(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6821664
(24)【登録日】2021年1月8日
(45)【発行日】2021年1月27日
(54)【発明の名称】セルロースナノフィブリルの製造方法
(51)【国際特許分類】
D21H 11/18 20060101AFI20210114BHJP
D21D 5/02 20060101ALI20210114BHJP
【FI】
D21H11/18
D21D5/02
【請求項の数】4
【全頁数】8
(21)【出願番号】特願2018-515194(P2018-515194)
(86)(22)【出願日】2016年6月3日
(65)【公表番号】特表2018-517863(P2018-517863A)
(43)【公表日】2018年7月5日
(86)【国際出願番号】US2016035806
(87)【国際公開番号】WO2016196983
(87)【国際公開日】20161208
【審査請求日】2019年6月3日
(31)【優先権主張番号】62/170,953
(32)【優先日】2015年6月4日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】517423280
【氏名又は名称】クロスリー ブルース
(73)【特許権者】
【識別番号】517423291
【氏名又は名称】ゲラー マーク
(74)【代理人】
【識別番号】100094569
【弁理士】
【氏名又は名称】田中 伸一郎
(74)【代理人】
【識別番号】100088694
【弁理士】
【氏名又は名称】弟子丸 健
(74)【代理人】
【識別番号】100103610
【弁理士】
【氏名又は名称】▲吉▼田 和彦
(74)【代理人】
【識別番号】100084663
【弁理士】
【氏名又は名称】箱田 篤
(74)【代理人】
【識別番号】100093300
【弁理士】
【氏名又は名称】浅井 賢治
(74)【代理人】
【識別番号】100119013
【弁理士】
【氏名又は名称】山崎 一夫
(74)【代理人】
【識別番号】100123777
【弁理士】
【氏名又は名称】市川 さつき
(74)【代理人】
【識別番号】100111796
【弁理士】
【氏名又は名称】服部 博信
(74)【代理人】
【識別番号】100168631
【弁理士】
【氏名又は名称】佐々木 康匡
(72)【発明者】
【氏名】クロスリー ブルース
(72)【発明者】
【氏名】ゲラー マーク
【審査官】
堀内 建吾
(56)【参考文献】
【文献】
特開2014−125690(JP,A)
【文献】
特表2013−526657(JP,A)
【文献】
特開2014−218598(JP,A)
【文献】
特開2013−087132(JP,A)
【文献】
国際公開第2014/024876(WO,A1)
【文献】
特開2013−253137(JP,A)
【文献】
特開2010−216021(JP,A)
【文献】
特表2013−545904(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
D21B1/00−D21J7/00
C08B1/00−37/18
(57)【特許請求の範囲】
【請求項1】
下記の工程を含むセルロースナノフィブリルの製造方法:
所望のレベルのセルロースナノフィブリルパルプの純度を確認する工程、ここで、純度は、繊維の合計数に対する所望の長さ以下の繊維の繊維数によって定義される、
パルプを部分的にリファイニングして前記所望のレベルのセルロールナノフィブリルパルプの純度よりも5%〜20%低いセルロースナノフィブリルパルプの純度を得る工程、および
次いで、所望の長さ以下の繊維のセルロースナノフィブリルをそれより長い繊維から分離して、前記所望のレベルのセルロースナノフィブリルパルプの純度を得る工程。
【請求項2】
スクリーニングプレートによって前記セルロースナノフィブリルが前記それより長い繊維から分離される、請求項1記載のセルロースナノフィブリルの製造方法。
【請求項3】
リファイニングすべきパルプが1.25%以下の供給濃度を有する、請求項1記載のセルロースナノフィブリルの製造方法。
【請求項4】
リファイニングすべきパルプが1%未満の供給濃度を有する、請求項3記載のセルロースナノフィブリルの製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
他のものよりも高い純度、又は、より長さの短い繊維を必要とするナノフィブリル化セルロース(NFC)の用途がいくつかある。このより純粋な製品の従来の製造には、その条件に達するためにより長いリファイニング時間が必要である。ミクロフィブリル化セルロース(MFC)、ミクロ-ナノフィブリル化セルロース(MNFC)、セルロースナノ材料などと一般に呼ばれるNFCは、長さが約0.25〜0.05mm程度の小さなセルロース繊維である。
ノッター(knotter)は、6mmほどの小さな穿孔または16mmほどの大きな穿孔を有するバリヤーまたはスクリーンシリンダーも用いているが、最も一般的には、直径8〜12mm範囲の穿孔を有するバリヤーまたはスクリーンシリンダーを用いているがである。最も一般的なサイズは直径9.5mmである。パルプ原料はこのスクリーンシリンダーを通過するが、未蒸解の木材チップの大きな部分は通過できない。スクリーンシリンダーの入口側の流れは、ノットをスクリーンシリンダーの一端に運び、そこから「リジェクト」として排出される。
【0002】
セルロースナノフィブリル(CNF)パルプを製造するための従来の方法は、様々な異なるリファイナープレートを備えたリファイナーを使用し、通常の広葉樹パルプまたは針葉樹パルプに適用されるかなりの量の精製エネルギーを消費する。このリファイニングプロセスは、通常、再循環システムであり、それによって、リファイナー排出物は、撹拌されたフィードタンクに戻され、リファイナーに何度も送り込まれる。このプロセスを通してエネルギーが加えられて、繊維を短くし、フィブリル化を高め、パルプのCNF含有量を増加させる。このプロセスの間、所望のレベルのエネルギー適用とCNF発生を維持するためにリファイナープレートギャップが著しく低減される。このエネルギーの絶え間ない適用と繊維の短縮により、リファイナープレートのバー端部に繊維を捕捉する能力が低下し、その結果、リファイニング効率が低下する。これにより、経時印加される追加の電力と共に潜在的に著しいプレートの摩耗が生じる。
従来の方法は、85%を超えるがこれに限定されないような非常に高い微細濃度の点まで行われる場合、CNFレベルが増加するにつれてますます大きな電力を使用する。さらに、この製品のいくつかの用途において有害であることになるある量のより長い繊維が常に存在する。
【0003】
セルロースナノフィブリル(CNF)を製造する従来の方法は、針葉樹さらしクラフトパルプのようなこれに限定されないいくつもの様々なパルプタイプから出発する多段階リファイニングまたは摩砕プロセスを通して行われる。パルプ供給は、さらしまたは未さらし、針葉樹、広葉樹、バージンまたは再生の繊維、または他の植物繊維であることができる。リファイニングプロセスは、繊維にエネルギーを加えてパルプ中の益々増加する微細繊維レベルをもたらしながらパルプ供給の全部または一部をリファイナーに再循環させる42ようにして実施される。このプロセスは連続でもバッチでもよいが、典型的な連続プロセスは非常に設備が集中している。リファイニングエネルギーが加えられるのにつれて、CNFレベルは増加するが、繊維が短くなりCNFが増加するので割合が減少する。このプロセスはいくつかの段階で行うことができる;おそらく各段階は前の段階とは異なるリファイナープレートパターンを使用している。
リファイニングプロセスが継続するのにつれて、繊維長の減少およびCNFレベルの増加が生じるので、繊維へのエネルギー移動の効率が低下する。従って、益々エネルギーが消費されてCNF含有量を所望の目標までさらに増加させる。90%の微細繊維レベルでCNFを生成する典型的なエネルギー入力は、2500〜3500kWh/トンである。特定の用途のための目標とされたCNFレベルの一部は、光ファイバー長アナライザーまたは他の同様の装置によって測定されるように、95%に近づくかまたはそれを超えることがある。代替測定法は、目標が5.0〜10.0の範囲であるがこれに限定されない保水値であってもよい。これらの目標レベルに達するために相当量のエネルギーが消費されることになる。
【発明の概要】
【0004】
下記の工程を含むセルロースナノフィブリルの製造方法を開示する:所望のレベルのセルロースナノフィブリルパルプの純度を確認する工程、パルプを部分的にリファイニングして所望の純度よりも5%と15%の間で低いセルロースナノフィブリルパルプの純度を得る工程、および次いでより長い繊維からセルロースナノフィブリルを分離して所望のレベルのセルロースナノフィブリルパルプの純度を得る工程。
この開示は、より低いCNFレベルでリファイニングプロセスを停止させ、得られたパルプをより長い繊維を除去する装置で処理することによって、リファイニングプロセスの終わりに向かって生じる必要とされるエネルギーのレベルとプレート摩耗に対処するものであり、それによって製品中に長繊維がほとんどまたは全く存在しない所望のCNF特性を有するパルプがもたらされる。繊維のリファイニングまたはフィブリル化および短繊維化は、円錐や円板型のリファイナー、グラインダー、ホモジナイザー、スーパーマスコライダーなどによって行うことができる。
【0005】
この開示は、より標準的な製品をリファイニングによって製造させることができ、その場合ダイナミックワッシャ(例えば、1996年7月23日に発行されたGeroらの米国特許5538632号に開示されているもの、これは本明細書に援用されている)、または他の微細繊維分取装置を使用して処理されてNFCスラリーから好ましくないより長い繊維を除去する。試験は、これがリファイニングのみを使用する場合に必要とされるよりも19%〜24%だけリファイニングエネルギー量を削減しつつ、優れた品質の製品を与えることを確認した。追加の試験と最適化により、30%を超える総エネルギー節減がもたらされることが期待される。比較試験は、このプロセスを用いて得られたCNFが、CNFを製造するためにリファイニングのみを使用する典型的なシステムで製造したものと同等または場合によっては優れた特性を有することを示し、従ってこのプロセスの有効性を実証した。
この開示は、また、リファイニング段階の数を減らし、それによってフィブリル化とCNF発生リファイニングプロセスに加えられるエネルギーと必要とされるリファイニング時間を大幅に減少させることによって単純な連続動作システムの開発を可能にする。
【図面の簡単な説明】
【0006】
【
図1】1日約1〜2トンの生産能力を有する従来の単一段階バッチCNFシステムである。
【
図2】1日約10〜20トンの生産能力をもたらす複数のリファイナーを用いる従来の多段階バッチCNFシステムである。
【
図3】本開示の改良された連続CNFシステムである。
【
図4】リファイニングのための停止点および精製プロセス後のCNFの得られた微細繊維含有量の変化の効果を示す。これらの結果はすべて1.0%の供給濃度(feed consistency)を使用している。
【
図5】製造されるCNFの純度について精製プロセスに対する供給濃度の影響を示す。
【発明を実施するための形態】
【0007】
本開示の1つの実施態様が詳細に説明される前に、本開示がその適用において、以下の説明に記載されるかまたは図面に示される構成の詳細および構成要素の配置に限定されないことを理解されたい。本開示は、他の実施態様が可能であり、様々な方法で実行されるか実施されることが可能である。また、本明細書で使用される表現と用語は、説明のためのものであり、限定するものと見なされるべきではないことは理解されたい。本明細書に使用される「含める」および「含む」ならびにそれらの変形の使用は、その後に列挙される項目およびその等価物ならびに追加の項目を包含することを意味する。本明細書で使用される「からなる」およびその変形の使用は、その後に列挙される項目およびその等価物のみを包含することを意味する。さらに「前方」、「後方」、「左」、「右」、「上方」、「下方」、「側面」、「上部」および「底部」などは、便宜上の言葉であり、限定用語として解釈するべきではない。
【0008】
好適な実施態様
下記の工程を含むセルロースナノフィブリルの製造方法10を開示する:所望のレベルのセルロースナノフィブリルパルプの純度を確認する工程、パルプを部分的にリファイニングして所望の純度よりも5%と20%の間で低いセルロースナノフィブリルパルプの純度を得る工程、および次いでより長い繊維からセルロースナノフィブリルを分離して所望のレベルのセルロースナノフィブリルパルプの純度を得る工程。例えば、特定の製品について、セルロースナノフィブリルパルプ純度の所望のレベルが80.5%である場合には、パルプは所望の純度より18%低いかまたは66.3%のレベルにリファイニングすることができる。次いで、パルプをスクリーニングして、80.5%レベルのセルロースナノフィブリルパルプの純度を得る。これにより、パルプを80.5%の純度レベルにするリファイニングのみに対して513.46kWh/トンの節約がもたらされる(
図4を参照されたい)。
開示された方法10は、比較的低いCNFレベルを有するパルプをより長い繊維をろ過することのできる装置34によって処理し、それによって、CNF純度が高く、存在する「長繊維」を最小限に抑えた処理パルプが残る。この装置34は、上記のダイナミックワッシャ、またはパルプ中に存在するより長い繊維をろ過することのできるGL&Vダイナミックワッシャ、GL&Vリカーフィルターまたはいくつかの類似の装置のような市販品であることができるが、これに限定されない。これは、非常に細いスロットまたは穿孔を用いる穿孔されたまたはスロット付きスクリーニングプレートの使用によって達成され、穿孔されたスクリーニングプレートに近接して動く回転する脈動発生器で滑らかにするかまたは「プロファイル」されている。典型的な穿孔の大きさは、直径0.006"(0.15mm)または直径0.004"(0.10mm)の穴である(がこれに限定されない)。より大きな穿孔を用いる方法よりもより小さな穿孔が高い微細繊維含有量を有するより純粋なCNFをもたらすことが期待される。
【0009】
脈動発生器の作用は、流入するパルプスラリーの半流動化を引き起こすことのできる脈動を生成するのに充分である。存在する繊維要素(CNF)の最も微細なものは、スクリーンバスケット内の細い穿孔を通過させることができ、一方、存在するより長い繊維は、絡み合い、スクリーンプレートの供給側に保持される。スクリーンシリンダーを通過するろ過された微細繊維要素(CNF)は、装置から排出させ、様々な用途に使用するためのプロセスに進む。保持されたより長い繊維は、リジェクト領域に集められ、ろ過装置から排出されてシステムに戻され、さらなる処理のためにリファイニング装置に供給される未処理材料と結合する。別の方法では、保持されたより長い繊維は、「そのまま」、または処分されたミル中の他のシステムでそのまま使用することもできる。
処理されたCNFパルプは、リファイナー排出のみよりもはるかに狭い繊維長分布を有し、従ってこのようにして処理されていない材料よりも純粋である。予備試験により、このプロセスを用いることにより、微細繊維含有量が6%〜14%増加した。微細繊維測定は、Technidyne Morfiファイバー長アナライザーであるが、別の製造業者からの同様の装置をこの試験に用いることができる。さらに、ダイナミックワッシャへの供給濃度を変化させることにより、この装置からのCNFのより多いまたはより少ない精製がもたらされる。より詳細には、供給濃度の低下により、CNF流のより高い微細繊維がもたらされる。反対に、
図5でわかるように、供給濃度を高めることにより、CNF流の微細繊維が減少する。
【0010】
CNFを生成する従来のリファイニングシステム用の構成部品は、原材料の供給源、リファイナーシステムフィードポンプによって撹拌されたリファイナーフィードタンク18へ排出されるスラッシュパルプからなり、その吸引接続はタンクに取り付けられている(
図1)。2段階のリファイナーシステムは、
図2に示すように、リファイナーフィードに戻ってまたはCNF貯蔵部の前方に接続されたリファイニングシステム排出部と、直列または並列にまたはその両方の組み合わせで接続された1つ以上のリファイナー22を含む。
図2のリファイニング段階の間に中間CNF貯蔵部26が必要な場合がある。
本開示の改良されたリファイニングシステムを
図3に示す。追加されたCNF精製段階は、前述のCNF貯蔵タンク30に接続されたその吸引部に接続された精製段階フィードポンプからなる。ポンプ排出部は、精製装置、例えばGL&Vダイナミックワッシャの供給接続部に接続される。精製装置の排出は装置上の2つのポートからなり、その1つは精製されたCNFを含有し、次いでそれがその最終的な使用または製紙プロセスまたはそのような他の用途への追加点への移送のための「精製されたCNF」貯蔵部38に排出される。
精製装置上の第2の排出ポートは、供給原料のより長い繊維成分が分離される。このポートは、流入する原料と混合し、リファイニングシステムにおいて再処理するためのリファイナーフィードチェストに接続され戻される46(
図3)。分離された長繊維のための濃縮する段階の追加は、リファイニングされていない原材料とブレンドされる前にシステムにおけるこの点で有用または有利であり得る。この精製プロセスは、連続してあるいはバッチ方式において断続して行われる精製装置によって連続プロセスあるいはバッチプロセスのいずれかとして行うことができる。好適実施態様は、連続プロセスとして行われる。
【0011】
図4は、異なる入口微細繊維レベルから開始する精製試験の結果を示しており、異なるアクセプトエネルギー削減およびエネルギー節約がもたらされる。すべての点において、供給濃度は1.0%(パルプスラリーの質量で割った乾燥パルプの質量で測定した)である。
図5は、得られたCNFの微細繊維含有量(純度)に対するピュリファイヤ(ダイナミックワッシャ)への供給濃度の影響を示す。ピュリファイヤへのより低い供給濃度により(この場合、0.7%の濃度を1.25%のより高い供給濃度と比較した)、精製されたCNF(「Y」軸)においてより高い微細繊維含有量がもたらされる。これは、試験したCNFフローの全範囲について言えることである。これは、また、ピュリファイヤへの全供給のパーセントとしてのより低い体積流量がより純粋なCNF(より高い微細繊維含有量)をもたらすことを示している。
このプロセスの代替実施態様は、CNFから長繊維を分離し、それをサテライトシステムまたはサイドストリームシステムで処理するものである。これは、以前に説明したものと同様の別個のリファイニングシステムにおける追加の処理のための精製装置から長繊維流を集める撹拌タンクの追加からなる。この追加のリファイニングシステムは、第1のシステムと同じ方法で作動させてもよい。CNF精製装置のフィードタンク18に運ばれるシステムからの最終排出物は、主流のリファイニングシステムと追加の処理の排出と組み合わせることができる。
【0012】
このプロセスの追加の代替実施態様は、長繊維をCNFプロセスから分離し、それを抄紙機パルプシステムに添加し、それによって、リファイニングされた繊維が紙製造のための主流繊維源に添加され、さらにシステムのその領域において必要とされるリファイナー電力が削減される。
このプロセスの利点は、リファイナーのみを用いて80%以上の目標とされる高微細繊維レベルに到達するシステムに対して処理されているパルプへの印加電力の著しい減少である。このプロセスの第2の利点は、目標とされた高微微細繊維レベルに関連する極めて短い繊維長さを処理しつつ、リファイナーが行う時間の長さが短縮されるため、リファイナープレートの摩耗が減少し、充填寿命が長くなることである。微細繊維含有量を80%から90%に増加させるのに必要なリファイニング時間は、パルプが支持するバッチ時間およびエネルギーレベルに依存して有意であることができる。このプロセスは、また、必要とされる設備の量を削減する機会を与え、それによって、目標とされるCNF品質レベルに達する全システム電力要求とコストの削減にも貢献する。リファイニング時間とエネルギー使用削減の両方とも、システム容量と生産速度に依存する。このプロセスの試験において、19%〜24%の総エネルギーの節約が見られた。
本開示の様々な他の特徴は、下記の特許請求の範囲に記載されている。
なお、本発明としては、以下の態様も好ましい。
〔1〕 下記の工程を含むセルロースナノフィブリルの製造方法:
所望のレベルのセルロースナノフィブリルパルプの純度を確認する工程、
パルプを部分的にリファイニングして前記所望の純度よりも5%と20%の間で低いセルロースナノフィブリルパルプの純度を得る工程、および
次いでより長い繊維からセルロースナノフィブリルを分離して前記所望のレベルのセルロースナノフィブリルパルプの純度を得る工程。
〔2〕 セルロースナノフィブリルがより長い繊維からスクリーニングプレートによって分離される、〔1〕記載のセルロースナノフィブリルの製造方法。
〔3〕 リファイニングすべきパルプが1.25%以下の供給濃度を有する、〔1〕記載のセルロースナノフィブリルの製造方法。
〔4〕 リファイニングすべきパルプが1%未満の供給濃度を有する、〔3〕記載のセルロースナノフィブリルの製造方法。