【実施例】
【0037】
実施例1:異なる組成を示す複数の組成物の調合
配合は、融解によりプラスチック及び/又は添加剤及び/又は充填剤をブレンドすることを可能にする方法である。
【0038】
各組成物を生産するために、顆粒の形態で提供される出発物質を共回転二軸押出機中に置く。押出機の供給部を300℃程度の温度に加熱する。
【0039】
材料のブレンドは、300回転/分の回転速度及び2.5kg/時のスループットで、360℃程度の温度での溶融条件下で生じる。
【0040】
比較するために調合により製造された異なる組成物は、異なる重量割合でPEEK及びPEKKを全て含む。組成物中に取り入れられるPEKKは、テレフタル酸(T)単位とイソフタル酸(I)単位を含むPEKKであり、そのT/I比率は60/40に等しい。二つの異なる階級のPEKKを使用した。これらの二つの階級は、同じ割合のテレフタル酸単位を含む。それらは粘度において本質的に異なる。したがって、下の表I及び表II中でK1と参照され、アルケマによりKepstan(登録商標)6001の商用参照名で販売される第一のPEKKは、0.95dl/gの粘度数を示し、一方、下の表でK3と参照され、アルケマによりKepstan(登録商標)6003の商用参照名で販売される第二のPEKKは、0.82dl/gの粘度数を示す。粘度数を、96%硫酸中25℃の溶液中で、ISO標準307により測定する。
【0041】
これらの比較例において、組成物中のPEKKの重量割合は、表Iに関しては組成物の総重量の10から30%の間で、表IIに関しては5から50%の間で変化する。PEEKに基づく組成物及びPEKKに基づく組成物は、純粋なPEEKのみを含み、VictrexによりVictrex 450Gの商用参照名で販売される、CCと参照されるコントロール組成物(表I)と比較するよう意図される。
【0042】
製造された異なる組成物を下の表I及び表IIで組み合わせる。組成物の異なる構成物質、つまりPEEK及びPEKKの量を、組成物の総重量に対して重量パーセントで表現する。
【0043】
実施例2:実施例1の調合方法の結果として得られた組成物の結晶化の反応速度の研究
上の表IでCCと参照されるPEEKのコントロール試料上及び上の表IでC1からC6と参照される組成物の六つの試料の結晶化の研究を実施した。
【0044】
DSCと示される示差走査熱量測定により結晶化の研究を実施する。DSCは、分析される試料と参照との間の熱交換における相違点を測定することを可能にする熱分析技術である。
【0045】
この結晶化研究を実行するため、TA InstrumentsによるQ 2000装置を使用した。研究は、非等温結晶化条件下及び等温結晶化条件下で実施した。
【0046】
非等温結晶化
実施例1により生じる異なる試料CC及びC1からC6上、非等温条件下のDSCに関するプロトコールは、第一の工程において、温度を20℃に安定させることにある。温度は、続いて、一分当たり20℃の勾配で400℃まで次第に上昇し、次いで再び一分当たり20℃の勾配で低下する。
【0047】
結晶化は、冷却段階中に研究される。熱流量を温度関数として測定し、研究される各組成物に関して、温度関数としての熱流量における変化を表す曲線を得る。これらの曲線を、
図1に表す。続いて、Tcと示され、摂氏で表現される結晶化温度を、対応曲線の最大値を横軸上に射影することにより、各組成物に関して決定する。この決定は、使用されるDSC装置により直接実施される。
【0048】
分析される各試料の結晶化温度Tcを、下の表IIで組み合わせる。
【0049】
PEKKを含まない、コントロール組成物CC(純粋なPEEK)の曲線は、
図1のグラフ中右端に位置する曲線である。このコントロール組成物は、291.3℃に等しく、最も高温の結晶化温度TcCCを呈する。
【0050】
これらの曲線は、組成物中のPEKKの重量分率が高くなればなるほど、結晶化温度は低下し、したがって結晶化が遅れることを明示する。本発明によるPEEKへのPEKKの添加は、したがって、PEEKの結晶化を遅らせることを可能にする。
【0051】
等温結晶化
コントロール組成物CCの試料並びにそれぞれ10%、20%及び30%の重量%のPEKKを含むC1、C2及びC3の試料に関して、等温条件下のDSCを実行した。等温DSCのプロトコールは、以下の三つの段階を含む:第一の段階は、第一の工程において、温度を20℃に安定させることにあり、続いて第二の段階は、温度を一分当たり20℃の勾配で400℃まで次第に上昇させることにある。そして、温度を、一分当たり20℃の勾配で、400℃から315℃まで低下させ、次いで、一時間かけて温度を315℃に安定させる。
【0052】
315℃での温度の安定化の間、時間関数tとして結晶化したPEEKの重量分率を測定する。コントロール組成物CCと比較して、組成物C1、C2及びC3の測定を実施する。得られた四つの曲線を
図2のグラフ中に表す。
【0053】
コントロール試料CCに対応する曲線により、半結晶化時間がおよそ6分であるという結果になる。ポリマーの半結晶化時間は、このポリマーの50%の結晶化に必要な時間である。
図2の曲線については、縦軸(結晶化したPEEKの%)上に50%の値で置くことにより、及び、この値を横軸(時間)上に射影することにより、決定する。
【0054】
コントロール組成物CCの曲線に対して、組成物C3に対応する曲線をおよそ4分で右側へオフセットする。この曲線の半結晶化時間は、およそ10分である。コントロール組成物CCの曲線に対して、組成物C1及びC2に対応する曲線をおよそ3分で右側へオフセットし、組成物C1の半結晶化時間はおよそ9分であり、組成物C2の半結晶化時間は実質的に10分である。
【0055】
驚くことに、これらの曲線により、結晶化における遅延が組成物に取り入れられるPEKKの含有量に比例しないという結果になる。予想されたかもしれないことに反して、結晶化の反応速度における変化は、取り入れられるPEKKの含有量の関数として直線状ではない。結果として、組成物中の相分離の現象の出現を妨げるために、組成物の総重量に対して40重量%以下の含有量のPEKKを取り入れることが望ましい。
【0056】
本発明によるPEEKベースの組成物の総重量に対して1から40重量%、好ましくは5から40の間の重量%、より好ましくは10から30の間の重量%の割合でのPEKKの添加は、したがって、相分離の現象を避ける一方、PEEKの結晶化を遅らせることを可能にする。
【0057】
実施例3:実施例1の調合方法の結果得られた組成物に基づく射出成形部品の降伏点応力の測定及び破断点伸びの測定
降伏点応力の測定及び破断点伸びの測定を実施できるように、試料の試験片を第一の工程で産生した。これに関し、射出成形機を使用する。本実施例において、使用される射出成形機はBattenfeld 80T成形機である。成形機のフィード温度を350℃に調節し、射出ノズルの温度を390℃に調節し、且つ型の温度を230℃に設定する。
【0058】
次いでISO標準527に基づく1Baタイプの引張試験に適した試験片を得る。
【0059】
降伏点応力の測定及び破断点伸びの測定の比較試験に関し、ISO標準527 1BAに基づいて、二つの試験片を産生した。コントロール組成物CCの第一の試験片を、30重量%のPEKKを含む実施例1の組成物C3の第二の試験片と比較し、試験片C10からC5aと比較するコントロール組成物CTについて同じ手順を繰り返した。
【0060】
引張応力を受けた試験片のひずみの関数として応力の曲線を記録することを可能にする光学式ひずみ計と結合した引張試験装置を使用して、各試験片の応力の測定を実施した。これらの試験に使用される引張試験装置は、特に、Zwick 1455の参照下Zwickにより販売される引張試験装置である。
【0061】
測定は23℃、50% RHの相対湿度及び25mm/分の引張速度で実施する。
【0062】
次いで、伸びの関数として必要な張力を測定し、降伏点応力及び破断点伸びを決定する。得られた結果を下の表III及びIVで組み合わせる。
【0063】
PEEKへの30重量%のPEKKの添加は、降伏点応力を92.5MPaから101MPaへ変化させること、即ち表IIIの結果7.5%の増加を可能にする。更に、この添加は、破断点伸びを40%から100%に増加させること、即ち2.5倍の増加を可能にする。
表IVより、いくつかの結果を破断点伸びに関して定式化し得る。加えて、特許請求の範囲外の組成物である50%組成物(C5a)は、PEEKと有利に混合されるPEKKの最大値は40%であり、それ以上ではないことを示す。
【0064】
したがって、PEEKベースの組成物中のPEKKの取り入れは、降伏点応力の増加及び破断点伸びの増加、したがって一般的に拮抗する二つの機械的特性における増加をもたらす。
【0065】
本発明の組成物は、PEEKの結晶化の反応速度を遅らせることの利点、それにより材料の内部応力を低下させる利点、したがって長期的且つ費用のかかるアニーリング後の段階を省くことの利点、及び望ましい最適形状を有する変形していない部品を得ることの利点を呈するだけでなく、また、これまでに拮抗する機械的特性であると知られている降伏点及び破断点伸びにおける増加を含む並外れた機械的特性を有する利点を呈する。