(58)【調査した分野】(Int.Cl.,DB名)
【発明の概要】
【課題を解決するための手段】
【0005】
いくつかの側面では、発電所は、エネルギー源として、海洋熱エネルギー変換プロセスを使用する。
【0006】
さらなる側面は、海水および冷水供給導管ならびに熱交換器モジュールが、浮遊式プラットフォームまたは発電所の構造の中に構造的に統合される、高効率多段階熱交換システムを有する、浮遊式の上下浮動が少ないOTEC発電所に関する。
【0007】
本発明の例示的実装のいくつかの側面では、熱交換器は、各熱交換器プレートが隣接する熱交換器プレートから離間されるように、積層配列にある2つ以上の熱交換器プレートを含み、隣接する熱交換器プレート間の空間は、外部流体通路を画定し、各外部流体通路は、第1の流体を受け取るように構成される。各熱交換器プレートは、周辺縁と、第2の流体を受け取るように構成されている内部流体通路と、周辺縁に開放する内部流体通路内への入口と、各熱交換器プレートの入口との流体連通を有するマニホールドとを含む。
【0008】
本発明の他の例示的実装では、熱交換器は、以下の特徴のうちの1つ以上を含み得る。マニホールドは、熱交換器プレートによって画定される平面と垂直な方向に延びるマニホールドチャンバを含む。マニホールドは、各熱交換器プレートの周辺縁の一部から突出しているタブを含み、各タブは、内部通路と流体連通するタブ通路を含み、各タブは、そのタブ通路を捕える開口部を含み、各タブの開口部は、熱交換器プレートによって画定される平面と垂直な方向に整列させられ、マニホールドチャンバを画定し、マニホールドチャンバの内面は、1つのタブのタブ通路の第1の表面と隣接するタブのタブ通路の第2の表面との間の接続に対応する接合部を含む。各プレートのタブは、硬質材料内に封入される。各プレートのタブは、流体不浸透性材料内に封入される。マニホールドは、少なくとも部分的に、硬質材料内に封入される。マニホールドは、それぞれのマニホールドが流体連通するように、第2の熱交換器のマニホールドに接続されるように構成される。
【0009】
本発明のさらなる例示的実装は、以下の特徴のうちの1つ以上を含み得る。各プレートは、第1の外部熱交換表面と、第1の外部熱交換表面に対向する、第2の外部熱交換表面とを備え、第1および第2の外部熱交換表面は、熱交換器が使用時、第1の流体と流体接触する。熱交換器は、内部流体通路からの出口を備え、出口は、周辺縁に開放し、マニホールドは、各熱交換器プレートの出口との流体連通を有し、マニホールドは、第2の流体を内部流体通路の入口に供給するように構成されている第1のマニホールドチャンバと、内部流体通路の出口から第2の流体を受け取るように構成されている第2のマニホールドチャンバとを備え、第1のマニホールドチャンバは、第2のマニホールドチャンバから隔離される。第1のマニホールドチャンバは、第2のマニホールドチャンバと異なる体積を有する。内部通路は、熱交換器プレートの平坦内部表面と熱交換器プレートの非平坦内部表面との間に画定される。各熱交換器プレートは、非平面である第1の熱交換表面と、第1の熱交換表面に対向し平面である第2の熱交換表面とを備え、熱交換器プレートの積層配列は、積層の1つのプレートの第1の熱交換表面が、積層の隣接するプレートの第2の熱交換表面に面するように、熱交換器プレートを配列することを含む。内部流体通路は、プレートの片側のみから外向きに拡張し、それによって、プレートの第1の側は、内部流体通路の場所に対応する外向きに突出する領域を含み、プレートの第2の側は、変形させられない。内部流体通路は、いくつかのミニチャネルを含む。
【0010】
いくつかの例示的実装では、2つ以上の熱交換器プレートが、垂直に積層される。他の側面では、2つ以上の熱交換器プレートが、水平に積層される。熱交換器プレートは、各個々の熱交換器プレート間に間隙が存在し、流体が、各熱交換器プレートを包囲し、それを越えて流動することを可能にする、任意の様式で配列されることができる。
【0011】
さらなる例示的実装では、熱交換器は、積層配列にある熱交換器プレートを含み、各熱交換器プレートは、隣接する熱交換器プレートから離間され、隣接する熱交換器プレート間の空間は、外部流体通路を画定し、各外部流体通路は、第1の流体を受け取るように構成される。各熱交換器プレートは、周辺縁と、第2の流体を受け取るように構成されている内部流体通路と、内部流体通路の第1の端の中への入口であって、周辺縁において開放している、入口と、内部流体通路の第2の端からの出口であって、周辺縁において開放している、出口と、各熱交換器プレートの入口と流体連通する供給チャンバ、および各熱交換器プレートの出口と流体連通する放出チャンバを有するマニホールドとを含む。
【0012】
本発明の他の例示的実装は、以下の特徴のうちの1つ以上を含み得る。マニホールド供給チャンバおよびマニホールド放出チャンバの各々は、熱交換器プレートによって画定される平面と垂直な方向に延びる。マニホールドは、各熱交換器プレートの周辺縁の一部から突出するタブを含み、各タブは、内部流体通路入口と流体連通するタブ入口通路と、内部流体通路出口と流体連通するタブ出口通路とを含み、各タブは、そのタブ入口通路を捕えるタブ入口開口部と、そのタブ出口通路を捕えるタブ出口開口部とを含み、各タブのタブ入口開口部は、マニホールド供給チャンバを画定し、マニホールドチャンバの内面は、1つのタブのタブ入口通路の第1の表面と隣接するタブのタブ入口通路の第2の表面との間の接続に対応する接合部を含み、各タブのタブ出口開口部は、マニホールド放出チャンバを画定し、マニホールド放出チャンバの内面は、1つのタブのタブ出口通路の第1の表面と隣接するタブのタブ出口通路の第2の表面との間の接続に対応する接合部を含む。各プレートのタブは、硬質材料内に封入される。各プレートのタブは、流体不浸透性材料内に封入される。マニホールドは、少なくとも部分的に、硬質材料内に封入される。マニホールドは、それぞれのマニホールドが流体連通するように、第2の熱交換器のマニホールドに接続されるように構成される。各プレートは、第1の外部熱交換表面と、第1の外部熱交換表面に対向する第2の外部熱交換表面とを備え、第1および第2の外部熱交換表面は、熱交換器が使用時、第1の流体と流体接触する。マニホールド供給チャンバは、マニホールド放出チャンバと異なる体積を有する。
【0013】
本発明のさらなる例示的実装は、以下の特徴のうちの1つ以上を含み得る。内部通路は、熱交換器プレートの平坦内部表面と熱交換器プレートの非平坦内部表面との間に画定される。各熱交換器プレートは、非平面である第1の熱交換表面と、第1の熱交換表面に対向し、平面である第2の熱交換表面とを備え、熱交換器プレートの積層配列は、積層の1つのプレートの第1の熱交換表面が、積層の隣接するプレートの第2の熱交換表面に面するように、熱交換器プレートを配列することを含む。内部流体通路は、プレートの片側のみから外向きに拡張し、それによって、プレートの第1の側は、内部流体通路の場所に対応する外向きに突出する領域を含み、プレートの第2の側は、変形させられない。内部流体通路は、いくつかのミニチャネルを含む。
【0014】
本発明のいくつかの例示的実装では、熱交換器は、積層熱交換器プレートを含み、各熱交換器プレートは、第1の流体を受け取るように構成されている内部流体通路と、第1の外面と、第1の外面に対向する第2の外面とを備えている。第1の外面は、平面であり、第2の外面は、熱交換器プレート内の内部通路の場所に対応する突出領域を含み、熱交換器プレートは、1つの熱交換器プレートの第1の外面が、隣接する熱交換器プレートの第2の外面に面するように、第1の外面に垂直な軸に沿って積層される。
【0015】
さらなる例示的実装は、以下の特徴のうちの1つ以上を含む。熱交換器プレートは、1つの熱交換器プレートの第1の外面が、隣接する熱交換器プレートの第2の外面から離間されるように配列される。第1の外面および第2の外面の各々は、熱交換器が使用されている場合、第2の流体と流体接触する。
【0016】
本発明のいくつかの側面では、熱交換器を製造する方法は、第1の外部熱交換表面を提供する第1の側と、第1の側と対向し、第2の外部熱交換表面を提供する第2の側と、内部流体通路とを有する熱交換器プレートを提供することと、切断開口部が内部通路を捕えるように、プレートに開口部を切断することと、前述のステップを繰り返し、複数の切断されたプレートを形成することと、切断されたプレートを整列軸に沿って積層し、整列させられた切断開口部を有するプレート積層を提供することと、1つのプレートの第1の側が、隣接するプレートの第2の側に接合されるように、およびマニホールドチャンバが、少なくとも部分的に、それぞれの接合された開口部によって画定される体積内に形成され、マニホールドチャンバが、各内部通路と流体連通するように、切断開口部の切断縁を接合することとを含む。
【0017】
方法を含む本発明の例示的側面は、以下の追加の特徴のうちの1つ以上を含み得る。フランジをプレート積層の最外プレートの切断開口部に取り付けることと、接合されたプレートの一部およびフランジのフェルール部分をプラスチック内に封入すること。熱交換器はさらに、各プレートの周辺縁の一部から突出するタブを備え、各プレートの切断開口部は、タブ内に位置する。熱交換器のタブは、タブを形成するために使用される材料と異なる封入材料内に封入される。熱交換器のタブは、プラスチック内に封入される。積層することは、1つのプレートの片側が隣接するプレートの第2の側に面するように、プレートを配列することを含む。内部流体通路を有する熱交換器プレートを提供することは、第1のパネルおよび第2のパネルを提供することと、結合防止剤を第1のパネルの表面に所定のパターンで塗布することと、結合剤が第1のシートと第2のシートとの間に存在するように、第1のパネルおよび第2のパネルを積層することと、積層された第1および第2のパネルを圧延結合し、プレートを形成することと、所定のパターンに対応する内部通路を形成するように、プレートを拡張させることとを含む。プレートを拡張するステップの間、第2のパネルは、注入された空気の圧力によって変形させられ、第1のパネルは、注入された空気の圧力によって変形させられないままである。プレートを拡張することは、第1のパネルと第2のパネルとの間に空気を注入することを含む。切断開口部の切断縁を接合することは、1つのプレートの第1のパネルを隣接するプレートの第2のパネルに接合することを含む。プレートを積層することは、整列治具を提供することを含み、整列治具内へプレートを置くことによって、整列させられた周辺縁および切断開口部を有するプレート積層を提供する。積層後、整列治具は、プレート積層とともに残る。
【0018】
例示的方法はまた、以下の追加の特徴のうちの1つ以上を含み得る。コネクタをプレート積層の最外プレートの外向きに面する側の切断開口部に接合すること。内部通路は、入口端と、出口端とを含み、プレート内に開口部を切断することは、内部通路の入口端を捕える入口開口部を切断することと、内部通路の出口端を捕える出口開口部を切断することとを含み、切断縁を接合することは、1つのプレートの第1の側が、隣接するプレートの第2の側に接合されるように、およびマニホールド供給チャンバが、少なくとも部分的に、それぞれの接合された入口開口部によって画定される体積内に形成され、マニホールド供給チャンバが、内部通路の入口端と流体連通するように、入口開口部の切断縁を接合することと、1つのプレートの第1の側が、隣接するプレートの第2の側に接合されるように、およびマニホールド放出チャンバが、少なくとも部分的に、それぞれの接合された出口開口部によって画定された体積内に形成され、マニホールド放出チャンバが、内部通路の出口端と流体連通するように、出口開口部の切断縁を接合することとを含む。マニホールド供給チャンバおよびマニホールド放出チャンバは、供給チャンバと放出チャンバとの間に流体連通が存在しないように、単一マニホールド内に存在する。本明細書に説明される熱交換器は、向上された熱伝達効率を提供し、したがって、例えば、最大効率および電力産生のために、高効率熱サイクルを使用するOTEC熱機関の効率を向上させる。沸騰および凝縮プロセスにおける熱伝達ならびに熱交換器材料および設計は、温水ポンド当りから抽出され得るエネルギーの量を制限する。しかしながら、蒸発器および凝縮器内で使用される熱交換器は、寄生負荷を制限する低損失水頭で大量の温水および冷水流を使用する。熱交換器はまた、高熱伝達係数を提供し、効率を向上させる。熱交換器は、温水および冷水入口温度に合わせられた材料および設計を組み込み、効率を向上させる。熱交換器設計は、単純構造方法を採用し、材料量が少なく、コストおよび体積を低減させる。
【0019】
本発明のいくつかの例示的実施形態では、作業流体は、入口および出口接続が、プレートと一体的に形成され、組立プロセス中に隣接するプレートに溶接されるマニホールドを使用して、プレート周辺側縁に沿って、熱交換器の各プレートに供給され、そこから放出される。溶接された接続を含むマニホールドは、マニホールド領域内のプレート間を流動するエポキシ内に囲まれ、構造補強をアセンブリに提供し、水が溶接された表面に接触することを防止する。これは、各管の各端が、熱交換器プレートまたは供給ラインに固定して接続されなければならないので、管を使用して供給されるいくつかのプレート熱交換器に優る改良点である。例えば、いくつかの実施形態では、4つもの入口および8つもの出口の接続が、熱交換器のプレート当り必要とされる。線形フィート当り約20プレートの密度では、4800もの個々の接続が、20フィートモジュール内に必要とされ得る。これは、製造物流問題ならびに品質管理問題の両方を呈する。接続はまた、海水環境に曝されたままとなる。有利には、熱交換器の側面周辺縁にマニホールドを使用することによって、管接続の使用は、完全に排除され、対応する製造物流および品質管理問題は、回避される。
【0020】
本発明の他の例示的実施形態では、本明細書に説明される熱交換器は、内部流体通路を形成するように拡張されるプレートから形成され、拡張された領域は、プレートの片側のみに突出し、他の側を本質的に平坦のまま残す。これは、拡張がプレート長に沿ってどこで生じるかにかかわらず、プレート間の間隙が、一貫した最大および最小隙間を有することを可能にする。拡張された領域がプレートの片側のみに突出するプレート(本明細書では、「片面型プレート」と称される)の使用は、プレートを形成するために使用される圧延結合製造プロセスに関連付けられた長さ寸法の非一貫性の影響を緩和させる。ローラ間の融解金属の圧延結合プロセスは、長さ寸法再現性の固有の問題を有するが、高さは、一貫している。拡張された領域がプレートの両側に突出する(本明細書では、「両面」プレートと称される)、圧延結合されたプレートが、熱交換器内に積層されると、寸法のばらつきが、隣接するプレートの拡張された区画が互に直接対向して位置付けられる構成をもたらし、予期されるものより圧力損失が多く、熱伝達が少ない、ピンチポイントをもたらし得る。片面型プレートを提供し、1つのプレートの突出側が隣接するプレートの平坦側に面するように、熱交換器内にプレートを配列することによって、寸法のばらつきの負の影響は、回避される。加えて、実験結果では、片面型プレートに対する圧力損失が、両面型プレートに等しい流量および公称間隔において、有意に低減されることが確認された。
【0021】
本明細書に説明される本発明の実装、実施形態、および実施例は、前述のように、または開示される特徴の任意の他の組み合わせにおいて組み合わせられ得る。
例えば、本願は以下の項目を提供する。
(項目1)
熱交換プレートであって、
第1の熱交換表面を画定する正面と、
前記正面と反対の前記プレートの片側の背面であって、前記背面は、第2の熱交換表面を画定する、背面と、
前記正面と前記背面との間に配置されている内部流体通路と
を備え、
前記内部流体通路の表面は、第3の熱交換表面を画定し、前記内部流体通路は、
入口面積を有する流体入口と、
前記入口面積と異なる出口面積を有する流体出口と、
平行流体チャネルと
を備え、
前記平行流体チャネルの各流体チャネルは、前記入口から前記出口まで平行に流体を向けるように構成され、前記平行流体チャネルは、前記流体入口と前記流体出口との間に少なくとも1つの遷移点を含み、前記遷移点において、流体チャネルの数が変化する、
熱交換プレート。
(項目2)
前記入口面積は、前記出口面積より小さく、前記流体チャネルの数は、前記少なくとも1つの遷移点において増加する、項目1に記載の熱交換プレート。
(項目3)
前記入口面積は、前記出口面積より大きく、前記流体チャネルの数は、前記少なくとも1つの遷移点において減少する、項目1に記載の熱交換プレート。
(項目4)
前記平行流体チャネルは、少なくとも4つの遷移点を備えている、項目1に記載の熱交換プレート。
(項目5)
前記熱交換プレートは、
第1の縁と、
前記第1の縁から離間され、それと平行に延びている第2の縁と、
前記第1の縁と前記第2の縁との間に延びている第3の縁と、
前記第3の縁から離間し、それと平行に延びている第4の縁であって、前記第4の縁は、前記第1の縁と前記第2の縁との間に延びている、第4の縁と
を備え、
前記平行流体チャネルは、前記第1の縁と前記第2の縁との間の蛇行経路に沿って延び、前記平行流体チャネルは、
前記第1の縁と平行に延びている線形領域と、
隣接する線形領域を接続している湾曲領域であって、前記湾曲領域は、第3の縁または第4の縁に隣接して存在する、湾曲領域と、
湾曲領域と流体連通している分流チャネルであって、前記分流チャネルは、隣接する湾曲領域間に配置されている、分流チャネルと
を含む、項目1に記載の熱交換プレート。
(項目6)
前記分流チャネルは、湾曲領域、隣接する湾曲領域、および対応する第3の縁または第4の縁間に画定される、略三角形領域を実質的に充填するように構成されている、項目5に記載の熱交換プレート。
(項目7)
前記熱交換プレートは、
第1の縁と、
前記第1の縁から離間され、それと平行に延びている第2の縁と
を備え、
前記平行流体チャネルは、前記第1の縁と前記第2の縁との間の蛇行経路に沿って延び、前記平行流体チャネルは、前記第1の縁と平行に延びている線形領域と、隣接する線形領域を接続する湾曲領域とを含み、少なくとも1つの湾曲領域は、隣接する湾曲領域間に存在する分流チャネルを含む、項目1に記載の熱交換プレート。
(項目8)
前記分流チャネルは、対応する湾曲領域と流体連通している分流流体入口を有する、項目7に記載の熱交換プレート。
(項目9)
複数の湾曲領域が、分流チャネルを含み、各分流チャネルは、単一場所において前記内部流体通路と連通し、小型分流チャネルを提供するように分岐されている、項目7に記載の熱交換プレート。
(項目10)
前記熱交換プレートは、
周辺縁と、
前記周辺縁から外向きに延び、前記第1の端に隣接して配置されているマニホールド領域と
を備え、
前記流体入口および前記流体出口は、前記マニホールド領域内に配置され、前記分流チャネル入口は、前記第1の端に向かって開放している、項目8に記載の熱交換プレート。
(項目11)
前記熱交換プレートは、
周辺縁と、
前記周辺縁から外向きに延びているマニホールド領域と
を備え、
前記流体入口および前記流体出口は、前記マニホールド領域内に配置され、前記入口および出口の各々は、前記正面に平行な平面において開放している、項目1に記載の熱交換プレート。
(項目12)
熱交換プレートであって、
第1の熱交換表面を画定する正面と、
前記正面と反対の前記プレートの片側の背面であって、前記背面は、第2の熱交換表面を画定する、背面と、
前記正面および前記背面を縁取る周辺縁と、
前記正面と前記背面との間に配置されている内部流体通路であって、前記内部流体通路の表面は、第3の熱交換表面を画定し、前記内部流体通路は、流体入口および流体出口を備えている、内部流体通路と、
前記周辺縁から外向きに延びているマニホールド領域と
を備え、
前記流体入口および前記流体出口は、前記マニホールド領域内に配置され、前記入口および出口の各々は、前記正面に平行な平面において開放している、熱交換プレート。
(項目13)
前記周辺縁は、
少なくとも1つの線形側縁と、
前記線形側縁に沿って開放している切り欠き領域と
を備え、
前記マニホールド領域は、前記線形側縁と垂直な方向に、前記少なくとも1つの線形側縁から外向きに延び、前記切り欠き領域は、前記マニホールド領域に隣接している、項目12に記載の熱交換プレート。
(項目14)
周辺縁は、
第1の縁と、
前記第1の縁から離間され、それと平行に延びている第2の縁と、
前記第1の縁と前記第2の縁との間に延びている第3の縁と、
前記第3の縁から離間し、それと平行に延びている第4の縁であって、前記第4の縁は、前記第1の縁と前記第2の縁との間に延びている、第4の縁と
を備え、
前記マニホールド領域は、前記第3の縁から外向きに延び、前記第1の縁と整列させられている側面部分を含み、
切り欠き領域が、前記第3の縁内に形成され、前記切り欠き領域は、前記第3の縁から内向きに延び、前記切り欠き領域は、前記マニホールド領域に隣接している、項目12に記載の熱交換プレート。
(項目15)
前記切り欠き領域は、前記正面に面して見ると、略三角形である、項目14に記載の熱交換プレート。
(項目16)
熱交換プレートであって、
第1の熱交換表面を画定する正面と、
前記正面と反対の前記プレートの片側の背面であって、前記背面は、第2の熱交換表面を画定する、背面と、
前記正面と前記背面との間に配置されている内部流体通路であって、前記内部流体通路の表面は、第3の熱交換表面を画定する、内部流体通路と
を備え、
前記正面は、前記内部流体通路の場所に対応する外向きに突出する領域を備え、前記外向きに突出する領域は、所与の場所において前記内部流体通路の高さによって画定される範囲まで、前記所与の場所において突出し、高さは、前記正面と垂直な方向の寸法を指し、前記外向きに突出する領域は、
第1の内部流体通路高さに対応する第1のゾーンと、
第2の内部流体通路高さに対応する第2のゾーンと
を含み、前記第1の内部流体通路高さは、前記第2の内部流体通路高さより大きい、熱交換プレート。
(項目17)
第3の内部流体通路高さに対応する第3のゾーンをさらに備え、前記第2の内部流体通路高さは、前記第3の内部流体通路高さより大きい、項目16に記載の熱交換プレート。
(項目18)
前記第3のゾーンは、前記内部流体通路が蛇行経路に沿って延びている区域内に配置されている、項目17に記載の熱交換プレート。
(項目19)
前記正面および前記背面を縁取る周辺縁と、
前記内部流体通路と連通している流体入口と、
前記内部流体通路と連通している流体出口と、
前記周辺縁から外向きに延びているマニホールド領域と
をさらに備え、
前記流体入口および前記流体出口は、前記マニホールド領域内に配置され、
前記第1のゾーンは、前記マニホールド領域内に配置され、前記第2のゾーンは、前記マニホールド領域の外側に配置されている、項目16に記載の熱交換プレート。
(項目20)
前記正面および前記背面を縁取る周辺縁をさらに備え、周辺縁は、
第1の縁と、
前記第1の縁から離間され、それと平行に延びている第2の縁と、
前記第1の縁と前記第2の縁との間に延びている第3の縁と、
前記第3の縁から離間し、それと平行に延びている第4の縁であって、前記第4の縁は、前記第1の縁と前記第2の縁との間に延びている、第4の縁と
を含み、
マニホールド領域が、前記第3の縁から外向きに延び、
前記第1のゾーンは、前記マニホールド領域内に配置され、
前記第2のゾーンは、前記マニホールド領域と前記第2の縁との間で前記第3の縁に沿って延びている、項目16に記載の熱交換プレート。
(項目21)
第3の内部流体通路高さに対応する第3のゾーンをさらに備え、前記第2の内部流体通路高さは、前記第3の内部流体通路高さより大きく、
前記第3のゾーンは、前記第1および第2のゾーンと前記第4の縁との間に延びている、項目2に記載の熱交換プレート。
(項目22)
マニホールドコネクタであって、前記マニホールドコネクタは、管状本体を備え、
前記管状本体は、
第1の端であって、前記第1の端は、環状溝と前記溝内に配置されているシール部材とを含む、第1の端と、
前記第1の端に対向する第2の端であって、前記第2の端は、マニホールドに接合されるように構成されている、第2の端と、
前記第1の端と前記第2の端との間に延びている流体通路と、
前記第1の端から前記第2の端まで変化する外径と
を含む、マニホールドコネクタ。
(項目23)
前記管状本体は、円錐台形形状であり、前記第1の端は、前記第2の端より大きい外径を有する、項目22に記載のマニホールドコネクタ。
(項目24)
前記第2の端は、段付き部分を備え、それによって、前記第2の端の外径は、前記第1の端の外径より小さい、項目22に記載のマニホールドコネクタ。
(項目25)
前記管状本体は、
前記第2の端と、前記第1の端と前記第2の端との間の中点との間に配置されている第1の段付き部分であって、前記第1の段付き部分における前記本体の外径は、前記第1の端の外径より小さいように構成されている、第1の段付き部分と、
前記第1の段付き部分と前記第2の端との間に配置されている第2の段付き部分であって、前記第2の段付き部分の本体の外径は、前記第1の段付き部分の外径より小さいように構成されている、第2の段付き部分と
を備えている、項目22に記載のマニホールドコネクタ。
(項目26)
熱交換器であって、前記熱交換器は、
積層配列にある2つ以上の熱交換器プレートであって、各熱交換器プレートは、隣接する熱交換器プレートから離間され、隣接する熱交換器プレート間の空間は、外部流体通路を画定し、各外部流体通路は、第1の流体を受け取るように構成され、各熱交換器プレートは、
周辺縁と、
第2の流体を受け取るように構成されている内部流体通路と
前記内部流体通路の中への入口であって、前記入口は、前記周辺縁において開放している、入口と、
を含む、熱交換器プレートと、
各熱交換器プレートの前記入口との流体連通を有するマニホールドと、
前記プレートの積層配列を包囲している筐体であって、前記筐体は、前記熱交換器プレートを離間関係で支持するように構成されている、筐体と
を備えている、熱交換器。
(項目27)
前記筐体は、側壁と、開放した第1の端と、前記第1の端に対向する開放した第2の端とを備え、前記開放した第1の端は、前記それぞれの外部通路の中への前記第1の流体のための入口を画定し、前記開放した第2の端は、前記外部通路からの前記それぞれの第1の流体のための出口を画定する、項目26に記載の熱交換器。
(項目28)
前記筐体は、前記マニホールドを受け取るように構成されている開口部を備え、前記マニホールドは、前記開口部を通って延びている、項目26に記載の熱交換器。
(項目29)
前記筐体は、断面で見ると、長方形を形成するように配列されている4つの側面を備え、前記筐体の一対の対向側面の内面は、平行溝を有するように形成され、各溝は、熱交換器プレートを受け取り、支持するように構成されている、項目26に記載の熱交換器。
(項目30)
前記筐体は、第1の側壁部材および第2の側壁部材のアセンブリであり、各側壁部材は、L形状断面を有し、前記第1の側壁部材は、前記第2の側壁部材と同じである、項目29に記載の熱交換器。
(項目31)
前記筐体の外面上に配置されているハンドルをさらに備えている、項目26に記載の熱交換器部材。
(項目32)
前記ハンドルは、前記外面から選択的に切り離し可能である、項目31に記載の熱交換器部材。
(項目33)
プレート熱交換器を組み立てる方法であって、
熱交換器プレートを積層することであって、前記熱交換器プレートは、
第1の外部熱交換表面を提供する第1の側と、
前記第1の側と対向し、第2の外部熱交換表面を提供する第2の側と、
内部熱交換表面を提供する内部流体通路と、
前記内部流体通路と連通している開口部と
を有する、ことと、
隣接するプレートの前記開口部の縁を接合することと
を含み、
1つのプレートの第1の側は、隣接するプレートの第2の側に接合され、マニホールドチャンバが、少なくとも部分的に前記それぞれの接合された開口部によって画定された体積内に形成され、前記マニホールドチャンバは、各プレートの内部流体通路と流体連通している、方法。
(項目34)
各熱交換器プレートは、周辺縁と、前記周辺縁から外向きに突出しているタブとを備え、前記開口部は、前記タブ内に配置され、前記方法は、前記タブをプラスチック内に封入することを含む、項目33に記載の方法。
(項目35)
コネクタを前記プレート積層の最外プレートの前記開口部に取り付けることをさらに含み、前記タブをプラスチック内に封入するステップは、フランジの一部をプラスチック内に封入することを含む、項目34に記載の方法。
(項目36)
前記タブをプラスチック内に封入することは、
前記タブを筐体内に包囲することと、
非硬化エポキシを前記筐体と前記タブとの間に配置することと、
前記エポキシが少なくとも部分的に硬化した後、前記筐体を除去することと
を含む、項目34に記載の方法。
(項目37)
前記方法は、
コネクタを前記プレート積層の最外プレートの外向きに面する側の開口部に接続することと、
前記コネクタを含む前記積層の一部を筐体内に包囲することであって、前記筐体は、前記コネクタの各々の端が前記筐体外に存在するように構成されている、ことと、
前記開口部の接合された縁および前記コネクタの少なくとも一部が、エポキシによって封入されるように、エポキシを前記筐体と前記コネクタを含む前記積層の部分との間に配置することと
をさらに含む、項目33に記載の方法。
【0022】
1つ以上の実施形態の詳細が、添付図面および以下の説明に記載される。他の特徴、目的、および利点も、説明および図面から、ならびに請求項から明白となるであろう。
【発明を実施するための形態】
【0024】
種々の図面中の同一参照記号は、同一要素を示す。
【0025】
高効率多段階の熱交換デバイスおよびシステムが、本明細書に説明される。熱交換デバイスおよびシステムがOTEC発電所内で使用される例示的実施形態が、提供され、OTECにおいて、温水および冷水供給導管ならびに熱交換器が、浮遊式プラットフォームまたは地上ベースプラットフォームの中に構造的に統合され、熱機関を駆動するために使用される。前述のように、OTECは、地球の海洋内に貯蔵される太陽からの熱エネルギーを使用して、電気を発生させる、プロセスである。OTECプロセスは、熱帯領域に見られる温かい表面の水と冷たい深海の水との間の水温度差を使用して、ランキンサイクルに動力を供給し、温かい表面の水は、熱源としての役割を果たし、冷たい深海の水は、ヒートシンクとしての役割を果たす。ランキンサイクルタービンは、電力を産生する発電機を駆動する。
【0026】
熱交換デバイスおよびシステムは、OTEC発電所の用途に関して本明細書に説明されるが、熱交換デバイスおよびシステムは、OTEC発電所における使用に限定されない。例えば、本明細書に説明される熱交換デバイスおよびシステムは、水蒸気ダンプ凝縮器および他の廃熱変換デバイスや、核燃料発電所ならびに太陽熱脱塩発電所の受動冷却システム等、高効率熱交換を必要とする他の用途にも有用となるであろう。
図1は、温かい海水入口12と、蒸発器14と、温かい海水出口15と、タービン16と、冷たい海水入口18と、凝縮器20と、冷たい海水出口21と、作業流体導管22と、作業流体ポンプ24とを含む、典型的OTECランキンサイクル熱機関10を図示する。
【0027】
動作時、熱機関10は、いくつかの作業流体のうちの任意の1つ、例えば、アンモニア等の市販の冷却剤を使用することができる。他の作業流体として、プロピレン、ブタン、R−22およびR−134a、ならびにその代替品が挙げられ得る。約75°F〜85°Fまたはそれより温かい海水が、温かい海水入口12を通して、海洋表面からまたは海洋表面直下で引き込まれ、そして、蒸発器14を通過するアンモニア作業流体を加温する。アンモニアは、約9.3atmの蒸気圧まで沸騰する。蒸気は、作業流体導管22に沿って、タービン16まで搬送される。アンモニア蒸気は、タービン16を通過するにつれて膨張し、発電機25を駆動するための動力を産生する。アンモニア蒸気は、次いで、凝縮器20に流入し、そこで、約3000フィートの深い海深から引き込まれた冷たい海水によって液体に冷却される。冷たい海水は、約40°Fの温度で凝縮器に流入する。凝縮器20内で約51°Fの温度におけるアンモニア作業流体の蒸気圧は、6.1atmである。したがって、有意な圧力差が、タービン16を駆動し、電力を発生させるために利用可能である。アンモニア作業流体が凝縮するにつれて、液体作業流体は、作業流体導管22を介して、作業流体ポンプ24によって、蒸発器14の中に戻される。
【0028】
図1の熱機関10は、本質的に、ほとんどの水蒸気タービンのランキンサイクルと同一であるが、OTECは、異なる作業流体ならびにより低い温度および圧力を使用することによって異なる。
図1の熱機関10はまた、商業用冷凍プラント(例えば、電力を使用する熱ポンプ)に類似するが、OTECサイクルは、熱源(例えば、温かい海洋水)および冷たいヒートシンク(例えば、深海海洋水)が電力を産生するために使用されるように、反対方向に起動される。
【0029】
図2は、船舶またはプラットフォーム210と、温かい海水入口212と、温水ポンプ213と、蒸発器214と、温かい海水出口215と、ターボ発電機216と、冷水パイプ217と、冷水入口218と、冷水ポンプ219と、凝縮器220と、冷水出口221と、作業流体導管222と、作業流体ポンプ224と、パイプ接続230とを含む、従来の浮遊式OTEC発電所200の構成要素を図示する。OTEC発電所200はまた、発電、変電、および伝送システム、推進力、スラスタ、または係船システム等の位置制御システム、ならびに種々の補助および支援システム(例えば、職員宿泊施設、非常用電力、携帯用水、下水および排水、消防設備、被害対策、予備浮力、および他の一般的船上または船艇用システム)を含むことができる。
【0030】
図1および2の基本的熱機関およびシステムを利用するOTEC発電所の実装は、3%以下の比較的に低い全体的効率を有する。この低熱効率のため、OTEC動作は、発生される電力のキロワット当り電力システムを通した大量の水の流動を必要とする。これは、ひいては、大きな熱交換表面積を有する大型の熱交換器を必要とする。
【0031】
本明細書に説明されるシステムおよびアプローチは、OTEC動作の効率を改善し、構造および動作のコストを削減するための技術的問題に対処する。
【0032】
本明細書に説明されるOTEC熱機関10は、最大効率および電力産生のために、高効率熱サイクルを使用する。沸騰および凝縮プロセスにおける熱伝達ならびに熱交換器材料および設計は、温かい海水のポンド当りから抽出され得るエネルギーの量を制限する。蒸発器214および凝縮器220内で使用される熱交換器は、寄生負荷を制限するための低損失水頭を伴って、大量の温水および冷水の流動を使用する。熱交換器はまた、高熱伝達係数を提供し、効率を向上させる。熱交換器は、温水および冷水入口温度に合わせられた材料および設計を組み込み、効率を向上させる。熱交換器設計は、単純構造方法を使用し、材料量が少なく、コストおよび体積を低減させることができる。
【0033】
ターボ発電機216は、低内部損失を伴う高効率であり、また、作業流体に合わせられ、効率を向上させ得る。
【0034】
図3は、以前のOTEC発電所の効率を向上させ、それに関連付けられた技術問題の多くを克服する、OTECシステムの実装を図示する。この実装は、船舶またはプラットフォームのためのスパーを備え、熱交換器ならびに関連付けられた温水および冷水配管は、スパーと一体型である。
【0035】
スパー310は、OTEC発電所との使用のための一体型多段階熱交換システムを格納する。スパー310は、水線305の下方に存在する冠水部分311の上にある、プラットフォーム360を含む。冠水部分311は、温水取水口部分340と、蒸発器部分344と、温水放出部分346と、凝縮器部分348と、冷水取水口部分350と、冷水パイプ351と、冷水放出部分352と、機械デッキ部分354とを備えている。
【0036】
動作時、75°F〜85°Fの温かい海水が、温水取水口部分340を通して引き込まれ、この海水は、構造的に一体型の温水導管(図示せず)を通ってスパー310を下方に流動する。OTEC熱機関の大量水流動要件により、温水導管は、500,000gpm〜6,000,000gpmの流動を蒸発器部分344に向ける。温水導管は、6フィート〜35フィートまたはそれより大きい直径を有する。このサイズにより、温水導管は、スパー310の垂直構造部材である。温水導管は、スパー310を垂直に支持するために十分な強度の大径パイプであることができる。代替として、温水導管は、スパー310の構造と一体型の通路であることができる。
【0037】
次いで、温水は、蒸発器部分344を通って流動し、蒸発器部分344は、作業流体を蒸気まで加温するための蒸発器314として動作するように構成される、1つ以上の積層された多段階の熱交換器を格納する。温かい海水は、次いで、温水放出346を介して、スパー310から放出される。温水放出は、環境影響を制限するために、温水放出温度と略同一の温度である海洋熱層またはその近傍の深さに位置するか、またはそこまで温水放出パイプを介して、向かわせられることができる。温水放出は、温水取水口または冷水取水口のいずれかとの熱再循環を回避するために、十分な深度まで向かわせられることができる。
【0038】
冷たい海水が、約40°Fの温度において、冷水パイプ351を介して、2500〜4200フィートまたはそれより大きい深度から引き込まれる。冷たい海水は、冷水取水口部分350を介して、スパー310に流入する。OTEC熱機関の大量水流動要件により、冷たい海水導管は、500,000gpm〜6,000,000gpmの流動を凝縮器部分348に向ける。そのような冷たい海水導管は、6フィート〜35フィートまたはそれより大きい直径を有する。このサイズにより、冷たい海水導管は、スパー310の垂直構造部材である。冷水導管は、スパー310を垂直に支持するために十分な強度の大径パイプであることができる。代替として、冷水導管は、スパー310の構造と一体型の通路であることができる。
【0039】
次いで、冷たい海水は、凝縮器部分348を通して上向きに流動し、凝縮器部分348は、冷たい海水が作業流体を液体まで冷却する凝縮器320として動作するように構成される、積層された多段階の熱交換器を格納する。冷たい海水は、次いで、冷たい海水放出352を介して、スパー310から放出される。冷水放出は、冷たい海水放出温度と略同一の温度の海洋熱層またはその近傍の深度に位置するか、または冷たい海水放出パイプを介して、そこに向かわせられることができる。冷水放出は、温水取水口または冷水取水口のいずれかとの熱再循環を回避するために、十分な深度まで向かわせられることができる。
【0040】
機械デッキ部分354は、蒸発器部分344と凝縮器部分348との間に垂直に位置付けられることができる。機械デッキ部分354を蒸発器部分344の真下に位置付けることは、取水口から、多段階蒸発器を通して、放出口までの略直線温水流動を可能にする。機械デッキ部分354を凝縮器部分348の上方に位置付けることは、取水口から、多段階凝縮器を通して、放出口までの略直線冷水流動を可能にする。機械デッキ部分354は、ターボ発電機356を含む。動作時、蒸気まで加熱された温かい作業流体は、蒸発器部分344から1つ以上のターボ発電機356に流動する。作業流体は、ターボ発電機356内で膨張し、それによって、電力の産生のために、タービンを駆動する。作業流体は、次いで、凝縮器部分348に流動し、そこで、液体まで冷却され、蒸発器部分344に送出される。
【0041】
図4は、いくつかの多段階の熱交換器420が、スパー310の周辺の周囲に配列されるシステムの実装を図示する。特に、熱交換器は、スポーク状構成において、スパー310の半径に沿って延びるように配列される。熱交換器420は、熱機関内で使用される、蒸発器または凝縮器であることができる。熱交換器の周辺レイアウトは、スパー310の蒸発器部分344または凝縮器部分348とともに使用されることができる。周辺配列は、任意の数の熱交換器420(例えば、1つの熱交換器、2〜8の熱交換器、8〜16の熱交換器、16〜32の熱交換器、または32以上の熱交換器)を支持することができる。1つ以上の熱交換器420が、スパー310の単一デッキまたは複数のデッキ(例えば、2、3、4、5、または6つ以上のデッキ)上の周辺に配列されることができる。1つ以上の熱交換器が、2つの熱交換器が互の上に垂直に整列させられないように、2つ以上のデッキ間で周辺でオフセットされることができる。1つ以上の熱交換器が、1つのデッキ内の熱交換器が別の隣接するデッキ上の熱交換器と垂直に整列させられるように、周辺で配列されることができる。
【0042】
個々の熱交換器420は、多段階熱交換システム(例えば、2、3、4、5、または6以上の段階の熱交換システム)を構成することができる。いくつかの実施形態では、個々の熱交換器420は、熱交換器を通る温かい海水流、冷たい海水流、および作業流体流において低圧力損失を提供するように構築される。
【0043】
多段階の熱交換器システムは、例えば、OTEC熱機関の比較的に低い利用可能な温度差内で、非作業流体(例えば、水)から作業流体への高エネルギー伝達を可能にすることが分かっている。OTEC発電所の熱力学効率は、作業流体の温度が水の温度にどれだけ近づくかの関数である。熱伝達の物理学は、エネルギーを伝達するために必要とされる面積が、作業流体の温度が水の温度に近づくにつれて増加することを示す。水の速度の増加は、熱伝達係数を増加させ、表面積の増加を相殺し得る。しかしながら、水の速度の増加は、送出のために必要とされる電力を大きく増加させ、それによって、OTEC発電所にかかる寄生電気負荷を増加させ得る。
【0044】
いくつかの実施形態では、4段階ハイブリッドカスケード式熱交換サイクルが、採用され、熱機関熱力学効率を改善し、それによって、流体間で伝達される必要があるエネルギーの量を減少させる。これは、ひいては、必要とされる熱交換表面の量を減少させる役割を果たす。ハイブリッドカスケード式熱交換サイクルは、同時係属中の米国特許出願第13/209,944号「Staved Ocean Thermal Energy Conversion Power Plant − Cold Water PipeConnection」、および同時係属中の米国特許出願第13/209,865号「Ocean Thermal Energy Conversion Power Plant」に詳細に説明されており、参照することによって、全体として本明細書に組み込まれる。
【0045】
熱交換器の性能は、流体間の利用可能な温度差ならびに熱交換器の表面における熱伝達係数によって影響される。熱伝達係数は、概して、熱伝達表面にわたる流体の速度に伴って変動する。より高い流体速度は、より高いポンプ能力を必要とし、それによって、発電所の正味効率を低減させる。ガスケットがない開放流プレート熱交換器アレイを採用する、ハイブリッドカスケード式多段階熱交換システムは、以下にさらに論じられるように、より高い流体速度およびより高い発電所効率を促進する。なぜなら、ガスケットがない開放流熱交換器アレイが、流体流の方向に沿って積層され、システムの中へ入りそれを通る流体の自由流動を可能にするからである。したがって、流体をプレート熱交換器アレイに送達することに関連付けられた圧力損失は、実質的に排除され、比較的に高流体速度が、アレイ内のプレートの熱伝達表面にわたって達成される。これは、高圧力損失が、流体をプレート、特に、送達ラインおよびラインとプレート熱交換器アレイとの間の開口部内に送達している間に生じる、いくつかの従来のプレート熱交換器アレイと比較されることができる。そのような従来のプレート熱交換器アレイでは、流体をプレートに送達している間に生じた圧力損失は、アレイ内のプレートの熱伝達表面にわたって比較的に低流体速度をもたらし、対応して、低熱伝達をもたらす。ハイブリッドカスケード式多段階の熱交換設計はまた、熱交換器を通してより低い圧力降下を促進し、垂直発電所設計は、システム全体にわたってより低い圧力降下を促進する。
【0046】
統合式多段階OTEC発電所は、熱帯および亜熱帯地域における表面水と深海海洋水との間の温度差を使用して、電気を産生することができる。海水用の従来の配管設備は、海上船舶またはプラットフォームの構造を導管または流路として使用することによって排除されることができる。代替として、温かいおよび冷たい海水用配管設備は、十分なサイズおよび強度の導管またはパイプを使用して、垂直または他の構造支持を船舶またはプラットフォームに提供することができる。これらの一体型海水導管区画または通路は、船舶の構造部材としての役割を果たし、それによって、追加の鋼鉄の要求を低減させる。一体型海水通路の一部として、多段階の熱交換器システムは、外部水ノズルまたは配管接続の必要なしに作業流体蒸発の複数の段階を提供する。統合型多段階OTEC発電所は、温かいおよび冷たい海水が、その自然方向に流動することを可能にする。温かい海水は、海洋のより冷たいゾーンに放出される前に冷却されるにつれて、船舶を通して下向きに流動する。同様に、海洋の深海からの冷たい海水は、海洋のより温かいゾーンに放出される前に、加温されるにつれて、船舶を通して上向きに流動する。この配列は、海水流動方向の変化および関連付けられた圧力損失の必要性を回避する。この配列はまた、必要とされる送出エネルギーを低減させる。
【0047】
多段階の熱交換器システムは、ハイブリッドカスケード式OTECサイクルの使用を可能にする。多段階の熱交換器システムでは、熱交換器は、積層され、海水を連続してそれを通過させ、必要に応じて、作業流体を沸騰または凝縮する、複数の熱交換器段階または区画を形成する。蒸発器区画では、温かい海水が、第1の段階を通過し、そこで、海水が冷却されるにつれて、作業流体の一部を沸騰させる。温かい海水は、次いで、積層を辿り、次の熱交換器段階の中へ流動し、若干、より低い圧力および温度において、追加の作業流体を沸騰させる。これは、積層全体を通して、連続して生じる。熱交換器システムの各段階または区画は、電力を発生させる専用タービンに作業流体蒸気を供給する。蒸発器段階の各々は、タービンの排出において対応する凝縮器段階を有する。冷たい海水は、蒸発器と逆順において、凝縮器積層を通過する。
【0048】
OTECシステムは、その性質上、大量の水を必要とし、例えば、100メガワットOTEC発電所は、例えば、同様のサイズの燃焼式水蒸気発電所に必要とされるより数桁多い水を必要とし得る。例示的実装では、25MW OTEC発電所は、約1,000,000ガロン/分の温水供給を蒸発器に、および約875,000ガロン/分の冷水を凝縮器に必要とし得る。わずかな温度差(約35〜45度F)を有する水を一緒に送出するために必要とされるエネルギーは、効率を低下させ、構造のコストを上昇させるように作用をする。
【0049】
現在利用可能な熱交換器は、OTEC熱交換動作のために必要とされる大量の水および高効率に対処するために不十分である。
図5に示されるように、シェルおよび管形熱交換器は、一連の管から成る。管の1セットは、加熱されるか、または冷却されるかのいずれかがされなければならない作業流体を含む。第2の非作業流体は、熱を提供するか、または必要とされる熱を吸収するかのいずれかを行い得るように、加熱または冷却されている管にわたって流れる。管のセットは、管束と呼ばれ、いくつかのタイプの管、すなわち、平滑管、縦方向フィン付き管等から成り得る。シェルおよび管形熱交換器は、典型的には、高圧力用途のために使用される。これは、シェルおよび管形熱交換器が、その形状によりロバストであるためである。シェルおよび管形熱交換器は、OTEC動作の低温度差、低圧力、大量性質には理想的ではない。例えば、OTEC動作において必要とされる大量の流体を送達するために、従来のシェルおよび管形熱交換器は、高圧力損失および高送出エネルギーに関連付けられた複雑な配管配列を必要とするであろう。加えて、従来のシェルおよび管形熱交換器は、特に、海上プラットフォーム等の動的環境において、製作、設置、および維持することが困難である。シェルおよび管熱交換器はまた、特に、シェル/管接続、および内部支持のために、精密な組立を必要とする。さらに、シェルおよび管形熱交換器は、多くの場合、低熱伝達係数を有し、収容され得る水の体積において制限される。
【0050】
図6は、プレートおよびフレーム熱交換器を描写する。プレートおよびフレーム熱交換器は、複数の薄いわずかに分離されたプレートを含むことができ、プレートは、非常に大きい表面積および熱伝達のための流体流路を有する。この積層されたプレート配列は、所与の空間内において、シェルおよび管形熱交換器より効果的であることができる。ガスケットおよびろう接技術の進歩は、プレートタイプ熱交換器をますます実践的にしている。開ループにおいて使用されるとき、これらの熱交換器は、通常、周期的分解、清掃、および検査を可能にするために、ガスケットタイプである。浸漬ろう接型枠および真空ろう接型プレート等の恒久的に結合されたプレート熱交換器は、多くの場合、冷凍等の閉ループ用途に特定化される。プレート熱交換器はまた、使用されるプレートのタイプおよびそれらのプレートの構成が異なる。いくつかのプレートは、「山形」または他のパターンが型押しされ得、その他は、機械加工されたフィンおよび/または溝を有し得る。
【0051】
しかしながら、プレートおよびフレーム熱交換器は、OTEC用途においていくつかの有意な不利点を有する。例えば、これらのタイプの熱交換器は、OTECシステムで必要とされる大量の水を容易に収容しない複雑な配管配列を必要とし得る。多くの場合、ガスケットが、各プレート対間に精密に適合および維持されなければならず、ボルトを使用してプレートおよびガスケットに与えられる有意な圧縮力が、ガスケットシールを維持するために必要とされる。プレート熱交換器は、典型的には、1つの不具合プレートさえ、検査および修理するために、完全分解を必要とする。プレート熱交換器のために必要とされる材料は、コストがかかるチタンおよび/またはステンレス鋼に限定され得る。これらのタイプの熱交換器は、本質的に、作業流体と非作業流体との間で比較的に等しい流動面積を提供する。流体間の流量比は、典型的には、1:1である。
図6から分かるように、供給および放出ポートが、典型的には、プレートの面に提供され、総熱交換表面積を低減させ、作業および非作業流体の各々の流路を複雑にする。さらに、プレートおよびフレーム熱交換器は、全プレートを貫通するノズルのために、複雑な内部回路網を含む。複雑な流路はまた、熱伝達に寄与しない、有意な圧力損失をもたらす。
【0052】
図7を参照すると、プレートの面における妨害または作業流体による水流への障害を低減させるように、作業流体がプレートの側縁に接合された管を通して各プレートに供給され、そこから放出される熱交換器を提供することによって、前述のプレート熱交換器の限界のうちのいくつかを克服することが提案されている。そのような熱交換器プレートでは、各管の一端は、溶接接続を使用して、プレートに接合され、管の他端は、溶接または機械的接合接続を使用して、ヘッダに接合される。しかしながら、以下にさらに論じられるように、各プレートは、4つもの入口と8つもの出口接続とを必要とする。約20プレート/線形フィートの密度では、4800もの個々の接続が、20フィートモジュールにおいて必要とされ得る。これは、製造物流問題ならびに品質管理問題の両方を呈する。OTEC熱機関10内で採用されるとき、接続はまた、海水環境に曝されたままである。
【0053】
前述の熱交換器の限界を克服するために、ガスケットがない開放流熱交換器が、提供される。いくつかの実装では、個々のプレートは、各プレート間に間隙が存在するように、キャビネット内に水平に整列させられる。作業流体のための流路は、高熱伝達を提供するパターン(例えば、交互蛇行、山形、z−パターン等)における各プレートの内部を通って伸びる。作業流体は、以下にさらに論じられるように、プレートの面における妨害または作業流体による水流への障害を低減させるように、プレートの片側に提供されるマニホールドを通して、各プレートに流入する。水等の非作業流体は、キャビネットを通して垂直に流動し、開放流プレートの各々の間の間隙を充填する。いくつかの実装では、非作業流体は、開放流プレートの全側面に接触する、または開放流プレートの正面および背面だけと接触する。
【0054】
作業流体の供給および放出のためのマニホールドを含む、ガスケットがない開放流熱交換器は、ヘッダへの管接続の使用を完全に排除する。ある場合には、入口および出口接続は、プレートと一体的に形成され、組立プロセスの間に隣接するプレートに溶接される。接続が溶接されると、アセンブリは、以下にさらに論じられるように、エポキシに包まれることができ、エポキシは、カートリッジ間を流動し、構造補強をアセンブリに提供し、海水が、溶接された表面に接触することを防止する。
【0055】
図8を参照すると、多段階の熱交換器システム520の実施形態は、垂直に積層された構成における、複数の熱交換モジュール521、522、523、および524を含む。この実施形態では、各モジュール521、522、523、524は、システム520の段階に対応する。いくつかの実装では、例えば、スパー310内の蒸発器314として使用される場合、積層熱交換器モジュールは、システム520を通して、第1の蒸発器モジュール521から、第2の蒸発器モジュール522、第3の蒸発器モジュール523、第4の蒸発器モジュール524に下方に流動する温かい海水570を収容する(
図8)。他の実装では、例えば、スパー310内の凝縮器320として使用されるとき、冷たい海水570は、システム520を通して、第1の凝縮器モジュール531から、第2の凝縮器モジュール532、第3の凝縮器モジュール533、第4の凝縮器モジュール534に上方に流動する。ある実施形態では、作業流体580は、温かい海水または冷たい海水の垂直流と比較して、各熱交換器モジュール内の作業流体導管を通して水平に流動する。熱交換器システム520の垂直多段階の熱交換設計は、統合型船舶および熱交換器設計(すなわち、スパー)を促進し、熱交換器段階間で配管を相互接続する必要を除去し、熱交換器システム圧力降下の事実上全てが、熱伝達表面にわたって生じることを確実にする。したがって、水の流動方向は、上部から底部または底部から上部であることができる。いくつかの実施形態では、流動方向は、水が加熱または冷却されている場合、水の自然方向であり得る。例えば、作業流体を凝縮する場合、水は、水が温められるので、対流の自然流において、垂直に積層されたモジュール配列を通して底部から上部に流動することができる。別の実施例では、作業流体を蒸発させる場合、水は、水が冷えるので、上部から底部に流動することができる。さらに他の実施形態では、非作業流体流は、システムにわたって水平に、すなわち、左から右または右から左に横切ることができる。他の実施形態では、流動方向は、垂直、水平、または垂直および水平方向の組み合わせであることができる。
【0056】
図9は、多段階の熱交換器システム520の単一の熱交換器モジュール524の詳細を図式的に図示する。熱交換器モジュール524は、複数の熱交換プレート1022を支持する。非作業流体570は、熱交換器モジュール524を通って垂直に流動し、プレート1022の各々を越える。実線矢印は、この場合、水である、非作業流体570の流動方向を示す。
【0057】
開放流熱交換モジュール524は、キャビネット面1030およびキャビネット側面1031を含む。キャビネット面1030の反対は、キャビネット面1032(図示せず)であり、キャビネット側面1031の反対は、キャビネット側面1033である。キャビネット面1030、1032および側面1031、1033は、プレナムまたは水導管を形成し、それを通って、非作業流体が、配管による圧力損失が殆どまたは全くない状態で流動する。
図6に関する前述のガスケットを採用するプレート熱交換器とは対照的に、開放流熱交換器モジュール524は、プレート間のガスケットを使用して、非作業流体580を含む流動チャンバを形成するのではなく、キャビネット側面およびキャビネット面を使用して、非作業流体570(例えば、海水)を含む流動チャンバを形成する。したがって、開放流熱交換モジュール524は、事実上、ガスケットがない。本システムのこの側面は、ガスケットに依拠し、作業流体をエネルギー提供媒体(例えば、海水)から隔離する、他のプレートおよびフレーム熱交換器より有意な利点を提供する。例えば、1980年代および1990年代にNELHAにおいて行われたアルミニウムプレートおよびフレーム熱交換器の腐食試験は、ガスケットの周囲に非常の多くの漏出が見られ、生物学的堆積物が広範な腐食を生じさせたため、わずか6ヶ月後に停止しなければならなかった。ガスケットを使用するプレートおよびフレーム熱交換器は、ガスケットをプレートに対してシールするために、圧縮力に依拠する。ユニットを組み立てることは、プレートおよび非圧縮ガスケットを挿入し、次いで、ボルトのアレイを元の長さの約50%まで緊締するために、追加の空間を必要とする。出願人は、OTECシステムにおいてプレートおよびフレーム設計を使用する主要な障害として、ガスケット問題を識別した。
【0058】
加えて、熱交換プレートのための側縁搭載入口および出口ポートと組み合わせられたモジュールアプローチは、典型的には、プレート熱交換システムの面上に提供される供給および放出ポート(例えば、
図5参照)の必要性を回避する。本アプローチは、各プレートの総熱交換表面積を増加させ、かつ作業および非作業流体の両方の流路を単純にする。プレート間のガスケットの除去はまた、流動に抵抗を生じさせ得る、有意な妨害を除去する。ガスケットがない開放流熱交換モジュールは、背圧および関連付けられた送出需要を低減させ、したがって、OTEC発電所の寄生負荷を減少させ、公益事業会社に送達され得る電力の増加をもたらし得る。
【0059】
OTEC凝縮器320の場合、モジュール524は、底部において冷たい原水供給に開放され、上部において、上方のモジュール523と非妨害流体連通を提供するように開放する。垂直系内の最終モジュール521は、上部において、原水放出システムに開放する。
【0060】
OTEC蒸発器314の場合、モジュール521は、上部において、温かい原水供給に開放され、底部において、下方のモジュール522と非妨害流体連通を提供するように開放する。垂直系内の最終モジュール524は、底部において、温かい原水放出システムに開放される。
【0061】
図10を参照すると、蒸発器314内で使用される多段階の熱交換器システム520の例示的実施形態は、4つの熱交換器モジュール521、522、523、524を含む。本実施形態では、各熱交換器モジュールは、4段階の熱交換器システム520のうちの1段階に対応する。4つの熱交換器モジュール521、522、523、524は、支持フレーム540上に支持され、そして、支柱550によって、蒸発器部分344内に支持される。4つの熱交換器モジュール521、522、523、524の各々は、同じであり、したがって、最も下段のモジュール524のみ、詳細に説明される。
【0062】
図11を参照すると、熱交換器モジュール524は、ラック1002上に支持される、いくつかの熱交換器アレイ1000を含む。ラック1002は、多段階の熱交換器システム520の中に組み立てられると、支持フレーム540を協力的に係合するように構成される。
【0063】
図9および12−13を参照すると、各熱交換器アレイ1000は、複数の開放流熱交換プレート1022から形成される。各開放流プレート1022は、正面1040と、背面1042と、周辺縁1044とを有する。熱交換アレイ1000の各々内には、熱交換プレート1022が、正面および背面1040、1042に垂直に延びる、整列軸1005に沿って積層される。図示される実施形態では、整列軸1005は、熱交換プレート1022が水平整列に配列されるように、水平に延びる。加えて、間隙1025が、隣接するプレート1022間に提供される。
【0064】
正面1040および背面1042は、各プレート1022の非作業流体熱伝達表面を提供する。以下にさらに説明される、内部作業流体通路1055は、各プレート1022の作業流体熱伝達表面を提供する。熱伝達表面効率は、本明細書に説明されるように、表面形状、処理、および間隔を使用して改良されることができる。アルミニウムの合金等の材料選択は、従来のチタンベースの設計より優れた経済的性能をもたらす。熱伝達表面は、100 Series、3000 Series、または5000 Seriesアルミニウム合金を備えていることができる。熱伝達表面は、チタンおよびチタン合金を備えていることができる。
【0065】
各プレート1022の周辺縁1044は、
図14に示されるように、上縁1045と、底縁1046と、右(または、後)縁1047と、左(または、前)縁1048とを含む。本明細書で使用される場合、前、後、上、下、左、および右の用語を含む、方向の言及は、蒸発器構成を図示する、
図12に示されるアレイの方向に関して行われるものであり、限定ではない。例えば、熱交換モジュール524が、凝縮器構成において使用されるとき、反転される(プレートの上縁1045が底縁1045’(図示せず)となるように、整列軸1005を中心として、空間内で180度回転される)。
【0066】
プレート1022は、第1のプレート1051の背面1042が、第1のプレート1051に隣接しその直後にある第2のプレート1052の正面1040に面するように、水平整列において積層内に配列され、各プレート1022のそれぞれの周辺縁1044は、整列させられる。均一間隔が隣接するプレート1051、1052間に提供されることを保証するために(例えば、各間隙1025が同一の寸法であることを保証するために)、溝付きバッキングプレート1006、1008が、積層の前側および後側に提供される。第1のバッキングプレート1006は、積層の前側に沿って配置され、プレート1022のタブ1070から底縁まで延びる。第2のバッキングプレート1008は、積層の後側に沿って配置され、プレート1022の上縁から底縁まで延びる。バッキングプレート1006、1008の積層に面した表面は、積層内の各プレートのそれぞれの前側縁1048または後側縁1047を受け取る溝を含み、溝間隔は、所望のプレート間隔に対応する。
【0067】
作業流体580は、マニホールド1080(
図12)を使用して、プレート1022の各々の周辺縁における作業流体通路1055に供給され、かつそこから放出され、非作業流体が、ラック1002内の複数のプレート1022の正面および背面1040、1042を越えて流動する場合、間隙1025を通る原水の流動への障害を回避する。例えば、図示される実施形態では、マニホールド1080は、右縁1048に沿って提供される。
【0068】
プレート1022の各々は、プレートの内部の作業流体通路1055を含む。マニホールド1080は、熱交換器アレイ1000の各プレート1022の作業流体流路1055と流体連通し、作業流体を熱交換器アレイの各プレート1022に供給する。
【0069】
図14を参照すると、作業流体通路1055は、いくつかの平行ミニチャネル1912から形成され得る。各開放流プレート内に内部流路を提供する、ミニチャネルは、作業流体580の流動が、非作業流体570の流動方向に実質的に垂直または交差流であるように、交互蛇行パターンで配列される。加えて、蛇行パターンを通る作業流体580の前進は、非作業流体570の流動に略平行であるか、または非作業流体570の流動方向と反対であることができる。いくつかの実施形態では、ガイド羽根およびさまざまな流路寸法が実装され、流動方向が逆転される場合、平行チャネルの間で、流動分布をならし、流体を後続チャネルに平滑に向けることができる。これらおよび他のチャネル特徴ならびに構成は、同時係属中の米国特許出願第13/209,944号「Staved Ocean
Thermal Energy Conversion Power Plant −
Cold Water Pipe Connection」に説明されており、参照することによって、全体として組み込まれる。
【0070】
作業流体は、流路に沿って、その位相を液体から蒸気に変化させ、その結果、同一の流路面積が、熱交換プレート全体を通して使用される場合、作業流体圧力降下が有意に増加するであろうことが分かっている。その蒸気質変化に関連付けられる、流動に沿った流体圧力降下の増加を低減させるために、通過当りの平行流路の数は、作業流体の流路に沿って増加されることができる。例えば、
図14における熱交換プレート1022は、各々が底縁1046に隣接する対応するミニチャネル1912に注ぐ2つの入口通路1911を有する。ミニチャネル1912は、蛇行方式でプレートに沿って延びる。2つのミニチャネルからの流動は、第1の遷移点1914において、4つのミニチャネルに注ぐ。4つのミニチャネルからの流動は、第2の遷移点1916において、6つのミニチャネルに注ぐ。6つのミニチャネルからの流動は、第3の遷移点1920において、8つのミニチャネルに注ぎ、8つのミニチャネルからの流動は、第4の遷移点1922において、10のミニチャネルに注ぐ。10のミニチャネルからの流動は、第5の遷移点1924において、12のミニチャネルに注ぐ。結果として生じる12のミニチャネルは、流体出口1918を通って出る。
【0071】
2つの入口通路1911は、マニホールド1080によって、作業流体580を供給される。特に、マニホールド1080は、整列軸1005に平行な方向に延び、熱交換アレイ1000の各プレート1022の4つの入口通路1911の各々と流体連通する、マニホールド供給チャンバ1084を含む。加えて、マニホールド1080は、整列軸1005に平行な方向に延び、マニホールド1080内のマニホールド放出チャンバ1086と別個かつそこから隔離される、マニホールド放出チャンバ1086を含む。熱交換器アレイ1000の各プレート1051、1052の4つの出口通路1918の各々は、マニホールド放出チャンバ1086と流体連通し、作業流体590は、8つの出口通路から、マニホールド放出チャンバ1086の中に放出される。
【0072】
作業流体入口および出口のマニホールド1080への接続を促進するために、マニホールド1080は、プレート1022の右側縁1078に接続する、タブ1070を含む。各タブ1070は、対応するプレート1022と同一平面にあり、プレート1022の各作業流体入口通路1911と流体連通し、その延長部を形成する内部タブ入口通路1072を含む。加えて、各タブ1070は、プレート1022の各作業流体出口通路1918と流体連通し、その延長部を形成する内部タブ出口通路1074を含む。入口開口部1076は、以下に論じられるように、マニホールド供給チャンバ1084の一部を画定する、各タブ内に形成され、出口開口部1078は、マニホールド放出チャンバの一部を画定する、各タブ内に形成される。
【0073】
マニホールド供給チャンバ1084およびマニホールド放出チャンバ1086は、構造的に類似するが、蒸発器として使用されている熱交換器アレイ1000のためのマニホールド供給チャンバ1084は、対応するマニホールド放出チャンバ1086より小さい。これは、タブ出口開口部1078より小さい直径を伴うタブ入口開口部1076を形成することによって達成される。このサイズ差は、作業流体580が、液体として蒸発器に流入し、同一の流体が、ガスとして蒸発器から流出するという事実を反映する。故に、熱交換器アレイ1000が、凝縮器内で採用されるとき、マニホールド供給チャンバ1084は、対応するマニホールド放出チャンバ1086より大きい。
【0074】
使用時、蒸発器として使用されている熱交換器アレイ1000のためのマニホールド供給チャンバ1084は、マニホールド放出チャンバ1086より下方に位置する(例えば、プレート上縁1045からより離れて位置する)。これは、作業流体580が、マニホールド供給チャンバ1084から液体としてプレート1022に流入し、ガスとして、マニホールド放出チャンバ1086から流出するためである。故に、熱交換器アレイ1000が、凝縮器内で採用されるとき、マニホールド上縁1045に対するマニホールド供給チャンバ1084とマニホールド放出チャンバ1086との相対的位置は、逆転され、タブ1070は、プレートの底部に平行移動される。凝縮器上のポート1085は、次いで、作業流体ガスをチャネル1918と連通するカートリッジの上部に運ぶ、チャネル1911と連通する。ガスは、位相を変化させ、液体作業流体は、それを通して液体作業流体が放出されるポート1084と連通するチャネル1912において、カートリッジの底部に落下し、集中する。
【0075】
マニホールド1080は、熱交換器アレイ1000内のプレート1020の全タブ1070を包囲する、マニホールド筐体1088を含む。筐体1088は、ボックス形状の外側周辺を有し、ポリ硫酸系エポキシ樹脂(以下、「エポキシ」と称される)等の硬質材料から形成されることができる。マニホールド供給チャンバ1084およびマニホールド放出チャンバ1086(蒸発器;供給および放出は、凝縮器の場合、逆転される)含むタブ1070をエポキシ内に封入することによって、隣接するタブ1070間に提供される溶接が補強され、作業流体の漏出に対する二次障壁が提供される。加えて、タブ1070をエポキシ内に封入することは、エポキシが補剛材として作用するため、プレート間隔を設定および保持する役割を果たし、マニホールド1080を構造的に補強する。また、有利には、封入はまた、全接合部を非作業流体580(例えば、海水)との接触からシールする。
【0076】
図15Aおよび15Bを参照すると、熱交換器モジュール524内の隣接する熱交換器アレイ1000のマニホールド1080は、フランジコネクタ2000を使用して接続され、フランジコネクタ2000は、隣接するマニホールド1080間の流体連通、または流体供給ラインへの接続を可能にする。特に、フランジコネクタ2000は、マニホールド供給チャンバ1084の各端およびマニホールド放出チャンバ1086の各端に提供される。各フランジコネクタ2000は、円錐台状管であり、この円錐台状管は、コネクタの第1の端2002が、対向するコネクタの第2の端2010より寸法が大きいような側壁2016を含み、コネクタ側壁は、コネクタの第1の端2002とコネクタの第2の端2010との間で湾曲されるように成形されている。
【0077】
図12、15、16および17を参照すると、コネクタの第1の端2002は、フランジコネクタ2000を隣接するマニホールド1080の対応するフランジコネクタ2000aあるいは供給または放出ライン2020に接合するために使用される。コネクタの第1の端2002は、リム2004を含み、Oリング2007が、コネクタの第1の端2002の端面2008上の溝2006内に提供される。Oリング2007は、接続表面における作業流体580の漏出を防止する、シールを提供する。使用時、クランプ2022(
図16および17)は、1つのフランジコネクタ2000のコネクタの第1の端2002を隣接するフランジコネクタ2000aのコネクタの第1の端2002に固定するために使用され、それぞれの第2の端面2008は、当接し、流体連通が対応するマニホールドチャンバ間に提供される。この目的のための例示的クランプは、2ボルト式高圧サニタリークランプである。
【0078】
コネクタの第2の端2010は、対応するマニホールド供給または放出チャンバ1084、1086より若干大きい外径を有し、コネクタの第2の端2010の端面2012から縦方向外向きに延びる、段付き部分またはフェルール2014を含む。段付き部分2014は、対応するマニホールド供給または放出チャンバ1084、1086の内径に対応する外径を有する。使用時、段付き部分2014は、対応するマニホールド供給または放出チャンバ1084、1086内に受け取られ、コネクタの第2の端2010は、マニホールド1080に固定される。いくつかの実施形態では、コネクタの第2の端2010は、マニホールド1080に溶接される。
【0079】
各熱交換器モジュール524、523、522、および521は、同様の構成要素を有し、1つのモジュール内に水平に整列させられたプレート1022が、下方のモジュール内のプレートの上に垂直に整列するように垂直に整列させられることを理解されるであろう。1つのモジュール内のプレート1022間の間隙1025は、下方のモジュール内のプレート1022間の間隙1025の上に垂直に整列する。
【0080】
熱交換モジュール524の一部の側面断面図を図示する、
図18を参照すると、熱交換器アレイ1000内のプレート配列の例示的実装は、少なくとも正面1040および背面1042を含む外面を有する少なくとも1つの第1の開放流熱交換プレート1051を含む。使用時、外面は、冷たい原水等の非作業流体570と流体連通し、それによって包囲される。第1の開放流プレート1051はまた、マニホールド1080と流体連通し、マニホールド1080を介して、作業流体580を受け取るように構成される内部通路1055を含む。少なくとも1つの第2の開放流熱交換プレート1052は、第2のプレート1052の前外面1040が、第1のプレート1051の後外面1042に面するように、第1の開放流熱交換プレート1051と水平に整列させられる。第1の開放流プレート1051は、実質的に、第2の開放流プレート1052と同じである。すなわち、第1のプレート1051のように、第2のプレート1052の外面は、非作業流体570と流体連通し、それによって包囲される。加えて、第2のプレート1052は、マニホールド1080と流体連通し、作業流体580を受け取るように構成される、内部通路1055を含む。
【0081】
第1の開放流熱交換プレート1051は、間隙1025によって、第2の熱交換プレート1052から分離され、非作業流体570は、間隙1025を通って流動する。作業流体580は、内部作業流体流路1055を通って流動する。
【0082】
前述のように、いくつかの実装では、単一熱交換モジュール524が、ハイブリッドカスケード式OTECサイクルの単一段階専用であることができる。いくつかの実装では、4つの熱交換モジュール521、522、523、524が、
図8および10に描写および説明されるように、垂直に整列させられる。いくつかの実装では、モジュールは、各プレートの周辺縁1044に位置する、マニホールド1080に接続される作業流体供給および放出ラインを有する。これは、プレートの面1040、1042上に位置する作業流体導管を有し、プレートプレート1051、1052内の作業流体およびプレート面1040、1042に沿った非作業流体の両方の流動を妨害することを回避する。
【0083】
例えば、ガスケットがない多段階熱交換システムは、1つ以上の開放流プレートの各々内の内部通路を通って流動する第1の作業流体と流体連通する1つ以上の開放流プレートを備えている、第1の段階の熱交換モジュールを含むことができる。作業流体は、第1のマニホールドを介して、各プレートに供給され、かつそこから放出されることができ、第1のマニホールドは、流体供給チャンバ1084および流体放出チャンバ1086を含み、各チャンバが、各個々のプレートの周辺縁に接続される。第1の段階の熱交換モジュールと垂直に整列させられる第2の段階の熱交換モジュールもまた、含まれる。第2の段階の熱交換モジュールは、1つ以上の開放流プレートの各々内の内部通路を通って流動する第2の作業流体と流体連通する1つ以上の開放流プレートを含む。再び、第2の作業流体は、第2のマニホールドを介して、各個々のプレートに供給されかつそこから放出され、第2のマニホールドは、流体供給チャンバ1084および流体放出チャンバ1086を含み、各チャンバが各個々のプレートの周辺縁に接続される。水等の非作業流体は、最初に、第1の段階の熱交換モジュールを通って、1つ以上の開放流プレートの各々の周囲を流動し、第1の作業流体との熱交換を可能にする。非作業流体は、次いで、第2の段階の熱交換モジュールを通って、開放流プレートの各々の周囲を通過し、第2の作業流体との熱交換を可能にする。
【0084】
第1の段階の熱交換モジュールは、水平整列において複数の開放流プレートを含み、各プレート間に間隙を有する。第2の段階の熱交換モジュールもまた、水平整列において複数の開放流プレートを含み、第2の段階の熱交換モジュール内の各プレート間に間隙を有する。第2の段階の熱交換モジュール内の複数の開放流プレートおよび間隙は、第1の段階の熱交換モジュール内の複数の開放流プレートおよび間隙と垂直に整列させられる。これは、第1および第2の段階の熱交換モジュールを通して、非作業流体の流動中の圧力損失を低減させる。非作業流体中の圧力損失はまた、1つのモジュールから次のモジュールに非作業流体を直接放出させることによっても低減され、それによって、広範かつ大規模な配管システムの必要性を排除する。いくつかの実施形態では、バッキングプレート1006、1008が、アレイ1000内に個々のプレート1022の間隔を維持するために使用され、バッキングプレート1006、1008は、プレート側縁1047、1048に隣接して位置付けられ、それを通して非作業流体が流動する導管を形成する。
【0085】
例示的4段階OTECシステムの各段階の各アレイ内のプレートの開放流配列により、非作業流体と作業流体の流量比は、ほとんどの従来のプレート熱交換器システムの典型的1:1から増加される。いくつかの実装では、非作業流体の流量比は、1:1を上回る(例えば、2:1を上回る、10:1を上回る、20:1を上回る、30:1を上回る、40:1を上回る、50:1を上回る、60:1を上回る70:1を上回る、80:1を上回る、90:1を上回る、または100:1を上回る)。
【0086】
熱交換モジュールの多段階配列が、凝縮器として使用されるとき、非作業流体(例えば、冷たい海水)は、概して、非作業流体が第2の段階の熱交換モジュールに流入するときより低い温度で、第1の段階の熱交換モジュールに流入し、非作業流体は、次いで、非作業流体が第3の段階の熱交換モジュールに流入するときより低い温度で、第2の段階の熱交換モジュールに流入し、非作業流体は、概して、第4の段階の熱交換モジュールに流入するときより低い温度で、第3の段階の熱交換モジュールに流入する。
【0087】
熱交換モジュールの多段階配列が、蒸発器として使用されるとき、非作業流体(例えば、温かい海水)は、概して、非作業流体が第2の段階の熱交換モジュールに流入するときより高い温度で、第1の段階の熱交換モジュールに流入し、非作業流体は、次いで、非作業流体が第3の段階の熱交換モジュールに流入するときより高い温度で、第2の段階の熱交換モジュールに流入し、非作業流体は、概して、第4の段階の熱交換モジュールに流入するときより高い温度で、第3の段階の熱交換モジュールに流入する。
【0088】
熱交換モジュールの多段階配列が、凝縮器として使用されるとき、作業流体(例えば、アンモニア)は、概して、作業流体が第2の段階の熱交換モジュールから流出するときより低い温度で、第1の段階の熱交換モジュールから流出し、作業流体は、作業流体が第3の段階の熱交換モジュールから流出するときより低い温度で、第2の段階の熱交換モジュールから流出し、作業流体は、概して、第4の段階の熱交換モジュールから流出するときより低い温度で、第3の段階の熱交換モジュールから流出する。
【0089】
熱交換モジュールの多段階配列が、蒸発器として使用されるとき、作業流体(例えば、アンモニア)は、概して、作業流体が第2の段階の熱交換モジュールから流出するときより高い温度で、第1の段階の熱交換モジュールから流出し、作業流体は、概して、作業流体が第3の段階の熱交換モジュールから流出するときより高い温度で、第2の段階の熱交換モジュールから流出し、作業流体は、概して、第4の段階の熱交換モジュールから流出するときより高い温度で、第3の段階の熱交換モジュールから流出する。
【0090】
4段階OTECサイクルの実装の例示的熱平衡が、本明細書に説明され、概して、これらの概念を例証する。
【0091】
いくつかの実装では、4段階のガスケットがない熱交換システムは、1つ以上の開放流プレートを有する、第1の段階の熱交換モジュールを含み、各プレートは、少なくとも、非作業流体によって包囲される、正面および背面を有する、外面を含む。各プレートはまた、内部通路を通って流動する、第1の作業流体と流体連通する内部通路を含む。作業流体は、各プレートに専用の供給および放出ラインによって、各プレートに供給され、かつそこから放出される。
【0092】
4段階の熱交換システムはまた、第1の熱交換モジュールと垂直に整列させられる第2の段階の熱交換モジュールを含み、第2の段階の熱交換モジュールは、第1の段階のものと実質的に類似し、第1の段階のプレートと垂直に整列させられる、1つ以上の開放流熱交換プレートを含む。
【0093】
第1および第2の段階の熱交換モジュールと実質的に類似する第3の段階の熱交換モジュールもまた、含まれ、第2の段階の熱交換モジュールと垂直に整列させられる。第1、第2、および第3の段階の熱交換モジュールと実質的に類似する第4の段階の熱交換モジュールも含まれ、第3の段階の熱交換モジュールと垂直に整列させられる。
【0094】
動作時、非作業流体は、各プレートの内部流路内を流動する第1の作業流体との熱相互作用のために、第1の段階の熱交換モジュールを通って流動し、各開放流プレートをその中に包囲する。非作業流体は、次いで、第2の作業流体との熱相互作用のために、第2の段階の熱交換モジュールを通って流動する。非作業流体は、次いで、第3の作業流体との熱相互作用のために、第3の段階の熱交換モジュールを通って流動する前に、第2の作業流体との熱相互作用のために、第2の段階の熱交換モジュールを通って流動する。非作業流体は、第4の作業流体との熱相互作用のために、第4の段階の熱交換モジュールを通って流動する前に、第3の作業流体との熱相互作用のために、第3の段階の熱交換モジュールを通って流動する。非作業流体は、次いで、熱交換システムから放出される。
【0095】
OTEC動作の低温度差(典型的には、35度F〜85度F)は、非作業流体および作業流体の流動に妨害がない、熱交換プレート設計を必要とする。さらに、プレートは、作業流体の低温度リフトエネルギー変換に対応するために十分な表面積を提供しなければならない。
【0096】
従来の発電システムは、典型的には、蒸気動力サイクル等の大温度リフトシステムとともに燃焼プロセスを使用する。環境問題および不均衡な化石燃料供給問題が、より一般的となるにつれて、本明細書に説明され、太陽熱および海洋熱等の再生可能エネルギー源を使用する、OTECシステムの実装等の低温度リフトエネルギー変換(LTLEC)システムは、より重要となるであろう。従来の蒸気動力サイクルは、燃焼プロセスからの排ガスを使用し、通常、非常に高温であるが、LTLECサイクルは、30〜100度Cの低温エネルギー源を使用する。したがって、LTLECサイクルの熱源とヒートシンクとの間の温度差は、蒸気動力サイクルのものよりはるかに小さい。
【0097】
図19は、圧力−エンタルピー(P−h)図において、従来の高温蒸気動力サイクルのプロセスを示す。蒸気動力サイクルの熱効率は、30〜35%の範囲内である。
【0098】
対照的に、
図20は、OTEC動作において使用されるもの等のLTLECサイクルのP−h図を示す。LTLECサイクルのための典型的熱効率は、2〜10%である。これは、従来の高温蒸気動力サイクルの略3分の1〜10分の1である。故に、LTLECサイクルは、従来の電力サイクルよりはるかに大きいサイズの熱交換器を必要とする。
【0099】
本明細書に説明される熱交換プレートは、高熱伝達性能およびまた、熱源流体側およびヒートシンク流体側における低圧力降下を提供し、システム効率に影響を及ぼすポンプ能力要求を制限する。OTECおよび他のLTLECサイクルのために設計されたこれらの熱交換プレートは、以下の特徴を含むことができる。
1) ミニチャネル設計を有する作業流体流路。これは、圧延結合されたアルミニウム熱交換プレート内に提供されることができ、作業流体と非作業流体との間に大きな活性熱伝達面積を提供する。
2) 熱源非作業流体およびヒートシンク非作業流体における圧力降下を有意に低減させるように、プレート間に提供される間隙。このように、電力サイクルの作業流体のための比較的に狭い流体流動面積を維持しながら、熱源流体側およびヒートシンク流体側のための比較的に広い流体流動面積が、提供されることができる。
3) 作業流体の流路内の通過当りのチャネル数を漸次的に変化させる構成は、流動に沿って位相変化する作業流体の圧力降下を低減させることができる。プレート内のチャネルの数は、作業流体、動作条件、および熱交換器幾何学形状に従って設計されることができる。
4) 起伏のある作業流体流路またはチャネル構成は、熱伝達性能を向上させることができる。
5) 作業流体流動チャネル内および平行チャネル間では、流動チャネルのチャネルの内壁の両端は、流動方向が逆転される場合に流体を後続チャネルに平滑に向かわせるように湾曲されることができ、チャネルの内壁の端から側壁までの非均一距離が、平行チャネル間で使用されることができる。
【0100】
前述の特徴は、システム内で必要とされるポンプ能力を低減させ、熱伝達性能を向上させることができる。
【0101】
再び、
図13、13A、および18を参照すると、ミニチャネルが圧延結合された熱交換プレート1051および1052が、斜視図に示される。作業流体580と非作業流体570との間の直交反対流が、提供される。蒸発器として使用されるとき、非作業流体570(例えば、海水)は、プレート1051、1052の上縁1045において流入し、プレート1051、1052の底縁1046から流出する。作業流体580(例えば、アンモニア)は、液体状態において、マニホールド1080を介して、プレートの右側縁1048に流入し、蒸発し、最後に、より高い温度非作業流体570から熱エネルギーを吸収することによって、蒸気相になる。発生された蒸気は、マニホールドを介して、プレートの右側縁1048から流出する。
【0102】
プレート1051、1052は、作業流体流動チャネル1055がプレート自体内に配置されるように、圧延結合プロセスを使用して形成されることができる。圧延結合は、熱および圧力によって、流動チャネルが2つのパネル間に生成されるように、2つの金属パネルが一緒に融合させられ、次いで、高圧力空気で拡張される、製造プロセスである。融合に先立って、炭素ベースの材料が、パネルのうちの第1のパネルの上側表面上に、作業流体流動チャネルの所望の経路に対応するパターンで印刷される。第2のパネルが、次いで、第1のパネルの上部に置かれ、2つのパネルは、次いで、高温圧延プレスを通して圧延され、単一プレートを形成し、2つのパネルが、炭素材料が存在する場所を除く、あらゆる場所で融合させられる。少なくとも1つのチャネルが、プレートの周辺縁に印刷され、振動マンドレルが、2つのパネル間に挿入され、その中に加圧された空気が注入されるポートを生成する。加圧された空気は、2つのパネルが一緒に融合することを防止された場所に内部チャネルが生成されるように、金属を変形および拡張させる。圧延結合が行われ得る、2つの方法が存在する:金属がシート金属のロールから高温圧延プレスを通して継続的に流される連続方法、または事前に切断されたパネルが個々に処理されるものである断続方法。
【0103】
図21を参照すると、いくつかの実施形態では、2つの同じパネル1060が、一緒に圧延結合され、プレート1022’を形成する。例えば、各パネル1060は、厚さ約1.05〜1.2mm、長さ1545mm、および幅350mmであり、同一の材料から形成される。チャネルは、前述のように、吹込成形によって、作業流体流動チャネルの所望の経路に対応するパターンを有する、接合された金属パネル間に形成される。チャネル1055は、12〜13.5mmの幅wおよび約2mmの高さhを伴って形成される。プレート1022’を形成するために使用されるパネルは、同じであるので、両パネル1060は、内部チャネルを形成するための拡張の間、変形させられ、チャネルは、各パネル1060内で均等に外向きに拡張する。結果として生じるプレート1051の両面(例えば、前面1040および後面1042)は、輪郭が付けられ、作業流体流動チャネル1055の場所における拡張された区画に対応する外向きに突出する領域を含む。結果として生じるプレート構成は、両面型と称される。
【0104】
各々が両面型プレート構成を有する第1のプレート1051および第2のプレート1052が、熱交換アレイ1000内で積層構成において、互に隣接して置かれると、プレート1051、1052は、ネスト状構成に配列され得る。ネスト状構成では、プレート1051、1052は、1つのプレート1051の突出領域が、隣接するプレート1052の突出領域間の空間内に存在するように、互から若干オフセットされて配列され得る。しかしながら、圧延結合プロセスは、一貫した高さを有するプレートを提供するが、長さ方向寸法再現性の固有の問題を有する。その結果、チャネルの各部分の場所が、確実に制御されることができない。例えば、ある場合には、プレートの突出領域は、プレート1051の上縁1045から設計距離にない。両面型プレートを採用するプレートを採用する熱交換器の実験試験の間、寸法のばらつきが、隣接するプレートの突出領域が互に直接対向して位置付けられる結果をもたらし、プレート分離間隙1025内にピンチポイントをもたらし、予期されるものより高い圧力損失およびより低い熱伝達につながることが分かった。
【0105】
図22を参照すると、いくつかの実施形態では、同一の周囲形状の2つの非同一パネル1060、1062が、一緒に圧延結合され、両面型プレート構成に関して前述された寸法のばらつき問題に対処するプレート1022を形成する。2つのパネル1060、1062は、降伏強度が異なるという点において、非同一である。これは、例えば、異なる厚さを有するか、または異なる材料で形成されるパネル1060、1062を提供することによって達成されることができる。チャネルが、前述のように吹込成形によって、接合された金属パネ間に形成され、この金属パネは、作業流体流動チャネル1055の所望の経路に対応するパターンを有する。
【0106】
作業流体流動チャネル1055は、熱交換プレート全体の体積を低減させながら、2つの流体間の活性熱伝達面積を増加させるために、比較的に広い幅wおよび比較的に低い高さhを有する。チャネルの幅wは、約10〜約15mmの範囲(例えば、11mm超、12mm超、13mm超、14mm未満、13mm未満、および/または12mm未満)であることができる。チャネルの高さhは、約1〜約3mmの範囲(例えば、1.25mm超、1.5mm超、1.75mm超、2mm超、2.75mm未満、2.5mm未満、2.25mm未満、および/または2mm未満)であることができる。チャネル間の間隔は、約4〜約8mm(例えば、4.5mm超、5mm超、5.5mm超、7.5mm未満、7mm未満、および/または6.5mm未満)であることができる。
【0107】
プレートを形成するために使用されるパネルの降伏強度における差異は、内部チャネルを形成する拡張の間、パネル1060の1つのみが変形させられるように制御される。この場合、チャネルは、プレート1022の片側のみから外向きに拡張し、片側(すなわち、正面1040)が、作業流体流動チャネル1055の場所に対応する外向きに突出する領域を含み、他側(すなわち、後面1042)は、変形させられず、したがって、略平面のままである、プレート1022をもたらす。結果として生じるプレート構成は、片面型と称される。
【0108】
図10−14に図示される実施形態では、プレート1051、1052は、片面型プレート構成を有するように形成される。プレート1051、1052が、熱交換アレイ1000内で積層構成に互に隣接して置かれた場合、プレート1051、1052は、作業流体流動チャネルの場所における拡張された区画に対応する突出領域を有する1つのプレート1052の正面1040が、略平面である隣接するプレート1051の後面1042に面するように配列される。加えて、隣接するプレート1051、1052は、間隙1025が、1つのプレート1052の正面1040と隣接するプレート1051の後面1042との間に存在するように配列される。例示的実施形態では、プレート1051、1052は、8mmの縁間隔を有し、突出領域に対応する場所で2.2mmのプレート1051、1052間最小間隙寸法、および突出領域間の場所で4.8のプレート1051、1052間最大間隙寸法を提供する。
【0109】
片面型プレート構成は、圧延結合プロセスによる長さ方向寸法の非一貫性の影響を緩和する。この構成では、隣接するプレート間の間隔は、長さに沿って生じる拡張の場所にかかわらず、一貫した最大および最小隙間を有する。実験結果では、圧力損失が、等しい流体流動および公称間隔に対して、両面型プレート構成と比較して有意に低減されることが確認された。
【0110】
加えて、片面型プレート構成を有するプレートの熱交換器アレイを形成するとき、1つのプレート1051の突出領域が、隣接するプレート1052の突出領域間の空間内に存在するように、ネスト状にする必要はない。代わりに、片面型プレート1051、1052は、突出領域を有する1つのプレート1052の正面1040が、隣接するプレート1051の略平面後面1042に面するように配列される。加えて、突出領域は、整列軸1005に平行方向に整列させられる。平面表面における熱伝達は、概して、突出領域を有する表面においてより低いが、この影響は、流体流路内の突出領域の存在によって生じるプレート間の間隙1025内の乱流によって少なくとも部分的に相殺され、乱流は、低圧力降下をもたらすが、間隙1025内での速度を向上させる。
【0111】
全実施形態では、作業流体流動チャネル1055内の作業流体流動面積より広い非作業流体流動面積が、提供される。この配列は、熱源流体側およびヒートシンク流体側における圧力降下を低減させる。
【0112】
ここで、
図23を参照して、熱交換器アレイ1000を製造する方法が、説明される。
【0113】
ステップ3000では、本方法は、作業流体580の所望の流体流路に対応する所定のパターンに配列される内部流体通路1055を有する、熱交換器プレート1022を提供することを含む。いくつかの実施形態では、熱交換器プレート1022は、第1のパネル1060および第2のパネル1062を提供し、第1のパネル1060の表面に所定のパターンで結合防止剤を塗布することによって形成される。第1のパネルおよび第2のパネルは、次いで、結合剤が第1のパネルと第2のパネルとの間に存在するように積層される。積層された第1および第2のパネル1060、1062は、次いで、圧延結合され、単一プレート1022を形成する。
【0114】
圧延結合されたプレート1022は、内部通路1055を有する拡張されたプレート1022を形成するように、第1のパネル1060と第2のパネル1062との間に空気を注入することによって拡張される。内部通路1055の拡張量(例えば、高さh)を制御し、プレート1022の異なる領域において異なる拡張量を可能にするために、プレート1022は、通路拡張の間、拡張治具(図示せず)内に置かれる。拡張治具は、平行に配列される一対の剛体プレートを含み、剛体プレートは、その間に異なる間隔のゾーンを有する。プレート1022は、空気が注入される間、剛体プレート間に挟まれるように治具内に置かれる。剛体プレートは、ゾーン配列に従って、空気注入の間、通路拡張の量を制限する。例えば、いくつかの実施形態では、タブ1070の場所に対応する第1のゾーンは、ミニチャネル1912の場所に対応する第2のゾーンの第2の高さh2より大きい第1の高さh1を有する。
【0115】
図24を参照すると、いくつかの実施形態では、空気注入入口1930が、プレート1022内に提供され、空気注入を促進する。空気注入入口1930は、プレート1022の周辺縁1044に位置する、空気注入タブ1932内に形成される。図示される実施形態では、空気注入タブ1932および空気注入入口1930は、プレート1022の側縁1048に位置する。この位置は、非作業流体570の流路の外側にあり、したがって、流体通過流圧力に負の影響を及ぼさないので、有利である。しかしながら、空気注入タブ1032および空気注入入口1030は、上端1045または底端1046(
図25に示される)を含む、周辺縁1044上の他の場所にも提供されることができる。
【0116】
プレート1022が拡張された後、空気注入入口1930は、例えば、空気注入タブ1932を挟んで閉じることによって閉鎖され、次いで、例えば、溶接によって融合させられる。本手技は、積層の最外プレートを除く、積層を形成するために使用される全プレート1022に対して行われる(以下に論じられる)。積層の2つの最外プレートでは、空気注入入口は、開放されたままであり、ろう接等の後続製造ステップの間、プレート内に蓄積されるガスの通気を可能にする。しかしながら、空気注入入口は、続いて、閉鎖され、融合させられる。いくつかの実施形態では、空気注入タブ1032はまた、熱交換器アレイ1000を熱交換器モジュール524内の搭載構造に接続するための接続場所としても使用される。
【0117】
片面型プレート構成が採用される実施形態では、本方法はさらに、第2のパネル1062より低い降伏強度を有する第1のパネル1060を提供することを含む。次いで、プレートに空気を注入するステップの間、第1のパネル1060は、注入された空気の圧力によって変形させられ、第2のパネル1062は、注入された空気の圧力によって変形させられないままである。
【0118】
ステップ3001では、
図26を参照すると、内部通路1055を捕える、開口部が、拡張されたプレート1022において切断される。より具体的には、タブ入口開口部1076が、全タブ入口通路1072を捕える場所において、タブ1070内に形成される。加えて、タブ出口開口部1078が、全タブ出口通路1074を捕える場所において、タブ1070内に形成される。
図26に見られるように、結合防止剤が、正確なプレート切断を可能にするための適正な補強をもたらすパターン(陰影付き区域参照)で塗布される。例えば、出口および入口開口部の内部空間に対応する円形区域は、拡張されず、代わりに、結合された部分を含む。いくつかの実施形態では、切断は、例えば、切断の間、プレート整列を維持するために役立つパイロットドリルビットを有する、高速冠鋸を使用して、または切削または水噴射等の他の切断プロセスを使用して、達成される。
【0119】
第1のパネル1060が第2のパネル1062に対して拡張する、片面型プレート構成を採用する、いくつかの実施形態では、切断開口部は、第2のパネル1062(例えば、プレート1022の非拡張側)内より第1のパネル1060(例えば、プレート1022の拡張側)内においてより大きく作製される。
【0120】
ステップ3002では、内部流体通路1055を有する熱交換器プレート1022を提供し、開口部をプレート1022において切断するステップは、所望の数の切断されたプレート1022が得られるまで、熱交換器アレイ1000の各プレート1022に対して繰り返される。
【0121】
ステップ3003では、切断されたプレート1022は、熱交換器アレイ1000を形成することにおける使用のために積層される。図示される実施形態では、48のプレート1022が、正面1040が同一の方向かつ整列軸1005に垂直に面して、1つのプレートが別のプレートの上に配列されるように積層される。特に、プレート1022は、整列治具内に配列され、整列させられた周辺縁1044および切断開口部1076、1078を有する、プレート積層2030を提供する。より多いまたはより少ない数のプレート1022が、積層されることができ、積層2030内のプレートの数は、具体的用途によって決定されることを理解されたい。
【0122】
図27を参照すると、プレート1022の精密な整列は、1つ以上の整列固定具を含む整列治具内に切断されたプレートを積層することによって、達成されることができる。図示される実施形態では、整列固定具は、治具内に戦略的に置かれた長方形ロッド2032および円筒形マンドレル2034を含む。プレート1022が、治具内に置かれると、切断開口部1076、1078は、マンドレル2034を覆って置かれ、周辺縁1044は、ロッド2032が各プレート1022の周辺縁1044内に提供される内隅2036に当接するように位置付けられる。
【0123】
積層プレートが片面型プレート構成を採用する実施形態では、積層ステップはさらに、1つのプレートの第1の外部熱交換表面(すなわち、正面1040)が、隣接するプレートの第2の外部熱交換表面(すなわち、背面1042)に面するように、プレート1022を配列することを含む。均一間隔が、隣接するプレート間に提供されることを保証するために、溝付きバッキングプレート1006、1008が、前述のように、積層の表および後側に提供される。
【0124】
切断されたプレート1022が、積層および整列させられると、マンドレル2034は、整列治具から除去され、ステップ3004において論じられるように、対応する開口部内にマニホールド供給および放出チャンバ1084、1086の形成を可能にする。ロッド2032は、定位置に残され、後続ステップの間、積層2030を整列状態に維持する。加えて、整列治具も、積層アセンブリとともに残り、アレイ1000のためのコクーン(cocoon)状の包装を形成し、アレイ1000を損傷から保護し、バッキングパネル1006、1008と協働して、プレート1022間の間隙1025の中および活性熱伝達表面積の上に非作業流体の流動を向ける役割を果たす。
【0125】
図29を参照すると、ステップ3004では、第1のプレート1051の切断開口部1076、1078の切断縁は、隣接するプレート1052の対応する切断縁に接合される。プレートが、ステップ3003において整列させられると、タブ入口通路1072およびタブ出口通路1074に対応する拡張された領域もまた、整列軸1005に平行方向に整列させられる。加えて、
図26および28−29を参照すると、プレートの拡張の間、プレートを形成する少なくとも1つのパネル1060は、それぞれのパネル1060、1062が局所的に離間され、作業流体通路1055を提供するように変形させられる。その結果、第1のプレート1051の背面1042は、第1のプレート1051に隣接し、その下方にある第2のプレート1052の正面1040に当接または略当接する。積層2030内の各プレート1022に対して、正面1040は、入口切断開口部1076および出口切断開口部1078の各々の全周に沿って、その上方のプレートの背面1042に接合される。加えて、積層2030内の各プレートの背面は、入口切断開口部1076および出口切断開口部1078の各々の全周に沿って、その下方にあるプレートの正面1040に接合される。それぞれの面1040、1042は、連続的に接合され、例えば、タングステン不活性ガス(TIG)溶接、自生TIG溶接、スパッタTIG溶接またはレーザ溶接によって、環状流体不浸透性接合部1082を形成する。
図29では、溶接は、ジグザグ線によって表される。
【0126】
本手技は、部分的に、入口切断開口部1076に沿って各隣接するプレートの接続部に形成される一連の環状接合部1082によって画定される、積層2030内のマニホールド供給チャンバ1084と、部分的に、出口切断開口部1078に沿って各隣接するプレートの接続部に対応する環状接合部1082によって画定される、マニホールド放出チャンバ1086(
図29に示される)とをもたらす。積層2030の各プレートにおいて、切断開口部の各々における拡張された領域が、前述のように、作業流体通路1055のチャネル1912と流体連通する。例えば、マニホールド供給チャンバ1084は、タブ入口通路1072を介して、入口通路1911と流体連通する。加えて、マニホールド放出チャンバ1086は、タブ出口通路1074を介して、出口通路1918と流体連通する。環状接合部1082のシールされた性質のため、内部通路1055とプレート1022の外面との間、したがって、また、作業流体570と非作業流体570との間の流体連通は、防止される。
【0127】
図29Aを参照すると、切断開口部が、第2のパネル1062(例えば、背面1042上)内におけるより第1のパネル1060(例えば、正面1040上)内において大きく作製される実施形態では、プレートが積層されると、重ね接合部Lが、形成される。積層2030内の各プレート1022に対して、正面1040は、重ね接合部Lにおいてその上方のプレートの背面1042に接合される(例えば、入口切断開口部1076および出口切断開口部1078の各々の全周に沿って)。加えて、積層2030内の各プレートの背面1042は、重ね接合部Lにおいてその下方のプレートの正面1040に接合される(例えば、入口切断開口部1076および出口切断開口部1078の各々の全周に沿って)。それぞれの面1040、1042は、例えば、溶接によって、連続的に接合され、環状流体不浸透性接合部1082を形成する。
【0128】
前述のように、少なくとも、切断開口部1076、1078の近傍のタブ1070内のタブ通路1072、1074の拡張の量は、プレート1022内の作業流体通路1055のものより大きく作製される(例えば、より高いチャネル高さhを有する)。この配列によって、隣接するプレート1022(すなわち、プレート1051、1052)間の間隔は、維持される一方、環状接合部が形成されることを可能にする。
【0129】
ステップ3005では、再び、
図16を参照すると、フランジコネクタ2000が、積層2030を形成するために使用される、最外プレート1022の外向きに面する表面上に形成される、タブ入口開口部1076およびタブ出口開口部1078に溶接される。
【0130】
最上プレート1022uの場合、フランジコネクタ2000は、入口切断開口部1076および出口切断開口部1078の両方において、正面1040に固定される。例えば、フランジコネクタ2000は、流体不浸透性接続を提供するように、各開口部1076、1078内に置かれ、各それぞれの開口部1076、1078の全周に沿って、切断縁に溶接される。加えて、最上プレート1022uの背面1042は、入口切断開口部1076および出口切断開口部1078の各々の全周に沿って、その下方のプレートの正面1040に接合される。それぞれの面1040、1042は、連続的に接合され、環状流体不浸透性接合部1082を形成する。
【0131】
最下プレート1022lも、同様に、処理される。すなわち、最下プレート1022lの場合、フランジコネクタ2000は、入口切断開口部1076および出口切断開口部1078の両方において、後面1042に固定される。例えば、フランジコネクタ2000は、流体不浸透性接続を提供するように、各開口部1076、1078内に置かれ、各それぞれの開口部1076、1078の全周に沿って、切断縁に溶接される。加えて、最下プレート1022lの正面1040は、入口切断開口部1076および出口切断開口部1078の各々の全周に沿って、その上方のプレートの背面1042に接合される。それぞれの面1040、1042は、連続的に接合され、環状流体不浸透性接合部1082を形成する。
【0132】
ステップ3006では、マニホールド1080の形成は、熱交換器アレイ1000の接合されたタブ1070をエポキシ等のプラスチック材料内に封入し、プレート1020の全タブ1070を熱交換器アレイ1000内に包囲するマニホールド筐体1088を形成することによって完成される。マニホールド筐体1088は、エポキシの外面によって画定される。
【0133】
封入は、積層2030の接合されたタブをポット2050内に置き、エポキシがポット2050の内部と接合されたタブ1070の外面との間の空間を充填するように、ポット2050をエポキシで充填し、エポキシを硬化させ、次いで、ポット2050をアセンブリの一部として残すことによって達成される。
【0134】
図30を参照すると、各プレートの側縁1048から延び、各プレートの外面から外向きに延びるフランジコネクタ2000を含むタブ1070の複雑な形状により、ポット2050は、タブ1070を覆い、かつフランジコネクタ2000の周囲に組み立てられ得る多部品構造として形成される。特に、ポット2050は、ポリカーボネート等のプラスチックから形成され、容器を形成するように一緒に組み立てられ得る、第1の側壁部分2052と、第2の側壁部分2054と、第3の側壁部分2056とを有する。
【0135】
第1の側壁部分2052は、3つの側面2052a、2052b、2052cと、底部2052dとを含む。3つの側面2052a、2052b、2052cは、互に隣接し、また、底部2052dにも隣接し、底部2052dから上向きに延びる。第1の側壁部分2052の上側縁2052eは、フランジコネクタ2000の側壁2006をその中に受け取るように寸法決定される、半円形切り欠き部分2052fを含む。第2の側壁部分2054は、3つの側面2054a、2054b、2054cを含む。3つの側2054a、2054b、2054cは、互に隣接する。加えて、第2の側壁部分2054の下側縁2054eは、フランジコネクタ2000の側壁2006をその中に受け取るように寸法決定される、半円形切り欠き部分2052fを含む。第3の側壁部分2056は、第1の縁2056a、第2の縁2056b、第3の縁2056c、および第4の縁2056dを有する平坦パネルの形態の単一側面を含む。
【0136】
ポット2050の組立の間、熱交換器ユニット1000は、接合されたタブ1070が、3つの側面2052a、2052b、2052cおよび底部2052dによって画定される空間の中に延び、フランジ2000が、切り欠き部分2052f内に配置されるように、第1の側壁部分の上に位置付けられる。第2の側壁部分2054は、次いで、第1の側壁部分の第1の側2052aが、第2の側壁部分の第1の側2054aに隣接し、第1の側壁部分の第2の側2052bが、第2の側壁部分の第2の側2054bに隣接し、第1の側壁部分の第3の側2052cが、第2の側壁部分の第3の側2054bに隣接し、フランジ2000が、第2の側壁部分の切り欠き部分2052f内に受け取られるように、第1の側壁部分の上側縁2052eに沿って置かれる。最後に、第3の側壁部分2056は、第3の側壁部分第1の縁2056aが、第1および第2の側壁部分2052、2054の第1の側2052a、2054aに隣接し、第3の側壁の第2の縁2056bが、第1の側壁部分2052の底部2052dに隣接し、第3の側壁第3の縁2056cが、第1および第2の側壁部分2052、2054の第3の側2052c、2054cに隣接するように、第1および第2の側壁部分2052、2054に隣接して置かれる。したがって、ポット2052が、組み立てられると、接合されたタブ1070は、側壁部分2052、2054、2056によって包囲される。
【0137】
組み立てられた構成における、
図31を参照すると、ポット2050は、開放上側端を含み、必要とされる注入エポキシ充填剤の量を最小限にしながら、接合されたタブ107
0を包囲するように寸法決定される。ポット2050は、底部からエポキシで充填され、プレート間隔を設定および保持し、全接合部を海水からシールし、熱交換器アレイ1000を補強する。加えて、エポキシは、補完的溶接された接合部支持およびアセンブリ補強、溶接された接合部からの内部流体漏出が万一生じた場合、それに対する補完的障壁、ならびに接合されたプレートのアレイのための固体搭載支持表面を提供する。封入の間、フランジコネクタ2000の各々の流体通路は、封入材料によるマニホールドチャンバ1084、1086の汚染を回避するように閉鎖される。封入の完了に応じて、これらの流体通路は、それぞれのフランジコネクタ2000の適切な機能を可能にするように、特に、それを通して流体流動を可能にするようにきれいにされる。フランジコネクタ2000が、きれいにされると、熱交換器ユニット1000は、完成する。
【0138】
図11および32を参照すると、いくつかの熱交換器アレイ1000を含む、熱交換器モジュール524を形成する場合、各個々の熱交換器アレイ1000のマニホールド1080は、隣接する熱交換器アレイ1000のマニホールド1080に接合される。特に、隣接する熱交換器アレイ1000のマニホールド供給チャンバ1084のそれぞれのフランジコネクタ2000は、マニホールド供給チャンバ1084がモジュール524の各熱交換器アレイ1000と流体連通するように接合される。同様に、隣接する熱交換器アレイ1000のマニホールド放出チャンバ1086のそれぞれのフランジコネクタ2000は、マニホールド放出チャンバ1086がモジュール524の各熱交換器アレイ1000と流体連通するように接合される。隣接する熱交換器アレイ1000のフランジコネクタ2000は、クランプ2020を使用して接合される。図示される実施形態では、12の熱交換器アレイ1000が、共通マニホールドを使用して接続され、熱交換器モジュール524を提供する。しかしながら、より多いまたはより少ない数の熱交換アレイ1000が、モジュール524を形成するために使用されることができ、採用される数は、具体的用途の要件に依存することを理解されたい。
【0139】
図10および33を参照すると、共通マニホールド1080によって接続される、熱交換器アレイ1000は、ラック1002上に支持される。熱交換器アレイ1000、接続されるマニホールド1080、およびラック1002は、一緒に、熱交換器段階を形成する。図示される実施形態では、多段階の熱交換器システム520は、ハイブリッドカスケード式OTECサイクルの使用を可能にし、したがって、4つの熱交換器モジュール521、522、523、524(第2のおよび第4の段階のみ、
図33に示される)を含む、4段階モジュール熱交換器である。各モジュールは、熱交換器システム520の中に組み立てられると、支持フレーム540内に受け取られ、その上に支持される。いくつかの実施形態では、各熱交換器モジュールのラック1002は、レール(図示せず)を具備し、このレールは、支持フレーム540内に含まれる対応するレール2080と係合し、熱交換器システム520内の熱交換器モジュール521、522、523、524の組立を促進する。例えば、ラック1002は、連続プラスチック接触表面を伴うレール上に搭載されると、個々のアレイ1000の除去および保守のための線形抽出を可能にする。加えて、アレイ保守の間、一時的ヘッダコネクタが、アレイ1000が交換されるまで、モジュール524内のアレイ1000に取って代わり、エネルギー伝達にわずかな部分的減少のみ伴って、熱交換器の持続的平衡動作を可能にすることができる。
【0140】
図示される実施形態では、スパー310の蒸発器部分344は、中心支柱550と、支柱550の対向側面552、554の各々上に支持される、支持フレーム540とを含む。同様の配列が、凝縮器部分320内にも提供される。
【0141】
フランジコネクタ2000は、マニホールド1080に溶接されるように、本明細書に説明され、マニホールドチャンバ内に存在する、段付き部分2014を含み、整列を提供し、溶接された接合部の強度を改善する。しかしながら、フランジコネクタ2000は、溶接によってマニホールド1080に固定されることに限定されない。例えば、フランジコネクタ2000は、接着剤結合によって、マニホールド1080に固定されることができる。
図34Aおよび34Bを参照すると、接着剤結合を使用する、いくつかの実施形態では、コネクタの第2の端2010は、結合表面がより大きい面積を有するように修正されることができる。特に、修正されたフランジコネクタ2000’は、半径方向外向きに突出し、大結合表面積を提供するリップ2018’を有する、コネクタの第2の端2010’を含み得る。
【0142】
図35を参照すると、入口フランジコネクタ2000’’が、凝縮器のマニホールド供給チャンバ1084に接続され、出口フランジコネクタ2000’’’が、対応するマニホールド放出チャンバ1086に接続される。入口フランジコネクタ2000’’は、出口フランジコネクタ2000’’’より小さい直径を有するが、その他の点では、類似する。この理由から、入口フランジコネクタ2000’’のみ、説明される。入口フランジコネクタ2000’’は、
図15Bに図示される前述のフランジコネクタ2000のように、対応するマニホールド供給または放出チャンバ1084、1086の内径に対応するように寸法決定された外径を有する第1の段付き部分2014を含む。加えて、入口フランジコネクタ2000’’は、コネクタの第2の端2010の端面2012に隣接して配置される第2の段付き部分2015を含み、端面2012は、第1の段付き部分2014と第2の段付き部分2015との間に段を画定する。第2の段付き部分2015は、コネクタの第1の端2002より小さく、第1の段付き部分2014より大きい外径を有する。アレイの製造の間、第1の段付き部分2014は、タブ入口(または、出口)開口部の中に挿入され、そこに溶接される。本手技の間、第2の段付き部分2015は、熱交換プレート1022のタブ1070と入口フランジコネクタ2000’’との間のヒートシンクを平衡化させる役割を果たす。
【0143】
図36−38を参照すると、蒸発器内で使用するために構成される、代替熱交換プレート3022は、
図14に関して前述された熱交換プレート1022に類似する。類似性に照らして、同一特徴は、同一参照番号で参照される。熱交換プレート3022は、交互蛇行パターンを有するいくつかの平行ミニチャネル1912を含む、作業流路3055を含む。作業流体の位相変化(例えば、液体から蒸気への変化)に対応するために、通過当りの平行流路の数は、通路入口から通路出口までの作業流体の流路に沿って増加される。例えば、
図36における熱交換プレート3022は、4つの入口通路1911を有し、それぞれ、底縁1046に隣接する対応するミニチャネル1912に注ぐ。ミニチャネル1912は、底縁1046から上縁1045に蛇行方式で、プレートに沿って延びる。ここでは、「上部」または「底部」の言及は、通常動作位置における熱交換プレートの配向を指す。
図38では、蒸発器熱交換プレート3022は、上縁1045が底縁1046の上にある、その動作位置に図示される。4つのミニチャネルからの流動は、第1の遷移点3914において、6つのミニチャネルに注ぐ。6つのミニチャネルからの流動は、第2の遷移点3916において、8つのミニチャネルに注ぐ。8つのミニチャネルからの流動は、第3の遷移点3920において、10のミニチャネルに注ぎ、10のミニチャネルからの流動は、第4の遷移点3922において、12のミニチャネルに注ぐ。結果として生じる12のミニチャネルは、流体出口1918を通して出る。
【0144】
4つの入口通路1911は、タブ入口通路1072を介して、マニホールド供給チャンバ1084によって、液体状態における作業流体580を供給され、12の出口通路1918は、タブ出口通路1074を介して、マニホールド放出チャンバ1086の中に、蒸気状態における作業流体を放出する。
【0145】
マニホールド供給チャンバ1084およびマニホールド放出チャンバ1086は、構造的に類似するが、マニホールド供給チャンバ1084は、対応するマニホールド放出チャンバ1086と異なるサイズを有する。例えば、蒸発器内のアレイ1000の一部として使用するために構成される熱交換器プレート3022(
図36−38)の場合、マニホールド供給チャンバ1084は、対応するマニホールド放出チャンバ1086より小さい。これは、タブ出口開口部1078より小さい直径を伴うタブ入口開口部1076を形成することによって達成される。このサイズ差は、作業流体580が、入口において、液体として蒸発器に流入し、したがって、出口において、ガスとして蒸発器から流出する場合の同一の流体より少ない全体的通過体積を必要とするという事実を反映する。故に、凝縮器内でアレイ1000の一部として使用するために構成される熱交換器プレート4022(
図39−41)の場合、マニホールド供給チャンバ1084は、対応するマニホールド放出チャンバ1086より大きい。
【0146】
図39−41を参照すると、凝縮器内で使用するために構成される、熱交換プレート4022は、
図36−38に関して前述された蒸発器熱交換プレート3022と類似する。類似性に照らして、同一特徴は、同一参照番号で参照される。熱交換プレート4022は、交互蛇行パターンを有するいくつかの平行ミニチャネル1912を含む、作業流路4055を含む。非作業流体の流動方向に平行な軸と整列させられる、作業流体入口通路1911の数は、蒸発器内の入口における流体(例えば、液体)より比較的により大きい凝縮器内の入口における流体(例えば、ガス)の体積に対応するために、蒸発器熱交換プレート3022内より凝縮器熱交換プレート4022内において多い。作業流体内の位相変化(例えば、ガスから液体への変化)に対応するために、通過当りの平行流路の数は、通路入口から通路出口への作業流体の流路に沿って減少される。例えば、
図39における熱交換プレート4022は、各々が上縁1045に隣接する12の対応するミニチャネル1912に注ぐ8つの入口通路1911を有する。ミニチャネル1912は、上縁1045から底縁1046に蛇行方式で、プレートに沿って延びる。
図41では、凝縮器熱交換プレート4022は、底縁1046が上縁1045の上にある、その動作位置に対して上下逆に図示される。12のミニチャネルからの流動は、第1の遷移点4914において、10のミニチャネルに注ぐ。10のミニチャネルからの流動は、第2の遷移点4916において、8つのミニチャネルに注ぐ。8つのミニチャネルからの流動は、第3の遷移点4920において、6つのミニチャネルに注ぎ、6つのミニチャネルからの流動は、第4の遷移点4922において、4つのミニチャネルに注ぐ。結果として生じる4つのミニチャネルは、流体出口1918を通して出る。
【0147】
8つの入口通路1911は、タブ入口通路1072を介して、マニホールド供給チャンバ1084によって、蒸気状態における作業流体580が供給され、4つの出口通路1918は、タブ出口通路1074を介して、マニホールド放出チャンバ1086の中に、液体状態における作業流体を放出する。
【0148】
凝縮器熱交換プレート4022および蒸発器熱交換プレート3022の両方において、ミニチャネル1912は、上縁1045から底縁1046に蛇行方式で、プレートに沿って延びる。ミニチャネル1912は、線形領域1912aと、湾曲領域1912bと、分流チャネル1912cとを含む。線形領域1912aは、上縁1045に平行に延びる。湾曲領域1912bは、隣接する線形領域1912aに接続し、プレート右縁1047または左縁1048に隣接して存在する。分流チャネル1912cは、対応する湾曲領域1912bにおいてミニチャネルから分岐する、チャネルである。分流チャネル1912cは、プレート3022、4022のマニホールド端に向かって開放する分流流体入口1912dを介して、対応する湾曲領域1912bと流体連通する。特に、各分流チャネル1912cは、単一場所(例えば、分流流体入口1912d)において、ミニチャネル1912と連通し、各分流チャネル1912は、隣接する湾曲領域1912bおよび対応するプレート縁1047または1048によって画定される、略三角形領域内に配置される。各分流チャネル1912cは、略三角形領域を充填するように構成される、小型分流チャネルを提供するように分岐される。分流チャネルは、他の実施形態では、作業流体流路によって覆われなかったプレート3022、4022の区域内、例えば、蛇行ミニチャネル1912とプレート縁1045、1046、1047、1048との間の空間内に置かれることに留意されたい。分流チャネルをこれらの区域内に置くことによって、より大きい熱交換表面積が、作業流体のために提供される。加えて、分流チャネルをこれらの区域内に置くことによって、実質的に、正面全体が、ミニチャネル1912によって覆われ、それによって、非作業流体未使用区域のプールが生じることが防止され、損失が、低減される。
【0149】
凝縮器熱交換プレート4022および蒸発器熱交換プレート3022の各々は、プレート右縁1047内に形成される切り欠き3066、4066を具備する。切り欠き3066、4066は、タブ1070に隣接する場所において、プレート右縁1047において開放し、正面1040に面して見ると、略V−形状である。アレイの製造の間、ポット2050は、切り欠き3066、4066内に受け取られる。切り欠き3066、4066を提供することによって、熱交換アレイ1000の製造のポッティングステップの間、ポット2050は、各タブ1070のより大きい部分を包囲し、エポキシが、プレート1022がV形状切り欠きを伴わずに形成されるアレイより各タブ1070の大きい部分の周囲に置かれることを可能にすることができる。
【0150】
前述のように、プレート1022は、複数のゾーンを含み、各ゾーンは、ミニチャネル1912が特定の高さに拡張させられる領域に対応する。蒸発器熱交換プレート3022および凝縮器熱交換プレート4022の各々は、3つのゾーンを具備する。例えば、
図38および42−46を参照すると、蒸発器熱交換プレート3022は、タブ1070内に配置される、第1のゾーンZ1(例えば、マニホールド領域、
図38、42、45、および46参照)と、タブ1070と底縁1046との間の第1の縁1047に沿って延びる、第2のゾーンZ2(例えば、入口通路領域、
図38、43および46参照)と、第1および第2のゾーンZ1、Z2と第2の縁1048との間に延びている第3のゾーンZ3(例えば、活性面積、
図38、44、および46参照)とを含む。3つのゾーンのうち、第1のゾーンZ1内のミニチャネル1912は、最大高さを有する。第2のゾーンZ2内のミニチャネル1912は、第1のゾーンZ2内のミニチャネルより小さく、第3のゾーンZ3内のミニチャネル1912の高さより大きい高さを有する。
【0151】
凝縮器熱交換プレート4022も、3つのゾーンを含む。
図41−46を参照すると、蒸発器熱交換プレート3022のように、凝縮器熱交換プレートは、タブ1070内に配置される、第1のゾーンZ1(例えば、マニホールド領域、
図41、42、および45参照)と、タブ1070と底縁1046との間の第1の縁1047に沿って延びる、第2のゾーンZ2(例えば、入口通路領域、
図41および43参照)と、第1および第2のゾーンZ1、Z2と第2の縁1048との間に延びている第3のゾーンZ3(例えば、活性面積、
図41および44参照)とを含む。3つのゾーンのうち、第1のゾーンZ1内のミニチャネル1912は、最大高さを有する。第2のゾーンZ2内のミニチャネル1912は、第1のゾーンZ2内のミニチャネルより小さく、第3のゾーンZ3内のミニチャネル1912の高さより大きい高さを有する。
【0152】
例えば、いくつかの実施形態では、第1のゾーンZ1内のミニチャネル1912の高さは、約5mmであり、第2のゾーンZ2内のミニチャネル1912の高さは、約3mmであり、第3のゾーンZ3内のミニチャネル1912の高さは、約2mmである。アレイ1000内に配列されると、プレート3022、4022の第1のゾーンZ1のミニチャネルは、実質的に、第1のゾーンZ1内の隣接するプレート間に間隙1025が存在しないように、隣接するプレートに当接する。第2のゾーンZ2内には、約2mmの間隙1025が、隣接するプレート間に提供される一方、約4mmの間隙1025が、第3のゾーンZ3内の隣接するプレート間に提供される。ゾーンZ1、Z2、Z3の高さおよびゾーンZ1、Z2、Z3の配列は、熱交換器プレートの「活性面積」内における非作業流体の流動を維持するために役立つように構成される。活性面積は、実質的に、熱伝達の大部分が、作業流体と非作業流体との間で生じる、プレートの面積であり、概して、蛇行流動チャネルおよび分流チャネルの場所に対応する。したがって、
図46に見られるように、熱交換器プレートの「活性面積」は、概して、第3のゾーンZ3内に位置する。第3のゾーンZ3は、第1および第2のゾーンZ1、Z2内のものと比較して低い高さを有するミニチャネルから形成され、積層されると、隣接するプレート間に比較的に大きい間隙1025をもたらすため、この面積内の流動に抵抗が殆どなく、したがって、非作業流体は、この面積を通って流動する傾向となる。
【0153】
図47−49を参照すると、いくつかの側面では、熱交換プレート1022、3022、4022のアレイ1000は、アレイ1000を包囲する、略管状筐体(例えば、「コクーン(cocoon)」)5000によって包囲され得る。コクーン5000は、側壁5002と、開放した第1の端5004と、第1の端5004に対向する開放した第2の端5006とを含む。開放した第1の端5004は、コクーン5000の入口を画定し、非作業流体がアレイ1000の隣接するプレート1022、3022、4022間の間隙1025の中に向かわせられることを可能にする。開放した第2の端5006は、コクーン5000の出口を画定し、非作業流体が、プレート正面および後面1040、1042にわたって通過した後、間隙1025から流出することを可能にする。側壁5002はまた、アレイがコクーン5000によって包囲されると、マニホールド1080が開口部5008を通して延びるように、マニホールド1080を受け取るように構成される、開口部5008を含む。
【0154】
コクーン側壁5002は、第1の側壁部材5012および第2の側壁部材5014のアセンブリである。各側壁部材5012、5014は、断面で見ると、L形状を有し、第1の側壁部材5012は、第2の側壁部材5014と同じである。特に、第1の側壁部材5012は、第1の側5012aと、第1の側5012aの端に配置され、第1の側5012aに垂直に延びている第2の側5012bとを含む。同様に、第2の側壁部材5014は、第1の側5014aと、第1の側5014aの端に配置され、第1の側5014aに垂直に延びている第2の側5014bとを含む。組み立てられると、第1の側壁部材5012は、第2の側壁部材5014と協働し、長方形断面を有する管を形成し、側面5012a、5012b、5014a、5014bを含む。熱交換プレート1022、3022、4022は、コクーン側壁5002の対向側面5012a、5014aの内面上に形成される、溝5010内に支持される。溝5010は、互に平行であり、整列軸1005に平行方向に等しく離間される。溝間隔は、プレート1022、3022、4022間の所望の距離に対応する。各溝5010は、熱交換器プレートを受け取り、支持するように構成される。第1および第2の側壁部材5012、5014は、L−形状であり、かつ同じ
であるため、コクーンの組立は、簡略化され、コクーン5000の対向側面5012a、5014a上の溝5010の整列は、保証される。
【0155】
図49を参照すると、いくつかの側面では、コクーンは、片側5012aの外面上に配置されるハンドル5030を含む。ハンドル5030は、側面5012aに選択的に取り付けられること、およびそれから切り離されることができ、特に、熱交換モジュール524内への設置の間、アレイ1000の取扱を促進するために使用される。
【0156】
コクーン5000は、いくつかの利点を提供する。例えば、コクーン5000は、熱交換器プレート1022、3022、4022を支持し、アレイ組立の間および動作時の両方において、それらを平行離間関係に維持するために役立つように構成される。例えば、コクーン5000は、熱交換器プレートを所望のプレート間隔を有する平行積層配列に保持し、それによって、熱交換アレイ1000を製造する方法のステップ3003に関して前述された整列治具および/またはマンドレルは、必要とされず、製造プロセスを簡略化し得る。コクーン5000は、出荷および熱交換モジュール524内における他のアレイとの組立の間、熱交換器プレート1022、3022、4022を外部構造からの損傷から保護する。使用の間、コクーン5000は、非作業流体をアレイ1000の中に向けられ、アレイ内および活性面積にわたる非作業流体の流動を維持する。
【0157】
加えて、熱交換デバイスおよびシステムは、OTEC発電所の蒸発器および凝縮器への適用に関して本明細書に説明されるが、熱交換デバイスおよびシステムは、本願に限定されない。例えば、本明細書に説明される熱交換デバイスおよびシステムは、水蒸気ダンプ凝縮器および他の廃熱変換デバイスならびに核燃料発電所の受動冷却システム等の高効率熱交換を必要とする他の用途にも有用となるであろう。
【0158】
熱交換器デバイスおよび製造方法の選択された例証的実施形態は、ある程度詳細に前述されている。実施形態を明確化するために必要と考えられる構造のみ、本明細書に説明されていることを理解されたい。システムの他の従来の構造ならびに付随および補助構成要素のものは、公知であると仮定され、当業者によって理解される。さらに、デバイスおよび方法の発明の実施に関わる実施例が前述されたが、デバイスおよび方法は、前述の発明の実施に関わる実施例に限定されず、種々の設計改変が、実施され得る。