(58)【調査した分野】(Int.Cl.,DB名)
放射面から赤外光を放射する赤外放射層と、当該赤外放射層における前記放射面の存在側とは反対側に位置させる光反射層とが積層状態で設けられた放射冷却装置であって、
前記光反射層が、銀あるいは銀合金からなる第1層とアルミニウムあるいはアルミニウム合金からなる第2層とを、前記第1層を前記赤外放射層に近い側に位置させる形態で積層した状態に構成され、
前記第1層の厚さが、3.3nmよりも大きく、かつ、100nm以下であり、
前記第2層の厚さが、25nm以上50nm以下である放射冷却装置。
【発明の概要】
【発明が解決しようとする課題】
【0007】
第1の従来例においては、光反射層が、多層状態に積層されるフォトニング・バンドキャップ層を備えるものであるため、製作が煩雑となる不利があり、しかも、フォトニング・バンドキャップ層を備えるにしても、高価な銀からなる金属層を十分に薄くできないため、全体構成の低廉化を図り難い不利があった。
【0008】
第2の従来例においては、光反射層が、アルミニウムからなる金属層として構成されるものであるから、安価なアルミニウムにて光反射層が構成されるため、全体構成の低廉化を図れるものである。
しかしながら、アルミニウムからなる金属層は、銀よりも光を吸収し易いものであるから、赤外放射層を透過した光が、アルミニウムからなる金属層に吸収されて、当該光の吸収により昇温する金属層が、冷却対象を加温すること等に起因して、冷却対象を適切に冷却できない虞があった。
【0009】
このような状況に鑑みて、本発明の発明者が鋭意研究した結果によれば、光反射層を、厚さが100nm以上の銀からなる金属層として構成すれば、赤外放射層を透過した光が冷却対象に投射されることを抑制しながら、冷却対象を冷却することができるものとなり(
図9、
図10参照)、そして、光反射層を、厚さが300nm以上の銀からなる金属層として構成すれば、赤外放射層を透過した光が冷却対象に投射されることを的確に抑制して、冷却対象を適切に冷却できることが判明した。
【0010】
しかしながら、銀は高価な金属であるから、光反射層を、厚さが300nm以上の銀からなる金属層として構成すれば、放射冷却装置が高価となるものとなるため、銀の使用量を極力抑制しながら、冷却対象を冷却することが望まれるものであった。
【0011】
本発明は、上記実情に鑑みて為されたものであって、その目的は、光反射層の低廉化を図りながらも、冷却対象を適切に冷却できる放射冷却装置を提供する点にある。
【課題を解決するための手段】
【0012】
本発明の放射冷却装置は、放射面から赤外光を放射する赤外放射層と、当該赤外放射層における前記放射面の存在側とは反対側に位置させる光反射層とが積層状態で設けられたものであって、その特徴構成は、
前記光反射層が、銀あるいは銀合金からなる第1層とアルミニウムあるいはアルミニウム合金からなる第2層とを、前記第1層を前記赤外放射層に近い側に位置させる形態で積層した状態に構成され
、
前記第1層の厚さが、3.3nmよりも大きく、かつ、100nm以下であり、
前記第2層の厚さが、25nm以上50nm以下である点にある。
【0013】
すなわち、本発明の発明者が鋭意研究した結果、光反射層を、銀あるいは銀合金からなる第1層とアルミニウムあるいはアルミニウム合金からなる第2層とを、第1層を赤外放射層に近い側に位置させる形態で積層した状態に構成することにより、高価な銀あるいは銀合金の使用量を抑制しながら、冷却対象を冷却できることを見出すに至った。
【0014】
つまり、銀あるいは銀合金は、可視光や赤外光を効率良く反射できるものの、紫外光の反射率が低い傾向となる。
これに対して、アルミニウムあるいはアルミニウム合金は、銀あるいは銀合金に較べて、可視光や赤外光を効率良く反射することができないものの、紫外光を効率良く反射することができる傾向となる。
しかも、アルミニウムあるいはアルミニウム合金は、銀あるいは銀合金に較べて、可視光や赤外光を吸収し易い傾向となる。
【0015】
そこで、銀あるいは銀合金からなる第1層とアルミニウムあるいはアルミニウム合金からなる第2層とを、第1層を赤外放射層に近い側に位置させる形態で積層した状態に構成することにより、第1層が可視光や赤外光を反射することにより、第2層が可視光や赤外光を吸収することを抑制し、しかも、第1層の厚さを薄くしても、第1層及び第2層の存在により、赤外放射層を透過した光(可視光、紫外光、赤外光)を適切に反射して、冷却対象を冷却できることを見出すに至ったのである。
【0016】
そして、銀あるいは銀合金からなる第1層を薄くできるため、光反射層の低廉化を図ることができるのである。
【0017】
要するに、本発明の放射冷却装置によれば、光反射層の低廉化を図りながらも、冷却対象を適切に冷却できる。
【0019】
また、銀あるいは銀合金からなる第1層の厚さを、3.3nmよりも大きく、かつ、100nm以下である範囲で変化させても、第2層の存在により、赤外放射層を透過した光(可視光、紫外光、赤外光)を適切に反射して、冷却対象を冷却できることが判明した。
【0020】
つまり、銀あるいは銀合金からなる第1層の厚さを、3.3nmよりも大きく、かつ、100nm以下である範囲の薄い厚さにして、光反射層の低廉化を十分に図りながらも、冷却対象を冷却できる。
【0021】
但し、銀あるいは銀合金からなる第1層の厚さを、3.3nmよりも大きく、かつ、100nm以下である範囲の間において、30nm以上に大きくすることにより、冷却対象を適切に冷却できることになる。
【0022】
要するに、本発明の放射冷却装置
の特徴構成によれば、光反射層の低廉化を十分に図りながらも、冷却対象を冷却できる。
【0023】
本発明の放射冷却装置の更なる特徴構成は、前記第1層の厚さが、50nm以上100nm以下である点にある。
【0024】
すなわち、銀あるいは銀合金からなる第1層の厚さを、50nm以上100nm以下の範囲にすれば、第1層による光(主として、可視光、赤外光)の反射作用を適切に発揮させながら、第2層の存在により、赤外放射層を透過した光(可視光、紫外光、赤外光)を適切に反射することができる結果、光反射層を、厚さが300nm以上の銀からなる金属層として構成する場合と同等の能力にて、冷却対象を冷却できることを見出すに至った。
【0025】
従って、第1層の厚さを薄くして、光反射層の低廉化を図りながらも、厚さが300nm以上の銀からなる金属層として構成する場合と同等の大きな冷却能力を得ることができる。
【0026】
要するに、本発明の放射冷却装置の更なる特徴構成によれば、光反射層の低廉化を図りながらも、大きな冷却能力を得ることができる。
【0031】
本発明の放射冷却装置の更なる特徴構成は、前記赤外放射層が、無アルカリガラス、クラウンガラス、ホウケイ酸ガラスのうちのいずれかのガラスにて構成されている点にある。
【0032】
すなわち、無アルカリガラス、クラウンガラス、ホウケイ酸ガラスは、比較的に安価でありながらも、太陽光(可視光、紫外光、近赤外光)の透過性が優れた(例えば、80%程度を透過する)ものであるため、太陽光を吸収することがなく、しかも、大気の窓(例えば、波長が8〜13μmの赤外光を透過させる窓等)に相当する波長の赤外光を放射する輻射強度が高い性質を有する。
【0033】
したがって、赤外放射層を、無アルカリガラス、クラウンガラス、ホウケイ酸ガラスのうちのいずれかのガラスにて構成することにより、全体構成の低廉化を図りながらも、冷却能力の高い放射冷却装置を得ることができる。
【0034】
要するに、本発明の放射冷却装置の更なる特徴構成によれば、全体構成の低廉化を図りながらも、冷却能力の向上を得ることができる。
【0035】
本発明の放射冷却装置の更なる特徴構成は、前記赤外放射層を基板として、前記第1層及び前記第2層が積層されている点にある。
【0036】
すなわち、赤外放射層を基板として、第1層及び第2層が積層されているから、全体構成の簡素化を図り、しかも、全体構成の薄膜化を図ることができる。
ちなみに、赤外放射層を基板として、第1層及び第2層を積層する際に、第1層及び第2層が薄い場合には、例えば、スパッタリング等により、第1層及び第2層を順次積層することになる。
【0037】
つまり、積層用基板を設けて、その積層用基板に対して、スパッタリング等により、第2層及び第1層を順次積層し、その後、第1層の第2層の存在側とは反対側箇所に、別途製作した赤外放射層を載置して積層する、又は、第1層の第2層の存在側とは反対側箇所に、スパッタリング等により、赤外放射層を積層する場合に較べて、積層用基板を設ける必要が無いため、全体構成の簡素化を図り、しかも、全体構成の薄膜化を図ることができる。
【0038】
要するに、本発明の放射冷却装置の更なる特徴構成によれば、全体構成の簡素化を図り、しかも、全体構成の薄膜化を図ることができる。
【0039】
本発明の放射冷却装置の更なる特徴構成は、前記赤外放射層と前記第1層との間に、密着層が積層されている点にある。
【0040】
すなわち、赤外放射層と光反射層の第1層との間に密着層が積層されているから、温度変化等に起因して、光反射層の第1層が赤外放射層に対して剥離する等の損傷が生じることを抑制できるため、耐久性を向上できる。
【0041】
要するに、本発明の放射冷却装置の更なる特徴構成によれば、耐久性の向上を図ることができる。
【0042】
本発明の放射冷却装置の更なる特徴構成は、前記第2層における前記第1層の存在側とは反対側に、酸化防止層が積層されている点にある。
【0043】
すなわち、アルミニウムあるいはアルミニウム合金からなる第2層における第1層の存在側とは反対側に、酸化防止層が積層されているから、第2層を薄くしても、第2層が酸化して劣化することを抑制できるため、耐久性を向上できる。
【0044】
要するに、本発明の放射冷却装置の更なる特徴構成によれば、アルミニウムあるいはアルミニウム合金からなる第2層の劣化を抑制して、耐久性を向上できる。
【発明を実施するための形態】
【0046】
以下、本発明の実施形態を図面に基づいて説明する。
〔放射冷却装置の構成〕
図1に示すように、放射冷却装置CPには、放射面Hから赤外光IRを放射する赤外放射層Aと、当該赤外放射層Aにおける放射面Hの存在側とは反対側に位置させる光反射層Bとが積層状態に設けられている。
【0047】
光反射層Bが、銀あるいは銀合金からなる第1層B1とアルミニウム(以下の記載において「アルミ」と略称)あるいはアルミニウム合金(以下の記載において「アルミ合金」と略称)からなる第2層B2とを、第1層B1を赤外放射層Aに近い側に位置させる形態で積層した状態に構成されている。
【0048】
第1層B1の厚さ(膜厚)が、3.3nmよりも大きく且つ100nm以下に構成され、好ましくは、第1層B1の厚さ(膜厚)が、50nm以上で且つ100nm以下に構成されている。
第2層B2の厚さ(膜厚)が、10nm以上に構成されている。
【0049】
ちなみに、「銀合金」としては、銀に、銅、パラジウム、金、亜鉛、スズ、マグネシウム、ニッケル、チタンのいずれかを、例えば、0.4〜4.5質量%程度添加した合金を用いることができる。具体例としては、銀に銅とパラジウムを添加して作成した銀合金である「APC−TR(フルヤ金属製)」を用いることができる。
尚、以下の記載においては、第1層B1を、銀を用いて構成するものとして説明する。
【0050】
「アルミ合金」としては、アルミに、銅、マンガン、ケイ素、マグネシウム、亜鉛、機械構造用炭素鋼、イットリウム、ランタン、ガドリニウム、テルビウムを添加した合金を用いることができる。
尚、以下の記載においては、第2層B2を、アルミを用いて構成するものとして説明する。
【0051】
また、放射冷却装置CPは、赤外放射層Aを基板として、第1層B1及び第2層B2を積層することにより構成されている。
具体的には、基板としての赤外放射層Aと第1層B1との間に、密着層3が積層され、かつ、第2層B2における第1層B1の存在側とは反対側に、酸化防止層4が積層されている。
【0052】
つまり、放射冷却装置CPが、赤外放射層Aを基板として、例えばスパッタリングにより、密着層3、第1層B1、第2層B2及び酸化防止層4を順次製膜する形態に構成されている。
【0053】
密着層3は、酸化アルミニウム(Al
2O
3)を20〜100nmに製膜する形態に構成されている。
酸化防止層4が、二酸化ケイ素(SiO
2)又は酸化アルミニウム(Al
2O
3)を、10〜数100nmに製膜する形態に構成されている。尚、以下の記載においては、二酸化ケイ素(SiO
2)が製膜されているとして説明する。
【0054】
赤外放射層Aが、無アルカリガラス、クラウンガラス、ホウケイ酸ガラスのうちのいずれかのガラスにて構成されている。
ちなみに、無アルカリガラスとしては、例えば、OA10G(日本電気硝子製)を用いることができ、クラウンガラスとしては、例えば、B270(登録商標、以下同じ)を用いることができ、ホウケイ酸ガラスとしては、例えば、テンパックス(登録商標、以下同じ)用いることができる。
【0055】
「OA10G」、「B270」及び「テンパックス」は、
図5に示すように、太陽光に対応する波長の光に対する透過率が高く、また、
図6に示すように、大気の透過率が高い波長域(いわゆる、大気の窓)に相当する波長の輻射率が高い。
ちなみに、
図5は「テンパックス」を代表として例示するが、白板ガラスの「OA10G」、「B270」なども同様である。
尚、以下の記載においては、赤外放射層Aが「テンパックス」にて形成されているとして説明する。
【0056】
従って、放射冷却装置CPは、放射冷却装置CPに入射した光Lのうちの一部の光(例えば、太陽光の一部の光等)を、赤外放射層Aの放射面Hにて反射し、放射冷却装置CPに入射した光Lのうちで赤外放射層Aを透過した光(紫外光等)を、光反射層Bにて反射するように構成されている。
【0057】
そして、酸化防止層4における光反射層Bの存在側とは反対側に位置する冷却対象Dから放射冷却装置CPへの入熱(例えば、冷却対象Dからの熱伝導による入熱)を、赤外放射層Aによって赤外線IRに変換して放射することで、冷却対象Dを冷却するように構成されている。
尚、本実施形態において光とは、その波長が10nmから20000nmの電磁波のことを言う。つまり、光Lには、紫外光、赤外光IRおよび可視光が含まれる。
【0058】
〔放射冷却装置の使用結果〕
図20に示すように、厚さ1mmのテンパックスにて赤外放射層Aを形成し、膜厚が50nmの銀の第1層B1と膜厚が50nmのアルミとによって光反射層Bを形成し、膜厚が5nmの酸化アルミニウム(Al
2O
3)にて密着層3を形成し、膜厚が30nmの二酸化ケイ素(SiO
2)にて酸化防止層4を形成する形態で放射冷却装置CPを構成し、このように構成した放射冷却装置CPを実際に使用した使用結果を
図21に示す。
【0059】
図21は、2017年9月1日〜3日までの放射冷却特性として、放射冷却装置CPの温度の変化を示したものである。放射冷却装置CPの温度の変化としては、酸化防止層4の光反射層Bの存在側とは反対側の面の温度の変化を示す。
2017年9月1日〜3日までの天候は晴れであり、太陽光エネルギーの強度が、各日の日中には大きくなり、夜間には小さくなる。
【0060】
放射冷却装置CPの冷却能力を分かり易くするために、
図21には、放射冷却装置CPと並置したステンレス板(SUS)の温度の変化、反射塗料を塗布したステンレス板(SUS)における反射塗料の温度の変化、及び、周囲温度(外気温度)の変化を示す。
【0061】
この使用結果から、放射冷却装置CPの温度が、常に周囲温度よりも2〜5℃低くなるのに対して、ステンレス板(SUS)の温度やステンレス板に塗布した反射塗料の温度が、日照下では周囲温度よりも高温になることがわかる。
【0062】
〔放射冷却装置の考察〕
光反射層Bを第1層B1のみにて構成する場合(
図2参照)と、光反射層Bを第1層B1及び第2層B2にて構成する場合(
図3参照)とにおいて、第1層B1の銀の厚みを変化させながら、放射冷却装置CPの冷却能力を計算したところ、
図4の表に示す結果となった。
【0063】
図4の表は、8月下旬の大阪における快晴の日をモデルとして計算した。
すなわち、太陽光エネルギーを1000W/m
2とし、外気温を30℃、大気の輻射エネルギーが387W/m
2の8月下旬をモデルとして計算したものであって、放射冷却装置CPの温度(酸化防止層4における光反射層Bの存在側とは反対側の面の温度:以下、冷却面温度と記載する場合がある)が30℃であるとして計算したものである。
【0064】
図4に示すように、光反射層Bを第1層B1のみにて構成する場合(
図2参照)には、第1層B1を形成する銀の厚みが30nm以下になると、放射冷却装置CPが冷却能力を生じないものとなるが、光反射層Bを第1層B1及び第2層B2にて構成する場合(
図3参照)には、銀の厚みが3.3nmよりも大きいと、放射冷却装置CPが冷却能力を生じるものとなる。
【0065】
しかも、光反射層Bを第1層B1及び第2層B2にて構成する場合(
図3参照)には、銀の厚みが50nm〜100nmのときには、放射冷却装置CPの冷却能力が、光反射層Bを第1層B1のみにて構成する場合(
図2参照)において銀の厚みを300nmとするときと、同等の能力となる。
【0066】
ちなみに、赤外放射層Aを構成するテンパックスの厚さは、10μm以上で10cm以下である必要があり、好ましくは、20μm以上で10cm以下、より好ましくは、100μm以上で1cm以下が良い。
つまり、赤外放射層Aを、波長8μm以上14μm以下の赤外域で大きな熱輻射を示し、当該熱輻射が、赤外放射層A及び光反射層Bの夫々にて吸収されるAM1.5Gの太陽光及び大気の熱輻射よりも大きくなるようにすることにより、昼夜を問わず周囲の大気よりも温度が低下する放射冷却作用を発揮する放射冷却装置CPを構成することができる。
そして、そのようにするにあたり、赤外放射層Aをテンパックスにて構成する場合には、厚さを10μm以上で10cm以下にする必要があり、好ましくは、20μm以上で10cm以下、より好ましくは、100μm以上で1cm以下が良い。
【0067】
〔発明の補足説明〕
以下、放射冷却装置CPの光反射層Bを第1層B1及び第2層B2にて構成するに至った本発明についての補足説明を行う。
図7に示すように、放射冷却装置CPの光反射層Bを、厚さが50nmの銀からなる第1層B1のみにて構成した場合においては、
図8に示すように、短波長側の光が、第1層B1を構成する50nmの銀を透過することになり、透過した光が冷却対象Dに照射されることになる。
【0068】
図9に示すように、銀は、膜厚(厚さ)が薄くなると、薄くなるほど透過率が上昇することになるため、光反射層Bを第1層B1のみにて構成する場合には、銀の膜厚(厚さ)が薄くなるほど、冷却対象Dに照射される光が増加して、放射冷却装置CPの冷却に拘わらず、冷却対象Dの温度が上昇する現象が生じる。
つまり、冷却対象Dは、被冷却物の熱を効率的に逃がすために、光吸収層や熱交換器として構成されるが、第1層B1を構成する銀の膜厚(厚さ)を薄くすると透過した光が冷却対象Dを温めるので放射冷却能力(放射冷却性能)が弱まることになる。
【0069】
図10は、光反射層Bを銀からなる第1層B1にて構成する放射冷却装置CP(
図7参照)において、銀の膜厚(厚さ)と透過する太陽光のエネルギー(W/m
2)との関係を示すものである。
第1層B1を構成する銀の膜厚(厚さ)を300nmの膜厚(厚さ)にする従来の放射冷却装置CPの放射冷却能力は、日本の夏、標高0m、外気温度が30℃の南中時、湿度や空気の澄み具合にもよるが、概ね70W/m
2程度である。
【0070】
これに対して、第1層B1を構成する銀の膜厚(厚さ)が100nmになると、透過する太陽光のエネルギーが7W/m
2程度となり、この透過光が冷却対象Dを加熱することにより、放射冷却装置CPの冷却能力が1割程度低下する。
さらに、第1層B1を構成する銀の膜厚(厚さ)が50nmになると、透過する太陽光のエネルギーが70W/m
2程度となり、この透過光が冷却対象Dを加熱することにより、放射冷却装置CPの放射冷却能力が大きく低下する。
【0071】
以上の通り、
図7〜
図10に基づいて、光反射層Bを第1層B1のみにて構成する場合において、第1層B1を構成する銀の膜厚(厚さ)を薄くした場合に生じる問題点を説明してきた。
つまり、光反射層Bを第1層B1のみにて構成する場合においては、第1層B1を構成する銀の膜厚(厚さ)を十分に薄くすることができないものとなる。
【0072】
次に、銀を他の金属としてのアルミにて代替できないかについて考える。つまり、アルミは銀と同様に反射率が高い金属として知られるものであるから、
図11に示すように、光反射層Bを第2層B2のみにて構成する場合が考えられる。
【0073】
図13に示すように、アルミは、25nm以上の膜厚(厚さ)があれば、太陽光の透過を的確に遮蔽できるものである。
しかしながら、
図12に示すように、アルミは太陽光の吸収率が高い傾向にあり、しかも、
図14に示すように、アルミ(膜厚50nm)は、銀(膜厚300nm)よりも太陽光を多く吸収するものである。
【0074】
その結果、
図15に示すように、光反射層Bを第2層B2のみにて構成し、かつ、第2層B2を構成するアルミの膜厚(厚さ)を300nmにする場合においては、外気温が30℃の南中時における放射冷却能力は、−14.7W/m
2となり、発熱する。なお、冷却する場合を正、加熱される場合を負で表現している。
尚、
図15に示すように、光反射層Bを第1層B1のみにて構成し、かつ、第1層B1を構成する銀の膜厚(厚さ)を300nmにする場合においては、外気温が30℃の南中時における放射冷却能力は、70W/m
2程度となる。
【0075】
以上の通り、
図11〜
図15に基づいて、光反射層Bを第2層B2のみにて構成する場合における問題点を説明してきた。
つまり、光反射層Bを第2層B2のみにて構成する場合には、放射冷却装置CPの放射冷却能力を十分な能力にすることができないことが分かる。
【0076】
そこで、本発明者は鋭意研究の結果、放射冷却装置CPの光反射層Bを、第1層B1と第2層B2にて構成すれば、第1層B1を構成する銀の膜厚(厚さ)を薄くしながらも、放射冷却能力を十分な能力にすることができることを見出すに至ったのである。
【0077】
すなわち、
図9に示すように、第1層B1を構成する銀の透過率は、短波長側ほど大きくなり、かつ、膜厚(厚さ)が薄くなるほど大きくなる。
また、
図18に示すように、第1層B1を構成する銀の反射率は、長波長側では大きく、短波長側ほど小さくなり、かつ、膜厚(厚さ)を薄くなるほど小さくなる。
さらに、第2層B2のアルミは、上述の如く、25nm以上の膜厚(厚さ)があれば、太陽光の透過を的確に遮蔽できる程度の大きな反射率を備えるものであり、しかも、銀の反射率が小さくなる短波長側においても大きな反射率を備えるが、銀の反射率が高い長波長側では、銀の反射率よりも小さくなる傾向となる。
【0078】
尚、
図19に示すように、銀の反射率とアルミの反射率とが交差する波長(以下、交差波長と略称)は、銀の膜厚(厚さ)にて変化するものである。
図19には、アルミの膜厚(厚さ)を200nmとした場合において、銀の膜厚(厚さ)を変化させたときの交差波長を例示する。
【0079】
このため、
図16に示すように、光反射層Bを第1層B1と第2層B2にて構成する場合において、例えば、第1層B1を構成する銀の膜厚(厚み)を50nmとし、第2層B2を構成するアルミの膜厚(厚み)を50nmとすると、
図17に示すように、交差波長が450nmとなり、450nmよりも短波長側の光Laでは、アルミの方が銀よりも反射率が高く、それより長波長側の光Lbでは銀の方がアルミよりも反射率が高くなる。
ちなみに、
図9に示すように、交差波長である450nm以下の波長の光は、銀を透過し易くなるので、当該透過した光は、第2層B2のアルミに照射されることになる。
【0080】
つまり、
図16に示すように、450nmよりも短波長側の光Laは、一部が銀で形成される第1層B1にて反射し、第1層B1を透過した光がアルミで形成される第2層B2にて反射されることになる。
また、450nmよりも長波長側の光Lbは、主として第1層B1にて反射されることになる。
【0081】
また、光反射層Bを第1層B1と第2層B2にて構成する場合においては、第2層B2を構成するアルミの膜厚(厚さ)は、10nmよりも厚ければ光を殆ど透過しないものとなるから、第2層B2の膜厚(厚さ)は10nm以上にすることになる。
ちなみに、耐腐食性を向上させることを考えると、第2層B2を構成するアルミの膜厚(厚さ)は、50nm以上に厚くするのが望ましい。つまり、アルミは酸化して不働態を形成するが、不働態を形成できる層が分厚いほど耐久性が向上するからである。
【0082】
したがって、光反射層Bを第1層B1と第2層B2にて構成する場合において、第1層B1の銀の膜厚(厚み)を50nmとし、第2層B2のアルミの膜厚(厚み)を50nmにすると、アルミの光吸収の大きい450nmよりも長波長側の波長領域の光が、主として第1層B1の銀で反射され、銀を透過する450nm以下の光が、主として第2層B2のアルミで反射することにより、赤外放射層Aを透過した光等を効率良く反射することができる。
【0083】
このように、光反射層Bを第1層B1と第2層B2にて構成する場合においては、交差波長よりも長波長側の光を、主として第1層B1の銀で反射し、銀を透過した交差波長よりも短波長側光を、主として第2層B2のアルミで反射することにより、赤外放射層Aを透過した光等を効率良く反射できる。
その結果、光反射層Bを第1層B1と第2層B2にて構成する放射冷却装置CPにおいては、第1層B1の膜厚(厚さ)を100nm以下でかつ50nm以上にすれば、太陽光の反射率を十分に向上させることができる。
【0084】
図7〜
図19に基づく補足説明を鑑みながら、
図4の冷却能力(放射冷却能力)を再度考察すると、光反射層Bを第1層B1のみにて構成する場合には、銀の膜厚が100nm以下となると、太陽光が放射冷却装置CPを透過し、冷却対象Dを温めることになるので、放射冷却能力(放射冷却性能)が低下することになる。
このため、光反射層Bを第1層B1のみにて構成する場合には、銀の膜厚(厚さ)を300nmにして太陽光の透過を完全に遮断する場合と比較して、銀の膜厚(厚さ)を80nmにすると、放射冷却能力(放射冷却性能)が約一割程度下がる。
そして、銀の膜厚(厚さ)を40nm未満にすると、冷却能力(放射冷却能力)が大きく低下し、30nm以下では、冷却対象Dが加熱されることになる。
【0085】
これに対して、光反射層Bを第1層B1と第2層B2にて構成する場合においては、上述の如く、第1層B1の銀の厚みが3.3nmよりも大きいと、放射冷却装置CPが放射冷却能力(放射冷却性能)を生じることになる。
しかも、第1層B1を形成する銀の厚みが50nm〜100nmのときには、放射冷却装置CPの放射冷却能力(放射冷却性能)が、光反射層Bを第1層B1のみにて構成する場合(
図2参照)において銀の厚みを300nmとするときと、同等の能力となる。
【0086】
〔別実施形態〕
以下、別実施形態を列記する。
(1)上記実施形態では、赤外放射層Aを基板として、第1層B1と第2層とを積層する場合を例示したが、赤外放射層Aとは異なる他の基板に対して、第2層B2及び第1層B1を積層する形態で光反射層Bを形成して、赤外放射層Aと光反射層Bとを重ね合わせる形態で積層してもよい。この場合、赤外放射層Aと光反射層Bとの間に、伝熱可能であれば多少の隙間が存在してもよい。
【0087】
(2)上記実施形態では、酸化防止層4を備える場合を例示したが、アルミにて形成される第2層B2の膜厚(厚さ)が十分に厚い場合等においては、酸化防止層4を省略してもよい。
【0088】
(3)上記実施形態では、第1層B1を銀にて形成する場合を詳細に説明したが、第1層B1を銀合金で形成する場合における膜厚(厚さ)は、第1層B1を銀にて形成する場合の膜厚(厚さ)と同等にすることができる。
【0089】
(4)上記実施形態では、第2層B2をアルミにて形成する場合を詳細に説明したが、第2層B2をアルミ合金で形成する場合における膜厚(厚さ)は、第2層B2をアルミにて形成する場合の膜厚(厚さ)と同等にすることができる。
【0090】
なお、上記実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能であり、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。