0.28であり、強靭なフィルムであった。
【0128】
製造例9
(含フッ素高分子多孔質膜Bの製造例)
ポアフロンHP−045−30(住友電工ファインポリマー株式会社製)を縦横方向に2.5倍延伸することにより得た膜厚10μm、空孔率80%のポリテトラフルオロエチレン多孔質フィルムを、露点−80℃のグローブボックス内において、金属ナトリウム−ナフタレン錯体/THF1%溶液30g、THF70gからなる溶液に浸漬し、3秒経過後に引き上げ、すぐにTHFで十分洗浄した。得られた含フッ素高分子多孔質膜Bの、親水化度合いを示す最表面のO/F比は2.33であった。粉末のO/F比は1.88であり、十分強靭なフィルムであった。
【0129】
製造例10
(含フッ素高分子多孔質膜Cの製造例)
ポアフロンHP−045−30(住友電工ファインポリマー株式会社製)を縦横方向に2.5倍延伸することにより得た膜厚10μm、空孔率80%のポリテトラフルオロエチレン多孔質フィルムに対し、プラズマ処理を施した。処理にはSAMCO RIE N100を用い、酸素3%/アルゴン97%混合ガスを9.5Paの圧力に調整し、10WのRF出力で2分間処理を行った。得られた含フッ素高分子多孔質膜Cの、親水化度合いを示す最表面のO/F比は0.32であった。粉末のO/F比は0.19であり、強靭なフィルムであった。
【0130】
製造例11
(含フッ素高分子多孔質膜Dの製造例)
ポアフロンHP−045−30(住友電工ファインポリマー株式会社製)を縦横方向に2.5倍延伸することにより得た膜厚10μm、空孔率80%のポリテトラフルオロエチレン多孔質フィルムに対し、プラズマ処理を施した。処理にはSAMCO RIE N100を用い、酸素1%/アルゴン99%混合ガスを9.5Paの圧力に調整し、10WのRF出力で1分間処理を行った。得られた含フッ素高分子多孔質膜Dの、親水化度合いを示す最表面のO/F比は0.13であった。粉末のO/F比は0.05であり、強靭なフィルムであった。
【0131】
製造例12
(含フッ素高分子多孔質膜Eの製造例)
ポアフロンHP−045−30(住友電工ファインポリマー株式会社製)を縦横方向に2.5倍延伸することにより得た膜厚10μm、空孔率80%のポリテトラフルオロエチレン多孔質フィルムを、ポリエチレングリコール4000(和光純薬試薬)20%/アセトン80%溶液に1時間浸漬し、引き上げた後に室温で十分乾燥させた。得られた含フッ素高分子多孔質膜Eの、親水化度合いを示す最表面のO/F比は1.53であった。粉末のO/F比は0.45であり、強靭なフィルムであった。
【0132】
[実施例1]
ナイフコーターを用い、製造例1で製造したポリマー電解質溶液Aをガラス基板上に流延塗布し、製造例8で製造した含フッ素高分子多孔質膜Aを貼り合わせた。室温にて1h保持し、ポリマー電解質溶液Aを十分含浸させた後、100℃にて4h乾燥した。乾燥後の膜の上面に、再度ポリマー電解質溶液Aを流延塗布し、室温にて1h保持した後、100℃にて4h乾燥し、フィルム状の重合体を得た。10重量%硫酸水溶液に80℃で24時間浸漬してプロトン置換、脱保護反応した後に、大過剰量の純水に24時間浸漬して充分洗浄し、複合高分子電解質膜(膜厚11μm)を得た。
【0133】
得られた複合高分子電解質膜について、IEC、複合化層中の充填率、面内方向と膜厚方向の寸法変化率の比λxy、相分離構造の有無ならびにその形態および平均ドメイン間距離、低加湿発電性能および乾湿サイクル耐久性を評価した。評価結果は下記表1に示す。なお、乾湿サイクル耐久性に関して、20000サイクルを超えても水素透過電流が初期電流の10倍を越えなかったため、20000サイクルで評価を打ち切った。
【0134】
[実施例2]
含フッ素高分子多孔質膜Aの代わりに製造例10で製造した含フッ素高分子多孔質膜Cを使用した以外は、実施例1と同様にして複合高分子電解質膜(膜厚12μm)を得た。
【0135】
得られた複合高分子電解質膜は、IEC、複合化層中の充填率、λxy、相分離構造の有無ならびにその形態および平均ドメイン間距離、低加湿発電性能および乾湿サイクル耐久性を評価した。評価結果は下記表1に示す。なお、乾湿サイクル耐久性に関して、20000サイクルを超えても水素透過電流が初期電流の10倍を越えなかったため、20000サイクルで評価を打ち切った。
【0136】
[実施例3]
ポリマー電解質溶液Aの代わりに製造例2で製造したポリマー電解質溶液Bを使用した以外は、実施例1と同様にして複合高分子電解質膜(膜厚14μm)を得た。
【0137】
[実施例4]
含フッ素高分子多孔質膜Aの代わりに製造例12で製造した含フッ素高分子多孔質膜Eを使用した以外は、実施例1と同様にして複合高分子電解質膜(膜厚11μm)を得た。
【0138】
[実施例5]
ポリマー電解質溶液Aの代わりに製造例4で製造したポリマー電解質溶液Dを使用した以外は、実施例1と同様にして複合高分子電解質膜(膜厚11μm)を得た。
【0139】
[実施例6]
ポリマー電解質溶液Aの代わりに製造例5で製造したポリマー電解質溶液Eを使用した以外は、実施例1と同様にして複合高分子電解質膜(膜厚12μm)を得た。
【0140】
[実施例7]
ポリマー電解質溶液Aの代わりに製造例6で製造したポリマー電解質溶液Fを使用した以外は、実施例1と同様にして複合高分子電解質膜(膜厚11μm)を得た。
【0141】
[実施例8]
ポリマー電解質溶液Aの代わりに製造例7で製造したポリマー電解質溶液Gを使用した以外は、実施例1と同様にして複合高分子電解質膜(膜厚13μm)を得た。
【0142】
[比較例1]
含フッ素高分子多孔質膜Aの代わりに製造例9で製造した含フッ素高分子多孔質膜Bを使用した以外は、実施例1と同様にして複合高分子電解質膜(膜厚10μm)を得た。
【0143】
[比較例2]
含フッ素高分子多孔質膜Aの代わりに製造例11で製造した含フッ素高分子多孔質膜Dを使用した以外は、実施例1と同様にして複合高分子電解質膜(膜厚14μm)を得た。
【0144】
[比較例3]
ポリマー電解質溶液Aの代わりに製造例3で製造したポリマー電解質溶液Cを使用した以外は、実施例1と同様にして複合高分子電解質膜(膜厚11μm)を得た。
【0145】
[比較例4]
ナイフコーターを用い、製造例1で製造したポリマー電解質溶液Aをガラス基板上に流延塗布し、含フッ素高分子多孔質膜を貼り合わることなく、100℃にて4h乾燥し、フィルム状の重合体を得た。80℃で10重量%硫酸水溶液に24時間浸漬してプロトン置換、脱保護反応した後に、大過剰量の純水に24時間浸漬して充分洗浄し、複合高分子電解質膜(膜厚10μm)を得た。
【0146】
[比較例5]
含フッ素高分子多孔質膜Aの代わりに製造例9で製造した含フッ素高分子多孔質膜Bを使用した以外は、実施例3と同様にして複合高分子電解質膜(膜厚12μm)を得た。
【0147】
[比較例6]
ポリマー電解質溶液Aの代わりに製造例2で製造したポリマー電解質溶液Bを使用した以外は、比較例4と同様にして複合高分子電解質膜(膜厚12μm)を得た。
【0148】
[比較例7]
含フッ素高分子多孔質膜Aの代わりにポアフロンWP−045−40(住友電工ファインポリマー株式会社製;空孔率75%、厚さ40μm)を使用した以外は、実施例1と同様にして複合高分子電解質膜(膜厚41μm)を得た。
【0149】
[比較例8]
含フッ素高分子多孔質膜Aの代わりにポアフロンWP−045−40(住友電工ファインポリマー株式会社製;空孔率75%、厚さ40μm)を使用した以外は、実施例3と同様にして複合高分子電解質膜(膜厚42μm)を得た。
【0150】
各実施例、比較例で作製した複合高分子電解質膜の構成、およびIEC、複合層中のポリマー電解質の充填率、λxy、相分離構造の有無ならびにその形態および平均ドメイン間距離、低加湿発電性能および乾湿サイクル耐久性を評価した。評価結果は下記表1に示す。なお、乾湿サイクル耐久性に関して、20000サイクルを超えても水素透過電流が初期電流の10倍を越えなかった場合は、20000サイクルで評価を打ち切った。
(表1において、相分離構造が「−」となっている例は、明確な相分離構造を示していないことを意味する。)
【0151】
【表1】