【課題を解決するための手段】
【0009】
(1)本発明の少なくとも一実施形態に係る可変ノズルベーンは、可変容量型ターボチャージャの可変ノズルベーンであって、前記可変容量型ターボチャージャは、タービンロータと、前記タービンロータの外周側にスクロール流路を形成するスクロール流路形成部と、前記スクロール流路から前記タービンロータへ排ガスを導くための排ガス流路を形成する排ガス流路形成部とを備え、前記排ガス流路形成部は、前記タービンロータの軸方向において前記可変ノズルベーンの一方側に設けられた一方側壁部と、他方側に設けられた他方側壁部とを含み、前記可変ノズルベーンは、前記排ガス流路に回動可能に設けられ、前記一方側壁部と対向する一方側端面と、前記他方側壁部と対向する他方側端面とを含み、前記一方側端面と前記他方側端面の少なくとも一方には、凹部が形成され、キャンバーラインに沿ったキャンバー方向における前記凹部の寸法は、前記キャンバー方向に直交するキャンバー直交方向における前記凹部の寸法よりも大きい。
【0010】
上記(1)に記載の可変ノズルベーンによれば、可変ノズルベーンにおける凹部が設けられた端面(一方側端面と他方側端面の少なくとも一方)と、当該端面に対向する壁面との間の隙間を流れるクリアランスフローの一部が、当該隙間内で循環流(渦)となり、当該隙間を通過するクリアランスフローの流量を低減することができる。このため、タービン効率を向上することができる。
【0011】
また、キャンバー方向における凹部の寸法がキャンバー直交方向における凹部の寸法よりも大きいため、圧力面側から負圧面側へ上記隙間を通過するクリアランスフローを、キャンバーラインに沿った広範囲に亘って効果的に抑制することができる。
【0012】
(2)幾つかの実施形態では、上記(1)に記載の可変ノズルベーンにおいて、前記凹部は、前縁と後縁の各々に達しないように、前記前縁と前記後縁との間に延在する。
【0013】
上記(2)に記載の可変ノズルベーンによれば、凹部が前縁又は後縁に達するように設けられている場合と比較して、上記隙間に上記循環流を形成する作用を強めて、クリアランスフローの流量を効果的に低減することができる。
【0014】
(3)幾つかの実施形態では、上記(2)に記載の可変ノズルベーンにおいて、前記凹部と前記後縁との間隔は、前記凹部と前記前縁との間隔より大きい。
【0015】
上記(3)に記載の可変ノズルベーンによれば、可変ノズルベーンの後縁側の肉厚を過度に小さくすることなく、上述したクリアランスフローを抑制する効果を得ることができる。すなわち、可変ノズルベーンの後縁側の部分に破損が生じることを抑制しつつ、タービン効率を効果的に向上することができる。
【0016】
(4)幾つかの実施形態では、上記(1)乃至(3)の何れか1項に記載の可変ノズルベーンにおいて、前記凹部は、後縁側に向かうにつれて前記キャンバー直交方向における前記凹部の幅が増大する前縁側部分と、前記前縁側部分に接続するとともに後縁側に向かうにつれて前記キャンバー直交方向における前記凹部の幅が減少する後縁側部分とを含む。
【0017】
上記(4)に記載の可変ノズルベーンによれば、可変ノズルベーンにおける凹部の幅をキャンバー方向に適切に変化させることにより、凹部の周縁部の肉厚を確保しつつ、上述したクリアランスフローを抑制する効果を得ることができる。すなわち、凹部の周縁部に破損が生じることを抑制しつつ、タービン効率を効果的に向上することができる。
【0018】
(5)幾つかの実施形態では、上記(1)乃至(4)の何れか1項に記載の可変ノズルベーンにおいて、前記凹部は、底面と、前記キャンバーラインに対して圧力面側に設けられた圧力面側側面と、前記キャンバーラインに対して負圧面側に設けられた負圧面側側面とを含む。
【0019】
上記(5)に記載の可変ノズルベーンによれば、可変ノズルベーンにおける凹部が設けられた端面と壁面との間の隙間を流れるクリアランスフローの一部が、圧力面側側面及び負圧面側側面の各々の近傍にそれぞれ循環流を形成して、クリアランスフローの流量を効果的に低減することができる。
【0020】
(6)幾つかの実施形態では、上記(5)に記載の可変ノズルベーンにおいて、前記圧力面側側面は、前記圧力面に沿って湾曲しており、前記負圧面側側面は、前記負圧面に沿って湾曲している。
【0021】
上記(6)に記載の可変ノズルベーンによれば、可変ノズルベーンにおける凹部の周縁部の肉厚を確保しつつ、上述したクリアランスフローを抑制する効果を得ることができる。すなわち、凹部の周縁部に破損が生じることを抑制しつつ、タービン効率を効果的に向上することができる。
【0022】
(7)幾つかの実施形態では、上記(5)又は(6)に記載の可変ノズルベーンにおいて、前記底面と前記圧力面側側面とのなす角度は、90度以下である。
【0023】
上記(7)に記載の可変ノズルベーンによれば、底面と圧力面側側面とのなす角度が90度より大きい場合と比較して、圧力面側側面の近傍の循環流を形成する効果を高めて、クリアランスフローの流量を効果的に低減することができる。なお、上記角度が90度であれば、製造容易性の観点で有利であり、上記角度が90度未満であれば、圧力面側側面の近傍の循環流を形成する観点で有利である。
【0024】
(8)幾つかの実施形態では、上記(5)乃至(7)の何れか1項に記載の可変ノズルベーンにおいて、前記底面と前記負圧面側側面とのなす角度は、90度以下である。
【0025】
上記(8)に記載の可変ノズルベーンによれば、底面と負圧面側側面とのなす角度が90度より大きい場合と比較して、負圧面側側面の近傍の循環流を形成する効果を高めて、クリアランスフローの流量を効果的に低減することができる。なお、上記角度が90度であれば、製造容易性の観点で有利であり、上記角度が90度未満であれば、負圧面側側面の近傍の循環流を形成する観点で有利である。
【0026】
(9)幾つかの実施形態では、上記(5)又は(6)に記載の可変ノズルベーンにおいて、前記底面は、前記圧力面側側面から前記負圧面側側面に向かって下り勾配を有する。
【0027】
上記(9)に記載の可変ノズルベーンによれば、可変ノズルベーンの凹部に流入したクリアランスフローは、下り勾配を有する底面に沿って負圧面側へ流れるが、負圧面側側面の高さが圧力面側側面の高さよりも高くなるため、凹部からスムーズに流出しにくくなる。
【0028】
(10)幾つかの実施形態では、上記(1)乃至(9)の何れか1項に記載の可変ノズルベーンにおいて、前記凹部は、前記キャンバー方向に直交する断面として、前記可変ノズルベーンの翼高さHに対する前記凹部の深さDの比D/Hが0.1<D/H<0.2を満たす断面を含む。
【0029】
上記(10)に記載の可変ノズルベーンによれば、上記隙間に循環流を形成する作用を強めて、クリアランスフローの流量を効果的に低減することができる。これにより、タービン効率を効果的に向上することができる。
【0030】
(11)幾つかの実施形態では、上記(1)乃至(10)の何れか1項に記載の可変ノズルベーンにおいて、前記凹部は、前記キャンバー方向に直交する断面として、前記凹部の幅Wに対する前記凹部の深さDの比D/Wが0.1<D/W<0.35を満たす断面を含む。
【0031】
上記(11)に記載の可変ノズルベーンによれば、上記隙間に循環流を形成する作用を強めて、クリアランスフローの流量を効果的に低減することができる。これにより、タービン効率を効果的に向上することができる。
【0032】
(12)幾つかの実施形態では、上記(1)乃至(11)の何れか1項に記載の可変ノズルベーンにおいて、前記可変ノズルベーンは、前記一方側壁部と前記他方側壁部の何れか一方に片持ち支持され、前記一方側壁部と前記他方側壁部のうち、前記可変ノズルベーンを片持ち支持する壁部を支持壁部、前記可変ノズルベーンを片持ち支持しない壁部を非支持壁部と称し、前記一方側端面と前記他方側端面のうち、前記支持壁部に対向する端面を支持壁側端面、前記非支持壁部に対向する端面を非支持壁側端面と称すると、前記非支持壁側端面は、前記凹部を有する。
【0033】
可変ノズルベーンが支持壁部に片持ち支持されている構成では、非支持壁部の壁面と可変ノズルベーンの非支持壁側端面との隙間のクリアランスフローが問題となりやすい。このため、非支持壁側端面に上述した凹部を設けることで、非支持壁側端面と非支持壁部の壁面との間の隙間を流れるクリアランスフローの一部が当該隙間内で循環流となり、当該隙間を通過するクリアランスフローの流量を低減することができる。このため、タービン効率を向上することができる。
【0034】
また、キャンバー方向における凹部の寸法がキャンバー直交方向における凹部の寸法よりも大きいため、圧力面側から負圧面側へ上記隙間を通過するクリアランスフローを、キャンバーラインに沿った広範囲に亘って効果的に抑制することができる。
【0035】
(13)幾つかの実施形態では、上記(12)に記載の可変ノズルベーンにおいて、前記可変ノズルベーンにおける前記非支持壁部側の端部は、前記非支持壁部側に近づくにつれて翼厚が大きくなるように形成されたテーパ部を含む。
【0036】
上記(13)に記載の可変ノズルベーンによれば、可変ノズルベーンにテーパ部が設けられていない場合と比較して、テーパ部を設けることによって、非支持壁側端面と非支持壁部の壁面との隙間の流路長を長くすることができる。このため、当該隙間における圧力面側と負圧面側との圧力勾配が小さくなり、クリアランスフローの流量を低減することができる。
【0037】
(14)幾つかの実施形態では、上記(13)に記載の可変ノズルベーンにおいて、前記テーパ部の負圧面は、前記非支持壁部側に近づくにつれて翼厚が大きくなるように翼高さ方向に対して傾斜したテーパ面を含む。
【0038】
上記(14)に記載の可変ノズルベーンによれば、テーパ部の負圧面が有する上記テーパ面によって、ノズルのスロート部からの流れが非支持壁部の壁面に引き付けられにくくなる。このため、テーパ部が設けられていない場合と比較して、上記スロート部からの流れと上記隙間を流れるクリアランスフローとの混合(衝突)に起因する損失を低減することができる。
【0039】
(15)幾つかの実施形態では、上記(14)に記載の可変ノズルベーンにおいて、前記テーパ部の圧力面は、翼高さ方向に平行に形成される。
【0040】
上記(15)に記載の可変ノズルベーンによれば、可変ノズルベーンの空力性能の低下を抑制しつつ、上記スロート部からの流れと上記クリアランスフローとの混合に起因する損失を低減することができる。
【0041】
(16)幾つかの実施形態では、上記(13)乃至(14)に記載の可変ノズルベーンにおいて、前記テーパ部の圧力面は、前記非支持壁部側に近づくにつれて翼厚が大きくなるように翼高さ方向に対して傾斜したテーパ面を含む。
【0042】
上記(16)に記載の可変ノズルベーンによれば、テーパ部の圧力面に上記テーパ面が設けられていない場合と比較して、非支持壁側端面と非支持壁部の壁面との隙間の流路長を長くすることができる。このため、当該隙間における圧力面側と負圧面側との圧力勾配が小さくなり、クリアランスフローの流量を低減することができる。
【0043】
(17)幾つかの実施形態では、上記(13)乃至(16)に記載の可変ノズルベーンにおいて、前記テーパ部は、前記ノズルベーンのうち翼高さHの80%の位置より非支持壁側に設けられる。
【0044】
翼高さ方向における広範囲で翼厚を大きくすると、可変ノズルベーンの空力性能が大きく低下してしまうため、上記(17)に記載の範囲にテーパ部を設けることで、空力性能の低下を抑制しつつ、クリアランスフローの流量を低減することができる。
【0045】
(18)幾つかの実施形態では、上記(13)乃至(17)に記載の可変ノズルベーンにおいて、前記支持壁側端面の最大翼厚T1に対する前記非支持壁側端面の最大翼厚T2の比T2/T1は、1.5<T2/T1<2.5を満たす。
【0046】
上記(18)に記載の可変ノズルベーンによれば、テーパ部が設けられていない場合と比較して、非支持壁側端面と非支持壁部の壁面との隙間の流路長が大幅に拡大されるため、当該隙間における圧力面側と負圧面側との圧力勾配が小さくなり、クリアランスフローの流量を効果的に低減することができる。
【0047】
(19)幾つかの実施形態では、上記(1)乃至(18)に記載の可変ノズルベーンにおいて、前記可変ノズルベーンは、自動車用の可変容量型ターボチャージャの可変ノズルベーンである。
【0048】
上記(19)に記載の可変ノズルベーンによれば、自動車用の可変容量型ターボチャージャにおける可変ノズルベーンのクリアランスフローを効果的に抑制することができる。
【0049】
(20)本発明の少なくとも一実施形態に係る可変容量型ターボチャージャは、タービンロータと、前記タービンロータの外周側にスクロール流路を形成するスクロール流路形成部と、前記スクロール流路から前記タービンロータへ排ガスを導くための排ガス流路を形成する排ガス流路形成部と、上記(1)乃至(19)の何れか1項に記載の可変ノズルベーンとを備える。
【0050】
上記(20)に記載の可変容量型ターボチャージャによれば、上記(1)乃至(19)の何れか1項に記載の可変ノズルベーンを備えるため、クリアランスフローを効果的に抑制し、高いタービン効率を実現することができる。