特許第6827114号(P6827114)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ シーメンス ヘルスケア ゲゼルシヤフト ミツト ベシユレンクテル ハフツングの特許一覧

特許6827114磁石ユニットと照射ユニットとを備える医用イメージングシステム
<>
  • 特許6827114-磁石ユニットと照射ユニットとを備える医用イメージングシステム 図000002
  • 特許6827114-磁石ユニットと照射ユニットとを備える医用イメージングシステム 図000003
  • 特許6827114-磁石ユニットと照射ユニットとを備える医用イメージングシステム 図000004
  • 特許6827114-磁石ユニットと照射ユニットとを備える医用イメージングシステム 図000005
  • 特許6827114-磁石ユニットと照射ユニットとを備える医用イメージングシステム 図000006
  • 特許6827114-磁石ユニットと照射ユニットとを備える医用イメージングシステム 図000007
  • 特許6827114-磁石ユニットと照射ユニットとを備える医用イメージングシステム 図000008
  • 特許6827114-磁石ユニットと照射ユニットとを備える医用イメージングシステム 図000009
  • 特許6827114-磁石ユニットと照射ユニットとを備える医用イメージングシステム 図000010
  • 特許6827114-磁石ユニットと照射ユニットとを備える医用イメージングシステム 図000011
  • 特許6827114-磁石ユニットと照射ユニットとを備える医用イメージングシステム 図000012
  • 特許6827114-磁石ユニットと照射ユニットとを備える医用イメージングシステム 図000013
  • 特許6827114-磁石ユニットと照射ユニットとを備える医用イメージングシステム 図000014
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6827114
(24)【登録日】2021年1月20日
(45)【発行日】2021年2月10日
(54)【発明の名称】磁石ユニットと照射ユニットとを備える医用イメージングシステム
(51)【国際特許分類】
   A61B 5/055 20060101AFI20210128BHJP
   A61N 5/10 20060101ALI20210128BHJP
【FI】
   A61B5/055 390
   A61B5/055 360
   A61B5/055 320
   A61N5/10 H
【請求項の数】17
【全頁数】24
(21)【出願番号】特願2019-527177(P2019-527177)
(86)(22)【出願日】2017年4月25日
(65)【公表番号】特表2019-535419(P2019-535419A)
(43)【公表日】2019年12月12日
(86)【国際出願番号】EP2017059690
(87)【国際公開番号】WO2018095587
(87)【国際公開日】20180531
【審査請求日】2019年7月29日
(31)【優先権主張番号】16200280.2
(32)【優先日】2016年11月23日
(33)【優先権主張国】EP
(73)【特許権者】
【識別番号】516308401
【氏名又は名称】シーメンス ヘルスケア ゲゼルシヤフト ミツト ベシユレンクテル ハフツング
(74)【代理人】
【識別番号】100075166
【弁理士】
【氏名又は名称】山口 巖
(74)【代理人】
【識別番号】100133167
【弁理士】
【氏名又は名称】山本 浩
(74)【代理人】
【識別番号】100169627
【弁理士】
【氏名又は名称】竹本 美奈
(72)【発明者】
【氏名】レギーサ,マルティーノ
(72)【発明者】
【氏名】ファーリク,レベッカ
(72)【発明者】
【氏名】カルバート,サイモン,ジェイムス
(72)【発明者】
【氏名】トーマス,エイドリアン,マーク
【審査官】 姫島 あや乃
(56)【参考文献】
【文献】 米国特許出願公開第2013/0261430(US,A1)
【文献】 国際公開第2015/181939(WO,A1)
【文献】 米国特許出願公開第2014/0135615(US,A1)
【文献】 国際公開第2015/079921(WO,A1)
【文献】 特表2015−532844(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 5/055
(57)【特許請求の範囲】
【請求項1】
検査対象(80)の磁気共鳴イメージングのために構成された磁石ユニット(20)と、前記検査対象(80)を照射するために構成された第1の放射ユニット(30)と、を備える医用イメージングシステム(10)であって、
前記磁石ユニット(20)は主磁石(21)と第1のハウジング(26)を含み、前記主磁石(21)は前記第1のハウジング(26)の内側に配置され、前記主磁石(21)はコイル要素(21.1)と少なくとも1つのコイルキャリア(21.2)とを含み、
前記磁石ユニット(20)は、前記磁石ユニット(20)が検査開口(90)を囲むように、検査軸(91)に沿って検査開口(90)を画定し、
前記磁石ユニット(20)は前記検査軸(91)に対して半径方向に第1の放射ユニット(30)によって放出される放射線(32)に対して透過性ある第1の領域を含み、
前記第1の放射ユニット(30)は前記検査開口(90)とは反対側の前記磁石ユニット(20)の側面に配置され、
前記第1放射ユニット(30)は、前記磁石ユニット(20)の前記第1領域を通して前記検査開口(90)の方向に前記放射線(32)を放射するように構成され、
さらに前記第1の放射ユニット(30)は前記検査開口(90)の周りを回転するように構成される、医用イメージングシステム(10)において、
前記第1の領域において、前記磁石ユニット(20)は、少なくとも1つの内部窓(25.2)と、前記第1のハウジング(26)内の少なくとも1つの外部窓(25.1)とを備え、前記内部窓(25.2)および前記外部窓(25.1)は前記第1の放射ユニット(30)によって放出される前記放射線(32)に対して透過性があり、また、前記内部窓(25.2)および前記外部窓(25.1)の材料が前記第1のハウジング(26)の材料よりも前記第1の放射ユニット(30)からの放射線に対してより透過性があること、
を特徴とする医用イメージングシステム(10)。
【請求項2】
前記主磁石(21)の前記コイル要素(21.1)および前記少なくとも1つのコイルキャリア(21.2)は、前記磁石ユニット(20)の前記第1の領域の外側に配置される、請求項1に記載の医用イメージングシステム(10)。
【請求項3】
前記内部窓(25.2)または前記外部窓(25.1)を通過する際の放射線の強度の減衰は、第1のハウジングを通過する際の強度の減衰の半分未満である、請求項1又は2に記載の医用イメージングシステム(10)。
【請求項4】
前記内部窓(25.2)および前記外部窓(25.1)はベリリウム製又はアルミニウム製又はガラス製である、請求項1〜3のうちの1つに記載の医用イメージングシステム(10)。
【請求項5】
前記第1の放射ユニット(30)は、粒子放射線(32)を生成するように構成された粒子放射線源である、請求項1〜4のうちの1つに記載の医用イメージングシステム(10)。
【請求項6】
前記第1の放射ユニット(30)は粒子放射線(32)またはガンマ放射線(32)を生成するように構成された放射線源である、請求項1〜4のうちの1つに記載の医用イメージングシステム(10)。
【請求項7】
前記第1の放射ユニット(30)は、第1のX線源(30)であり、前記医用イメージングシステム(10)は、さらに第1のX線検出器(31)を含み、前記第1のX線検出器(31)は、前記第1のX線源(30)とは反対側の検査対象物(80)の側面に配置され、前記第1のX線源(30)および前記第1のX線検出器(31)は、前記検査対象物(80)のX線撮像のために構成される、請求項1〜4のいずれか1項に記載の医用イメージングシステム(10)。
【請求項8】
前記第1のX線検出器(31)は、前記第1のX線源(30)と同時に前記検査開口(90)の周りを回転するように構成される、請求項7に記載の医用イメージングシステム(10)。
【請求項9】
前記磁石ユニット(20)は、前記検査開口(90)の周りを回転するように構成される、請求項1〜8のうちの1つに記載の医用イメージングシステム(10)。
【請求項10】
前記磁石ユニット(20)は勾配磁場コイルユニット(22)を備え、前記勾配磁場コイルユニット(22)の方向は、前記検査開口(90)に対して相対的に固定され、前記主磁石(21)は前記検査開口(90)の周りを回転するように構成される、請求項1〜8のいずれか1項に記載の医用イメージングシステム(10)。
【請求項11】
前記第1の放射ユニット(30)および前記主磁石(21)は、前記検査開口(90)の周りを同時に回転するように構成される、請求項9または10に記載の医用イメージングシステム(10)。
【請求項12】
前記磁石ユニット(20)は、熱伝導によって前記主磁石(21)の前記コイル要素(21.1)を冷却するように構成される、請求項1〜11のうちの1つ記載の医用イメージングシステム(10)
【請求項13】
前記主磁石(21)の前記コイル要素(21.1)からの廃熱は、循環する冷却剤を含むパイプによって放散される、請求項12に記載の医用イメージングシステム(10)。
【請求項14】
前記主磁石(21)の前記コイル要素(21.1)は、臨界温度がヘリウムの沸点よりも高い、超伝導材料で形成される、請求項1〜13のいずれかに記載の医用イメージングシステム(10)。
【請求項15】
2の放射ユニット(33)をさらに含み、
前記磁石ユニット(20)は、前記検査軸(91)に対して半径方向に前記第2の放射ユニット(33)によって放出される放射線(35)に対して透過性ある第2の領域を含み、
前記第2の放射ユニット(33)は、前記磁石ユニット(20)の前記検査開口(90)とは反対側に配置され、
前記第2の放射ユニット(33)は、前記検査開口(90)の方向に前記磁石ユニット(20)の前記第2の領域を介して前記放射線(35)を放出するように構成され、
さらに、前記第2の放射ユニット(33)は前記検査開口(90)の周りを回転するように構成される、
請求項1〜14のうちの1つに記載の医用イメージングシステム(10)。
【請求項16】
第2のX線検出器(34)をさらに含み、
前記第2の放射ユニット(33)は第2のX線源(33)であり、
前記第2のX線検出器(34)は、前記第2のX線源(33)とは反対側の前記検査対象(80)の側面に配置され、
前記第2のX線検出器(34)は、前記第2のX線源(33)と同時に前記検査開口(90)の周りを回転するように構成され、
前記第2のX線源(33)および前記第2のX線検出器(34)は、前記検査対象(80)のX線撮像のために構成される、
請求項15に記載の医用イメージングシステム(10)。
【請求項17】
前記第1のX線源(30)と前記第1のX線検出器(31)との接続線と、前記第2のX線源(33)と前記第2のX線検出器(34)との接続線とが、60°と120°との間、または80°と100°との間、または85°と95°との間の角度を囲む、請求項7を引用する請求項15を引用する請求項16に記載の医用イメージングシステム(10)。
【発明の詳細な説明】
【技術分野】
【0001】
磁気共鳴イメージング(MRI)は、特に高い軟組織コントラストを特徴とする画像化方法である。したがって、それは、特に、病変の診断および血管造影に使用することができる。
本出願に至った活動は、助成契約No EIT / EIT HEALTH / SGA2017 / 1の下で欧州イノベーション技術機構(the European Institute ofInnovation and Technology)から資金提供を受けています。この欧州機構は、欧州連合のHorizon 2020研究革新プログラムからの支援を受けています。
【背景技術】
【0002】
そのような応用分野では、X線源または粒子放射線源などの放射ユニットを使用することがさらに知られている。この場合、粒子放射線は、特に、電子放射線またはハドロン放射線であり得る。これらの放射ユニットは、一方では、画像化のための適切な検出器と共に使用され、他方では、組織の操作のために使用され得る。
【0003】
多くの医学診断用途において、MR撮像データと放射ユニットから得られた撮像データの両方を使用することが望ましい。粒子放射線による組織の操作の間、MR画像によって照射された組織の位置および他の特性を監視することがさらに望ましい。
【0004】
MR装置によって、およびMR装置とは別個の放射線装置によって、異なる時間にMRイメージングおよび照射を実行することが知られている。しかしながら、この場合、患者は、2つの複数の装置の間で輸送されなければならず、または再配置されなければならない。さらに、2つの処置の間の時間によって、患者の構造が、例えば、呼吸または代菌過程のために変化する可能性がある。これは、MR画像と照射との組合せを複雑にする。
【0005】
米国特許出願公開第2015/0247907号明細書から、磁気共鳴スキャナの検査開口内でX線源およびX線検出器を動作させることが知られている。しかしながら、これは、X線源およびX線検出器の両方が強い磁場で動作するように設計されることを必要とする。
【0006】
さらに、GANGULY、Arundhuti et al."TrulyHybrid X-Ray/MR Imaging: Toward a Streamlined Clinical System"(AcademicRadiology (12) 2005、pages 1167 − 1177)刊行物に、複数の磁石ユニットを含むMR装置を使用し、ビーム経路が異なる磁石ユニットを通過するように放射ユニットを具体化することが記載されている。これは、放射ユニットがMR装置の検査開口内の強い磁場の影響を受けることを引き起こさないが、複数の磁石ユニットは、検査開口内のMRイメージングに必要な均一な磁場を達成することを困難にする。
【0007】
したがって、本発明の目的は、MRイメージングと放射線への検査対象の露出とを同時に行うための効率的な可能性を提供することである。
【0008】
この目的は、独立請求項に記載の医用イメージングシステムによって達成される。有利な実施形態は、従属請求項に記載されている。
【発明の概要】
【課題を解決するための手段】
【0009】
本発明は、検査対象の磁気共鳴イメージングのために構成された磁石ユニットと、検査対象を照射するために構成された第1の放射ユニットとを含み、磁石ユニットが主磁石と第1のハウジングとを含み、主磁石が第1のハウジングの内側に配置され、主磁石がコイル要素と少なくとも1つのコイルキャリアとを含む医用イメージングシステムに関する。磁石ユニットはさらに、磁石ユニットが検査開口を囲むように、検査軸に沿って検査開口を画定する。
【0010】
磁石ユニットは、さらに、検査軸に対して半径方向に第1の放射ユニットによって放出される放射線に対して透過性である第1の領域を含む。第1の放射ユニットは、さらに、検査開口から離れて面する磁石ユニットの側面に配置され、検査開口の方向に磁石ユニットの第1の領域を通して放射線を放出するように構成される。第1の放射ユニットは、検査開口の周りを回転するようにさらに構成される。
【0011】
磁石ユニットの第1の領域は、特に、第1の放射ユニットからの放射線に対して透過性であり、その結果、検査軸に対して放射状に放出され、第1の領域を通過する第1の放射ユニットからの放射線の強度は、第1の領域を通過しない検査軸に対して放射状に放出される第1の放射ユニットからの放射線の強度よりも小さい程度に減衰される。特に、磁石ユニットを通過した後に第1の領域を通過する放射線の強度の減衰は、磁石ユニットを通過した後に第1の領域を通過しない放射線の強度の減衰の半分未満または10%未満または1%未満である。検査開口は、特に、検査対象物を受け入れるように構成される。第1の放射ユニットは、特に、磁石ユニットの外側に形成することができる。医用イメージングシステムは、特に、正確に1つの磁石ユニットを備えることができる。
【0012】
本発明者らは、磁石ユニットの外側に放射ユニットを配置することによって、MRイメージング中に検査開口内の強い主磁場の影響を受けないことを認識した。したがって、強い磁場で動作するように設計されていない安価な放射ユニットを使用することが可能である。検査開口内の配置と比較して、磁石ユニットの外側の第1の放射ユニットの配置のさらなる利点は、磁石ユニットの外側の第1の放射ユニットのためにより多くの空間が利用可能であり、したがって、より効率的および/またはより強力な第1の放射ユニットを使用することが可能であることである。
【0013】
さらに、本発明者らは、磁界の外側に配置することによって、第1の放射ユニットがメンテナンス作業のために非常に容易にアクセス可能になることを認識した。
【0014】
本発明者はさらに、第1の放射ユニットからの放射線を透過する磁石ユニットの領域が、複数の別個の磁石ユニットを使用する必要がないことを意味することを認識した。これにより、複数の別個の磁石ユニットを用いる場合よりも、より均一な磁場、ひいてはより正確なMRイメージングを達成することが可能になる。
【0015】
本発明のさらなる可能な態様によれば、磁石ユニットは、第1の領域および検査対象を通って検査軸に対して放射状に放出される第1の放射ユニットからの放射線に対して透過性であり、第1の領域と重ならない第1の出口領域をさらに備える。本発明者らは、一方では、追加の第1の出口領域が、放射線検出器を磁石ユニットの外側に配置することも可能にすることを認識した。さらに、第1の出口領域を使用して、第1の放射ユニットからの非拡散放射を、磁石ユニットと相互作用し、それを損傷することなく、磁石ユニットから逸らすことができる。
【0016】
本発明のさらなる態様によれば、主磁石のコイル要素および少なくとも1つのコイルキャリアは、磁石ユニットの第1の領域の外側に配置される。特に、主磁石のコイル要素はなく、磁石ユニットの第1の領域内に配置されたコイルキャリアもない。本発明者らは、コイル要素および主磁石のコイルキャリアのこの幾何学的形状は、主磁石のコイル要素および少なくとも1つのコイルキャリアのために特別な材料を使用する必要がなく、主磁石または少なくとも1つのコイルキャリアのコイル要素の透過照明に放射強度損失がないので、放射ユニットからの放射線に対する透過性を特に効率的かつ安価に達成することができることを認識した。
【0017】
本発明のさらなる態様によれば、第1の領域において、磁石ユニットは、第1のハウジング内に少なくとも1つの内部窓および少なくとも1つの外部窓を含み、内部窓および外部窓は、第1の放射ユニットの放射によって放出される放射線に対して透過性である。この場合、内部窓は、検査開口に面する磁石ユニットの側面に、特に第1のハウジングの一部として配置される。この場合、外部窓はさらに、検査開口から離れて面する磁石ユニットの側面に、特に第1のハウジングの一部として配置される。本発明者らは、少なくとも2つの窓を使用することにより、磁石ユニットの構造、したがって安定性を維持することができ、同時に磁石ユニットの第1の領域の透過性を達成することができることを認識した。
【0018】
内部窓および外部窓は、内部窓および外部窓の材料が第1のハウジングの材料よりも第1の放射ユニットからの放射線に対してより透過性であるという点で、特に透過性である。特に、窓を通過する際の放射線の強度の減衰は、第1のハウジングを通過する際の強度の減衰の半分未満または10%未満または1%未満である。
【0019】
本発明のさらなる可能な態様によれば、内側窓および/または外側窓は、ベリリウムで作られる。本発明者らは、ベリリウム製の窓をコスト効率よく製造できることを認識した。さらに、このような窓は、グラファイトのような原子核の質量数が小さい他の材料で作られた窓よりも放射線損傷を受けにくい。
【0020】
本発明のさらなる態様によれば、第1の領域は、検査軸に対して半径方向に延在し、検査軸に対して半径方向に第1の放射ユニットによって放出される放射線によって貫通され得る磁石ユニット内の漏斗として構成される。
【0021】
漏斗は、特に、磁石ユニットの連続した開口部である。本発明者らは、漏斗の使用が、磁石を介して放射ユニットから送られる放射線を非常に弱く減衰させるだけであることを認識した。
【0022】
本発明のさらなる態様によれば、漏斗は、特に、磁石ユニットの第1のハウジングによって形成することができ、特に、漏斗の側壁は、第1のハウジングによって形成することができる。本発明者らは、第1のハウジングによる漏斗の形成が、磁石ユニットを特に安定して具体化することを可能にし、特に、密閉された冷却システムを可能な限り簡単かつ安価に具体化することを可能にすることを認識した。
【0023】
本発明のさらなる態様によれば、漏斗は、特に、第1の放射ユニットからの放射線を透過する材料で充填することができる。本発明者らは、放射線透過性材料で充填することにより、磁石ユニットの安定度を高めることができることを認識した。
【0024】
本発明のさらなる可能な態様によれば、医用イメージングシステムは、第1の放射線検出器をさらに備え、第1の放射線検出器は、磁石ユニットの第1の領域を通って第1の放射ユニットから送られる放射線を検出するように構成され、第1の放射線検出器は、第1の放射ユニットから離れて面する検査対象の側面に配置される。
【0025】
第1の放射線検出器は、特に、第1のX線検出器、ガンマ線検出器、および/または粒子検出器とすることができる。
【0026】
本発明者らは、放射線の検出を使用して、第1の放射ユニットからの放射線による照射により検査対象が曝される放射線量を測定することができ、したがって、放射線量を最小限に抑えることができることを認識した。
【0027】
本発明のさらなる態様によれば、第1の放射ユニットは、粒子放射を生成するように構成された粒子源である。
【0028】
本発明者らは、粒子放射線による照射が、特に大量のエネルギーを組織に蓄積することを可能にし、したがって、照射が特に効果的であることを認識した。
【0029】
本発明のさらなる態様によれば、第1の放射ユニットは、粒子放射線またはガンマ放射線を生成するように構成された放射線源である。本発明者らは、放射線源が磁石ユニットの外側の磁場によって影響されないので、放射線源を遮蔽または修正する必要がないことを認識した。そのため、そのような放射性源を使用することは、特に安価である。
【0030】
本発明のさらなる可能な態様によれば、粒子源は、電子および/またはハドロン放射を生成するように構成される。本発明者らは、電子および/またはハドロン放射線が、粒子放射線源を用いて特に簡単かつ安価に生成され得ることを認識した。
【0031】
本発明のさらなる態様によれば、第1の放射ユニットは、第1のX線源である。医用イメージングシステムは、第1のX線検出器をさらに含み、第1のX線検出器は、第1のX線源から離れて面する検査対象の側面に配置され、第1のX線源および第1のX線検出器は、検査対象のX線イメージングのために構成される。本発明者らは、MRイメージングが良好な軟組織コントラストを有し、X線画像が骨構造およびコントラスト媒体を描写する効率的な方法であるため、第1のX線源によって放出され、第1のX線検出器によって受け取られるX線が、MRイメージングによって効率的に補完される画像を可能にすることを認識した。
【0032】
さらに、本発明者らは、磁石ユニットの外側に第1のX線源を配置することにより、検査開口内の配置よりも、X線投影の距離が大きくなり、拡大率が小さくなることを認識した。これは、検査対象の表面、特に患者の皮膚によって吸収される放射線量、およびX線投影のぼけを低減する。
【0033】
本発明のさらなる態様によれば、第1のX線検出器は、主磁石の主磁場内に配置することができる。本発明者らは、一方では第1のX線検出器は第1のX線源よりも高い磁場に対してはるかに鈍感であり、他方ではX線は、主磁場内の配置のために、強度の減衰に関連する2回目ではなく、主磁石を1回通過するだけでよいことを認識した。したがって、この配置はまた、磁石ユニットの出口領域がX線に対して透過性であることを必要としない。
【0034】
本発明のさらなる態様によれば、第1のX線検出器を湾曲させることができる。本発明者らは、湾曲した実施形態では、検査対象物のための検査開口内により多くの空間が残されること、および/またはより大きな第1のX線検出器を使用することが可能であることを認識した。
【0035】
本発明のさらなる態様によれば、磁石ユニットは、第1の出口領域を備えることができ、さらに、第1のX線検出器は、第1の出口領域の前の検査開口から離れて面する磁石ユニットの側面で磁石ユニットの外側面に配置され、それにより、第1のX線検出器は、第1の領域を通して第1のX線源によって放出されたX線を受け取ることができる。本発明者らは、第1のX線検出器を磁石ユニットの外側に配置することにより、検査開口を可能な限り大きく具体化することができることを認識した。本発明のさらなる態様によれば、第1のX線検出器は、第1のX線源と同時に検査開口の周りを回転するように構成される。本発明者らは、同時回転により、第1のX線源と第1のX線検出器との間の相対位置が一定のままであり、X線画像を変化した相対位置に適合させる必要がないことを認識した。さらに、同時回転は、大きな回転不能な第1のX線検出器の代わりに、可能な限り小さく、したがって安価な第1のX線検出器を使用することを可能にする。
【0036】
本発明のさらなる態様によれば、磁石ユニットは、検査開口の周りを回転するように構成される。本発明者らは、これにより、磁石ユニットの第1の領域を複数の配列で回転させることが可能になり、複数の方向からの照射は、常に磁石ユニットの1つの透過性領域のみを通過することができることを認識した。これは、磁石ユニットの透過性領域が、放射ユニットのビーム経路と同じ大きさであればよいことを意味する。可能な限り小さい第1の領域は、磁石ユニットの安定度を増大させ、さらに、主磁石のコイル要素および主磁石のコイルキャリアは、より大きな体積内に配置することができ、これにより、均一な磁場の生成が単純化される。可能な限り小さい第1の領域は、第1の領域の外側の勾配磁場コイルユニットおよび高周波アンテナユニットの配置をさらに単純化し、したがって勾配磁場および高周波磁場の品質を改善する。
【0037】
本発明のさらなる態様によれば、磁石ユニットは勾配磁場コイルユニットを含み、勾配磁場コイルユニットの方向は検査開口に対して固定され、主磁石は検査開口の周りを回転するように構成される。言い換えれば、勾配磁場コイルユニットの方向は主磁石に対して可変である。磁石ユニットはまた、検査開口に対して固定された無線周波数アンテナを備えることができる。言い換えれば、勾配磁場コイルユニットおよび高周波アンテナの両方の方向を主磁石に対して可変にすることができる。
【0038】
特に、高周波アンテナの方向は勾配磁場コイルユニットに対して固定される。本発明者らは、そのような構成内で、勾配磁場コイルユニットおよび/または高周波アンテナのために適合されたパルスシーケンスを使用するよりも簡単かつ安価であり、勾配磁場コイルユニットおよび検査体積の相対位置が固定されているために、従来のパルスシーケンスを勾配磁場コイルユニットおよび/または高周波アンテナのために使用することができることを認識した。
【0039】
本発明の別の可能な態様によれば、医用イメージングシステムは第2のハウジングを含み、第2のハウジングは勾配磁場コイルユニットを含み、第2のハウジングは検査軸に対して半径方向に第1の放射ユニットによって放出される放射線に対して透過性である。
【0040】
さらに、医用イメージングシステムは第1のハウジングを第2のハウジングに対して回転させるための手段を含む。本発明者らは、この構成において、勾配磁場コイルユニットと主磁石との相対位置を非常に容易に変更することができることを認識した。
【0041】
本発明のさらなる態様によれば、第1の放射ユニットおよび主磁石は、検査開口の周りを同時に回転するように構成される。特に、第1の放射ユニットを磁石ユニットに接続することができる。特に、第1の放射ユニットは、第1の放射ユニットによって放出された放射線が磁石ユニットの第1の透過性領域を通過するように、磁石ユニットに接続することができる。
【0042】
本発明者らは、第1の放射ユニットを磁石ユニットと同時に回転させることは、検査中に第1の放射ユニットの別個の時間集約的な位置合わせおよび/または位置決めが不要であることを意味することを認識した。さらに、磁石ユニットの第1の領域をできるだけ小さく選択することができる。
【0043】
本発明者らは、さらに、この配置において、第1の放射ユニットを貫通する検査開口の外側の主磁石ユニットの磁場は、第1の放射ユニットの方向に依存しないことを認識した。これにより、第1の放射ユニットの方向に依存しない第1の放射ユニットにおいてとられるべき磁界を補償する手段が可能になる。
【0044】
本発明のさらなる態様によれば、磁石ユニットは、熱伝導によって主磁石のコイル要素を冷却するように設計される。本発明者らは、熱伝導による冷却はより少ない冷媒を必要とするので、熱伝導による冷却は冷媒への浸漬による対流による冷却よりも安価であることを認識した。
【0045】
さらに、本発明者は、熱伝導による冷却では、冷却効率は、磁石ユニットの位置合わせによって影響を受けないか、または浸漬による冷却よりも影響を受けにくいことを認識した。これにより、回転するように設計された磁石ユニットの場合であっても、効率的な冷却が可能となる。
【0046】
本発明のさらなる態様によれば、主磁石のコイル要素からの廃熱は、循環する冷却剤を含むパイプによって放散される。本発明者らは、パイプが特に効果的な冷却を可能にすることを認識した。本発明者らは、パイプが磁石ユニットの第1の領域の外側に配置されるとき、第1の領域が第1の放射ユニットからの放射線に対して特に透過性であるように構成され得ることをさらに認識した。
【0047】
本発明のさらなる態様によれば、主磁石のコイル要素は、超伝導材料から作られ、超伝導材料の臨界温度は、ヘリウムの沸点よりも高い。本発明者らは、液体ヘリウムの沸点より高い臨界温度が、液体ヘリウム以外の冷却剤の使用、および/または液体ヘリウムへの浸漬以外の冷却方法、特に熱伝導による冷却、を可能にすることを認識した。
【0048】
したがって、このタイプの冷却は、より安価であり、さらに、回転するように構成された磁石ユニットに関して特に有利であり、さらに、このタイプの冷却は、第1の放射ユニットからの放射線に対して透過性である磁石ユニットの第1の領域を具現化するために特に有利である。
【0049】
本発明のさらなる可能な態様によれば、主磁石のコイル要素の導電性材料は、二ホウ化マグネシウムである。本発明者らは、二ホウ化マグネシウムが、特に高い臨界温度を有する金属超伝導体であることを認識した。これにより、コイル要素を冷却するための手段を使用することが可能になり、コイル要素は、特に安価であり、放射ユニットによって放出される放射線に対して透過性である。
【0050】
本発明のさらなる態様によれば、医用イメージングシステムは、第2の放射ユニットをさらに備え、第2の放射ユニットは、検査開口から離れて面する磁石ユニットの側面に配置される。磁石ユニットは、さらに、検査軸に対して半径方向に第2の放射ユニットによって放出される放射線に対して透過性である第2の領域を含む。第2のユニットは、磁石ユニットの第2の領域を通って検査開口の方向に放射線を放出するようにさらに構成され、第2の放射ユニットは、検査開口の周りを回転するようにさらに構成される。特に、第2の放射ユニットは、磁石ユニットの外側に配置することができる。本発明者は、第1のX線源に加えて存在するMRイメージングおよびX線画像に基づく第2の放射ユニットが、第1のX線源によって第2の放射ユニットで照射を行うことを可能にすることを認識した。これは、MRイメージングおよび第1のX線イメージングからの相補的な画像情報の使用を可能にする。これは、第2の放射ユニットが特に効率的に使用されることを可能にする。
【0051】
磁石ユニットの第2の領域は特に第2の放射ユニットからの放射線に対して透過性であり、それにより検査軸に対して放射状に放出され、第2の領域を通過する第2の放射ユニットからの放射線の強度は第1の領域または第2の領域を通過しない検査軸に対して放射状に放出される第2の放射ユニットからの放射線の強度よりも小さい程度に減衰される。特に、前記通過中に第2の領域を通過する放射線の強度の減衰は、第1および/または第2の領域を通過しない放射線の強度の減衰の半分未満または10%未満または1%未満である。
【0052】
本発明のさらなる態様によれば、第2の放射ユニットは、第2のX線源であり、医用イメージングシステム放射線は、第2のX線検出器をさらに含み、第2のX線検出器は、第2のX線源から離れて面する検査対象の側面に配置される。第2のX線検出器は、さらに、第2のX線源と同時に検査開口の周りを回転するように構成される。第2のX線源および第2のX線検出器は、検査対象のX線撮像のためにさらに構成される。
【0053】
本発明者らは、このような構成により、X線源を回転させたり、磁石ユニットを回転させたりする必要なく、2つの異なる方向から2つのX線投影を同時に記録することができることを認識した。これは、X線源の回転または磁石ユニットの回転なしに、3次元X線画像データセットの再構成を可能にする。
【0054】
本発明のさらなる可能な態様によれば、磁石ユニットは、第1の放射ユニットから放射状に第2の領域および検査対象を通って検査軸に放出される放射線に対して透過性である第2の出口領域をさらに含み、第2の出口領域は、第2の領域と重複しない。本発明者らは、一方では、追加の第2の出口領域が、放射線検出器を磁石ユニットの外側に配置することも可能にすることを認識した。さらに、第2の出口領域を使用して、第2の放射ユニットからの非拡散放射を、磁石ユニットと相互作用し、それを損傷することなく、磁石ユニットから逸らすことができる。
【0055】
本発明のさらなる態様によれば、第2のX線検出器は、第1のX線検出器のさらなる特徴を含むことができる。第1のX線検出器の1つの実施形態に割り当てられた全ての利点は、第2のX線検出器の対応する実施形態に割り当てることもできる。
【0056】
本発明のさらなる態様によれば、磁石ユニットの第2の領域、第1の出口領域、および/または第2の出口領域は、磁石ユニットの第1の領域のすべてのさらなる特徴を含むことができる。磁石ユニットの第1の領域の一実施形態に割り当てられる全ての利点は、第2の領域、第1の出口領域、および/または第2の出口領域の対応する実施形態に割り当てることもできる。
【0057】
本発明のさらなる態様によれば、第1のX線源および第1のX線検出器からの接続線と、第2のX線源および第2のX線検出器からの接続線とは、60度と120度との間、または80度と100度との間、または85度と95度との間の角度を囲む。本発明者は、接続線間の角度が、2つのX線源および2つのX線検出器で記録されたX線投影の投影方向間の角度に対応することを認識した。X線投影間のこの種の角度は、3次元X線投影が2次元X線投影から特に効率的な方法で再構成されることを可能にする。
【0058】
磁石ユニットは、特に、円筒形、リング形、および/またはトーラス形とすることができる。磁石ユニットは、内部側と呼ばれる検査開口に面する側をさらに含み、磁石ユニットは、外部側と呼ばれる検査開口から離れて面する側をさらに含む。磁石ユニットは、優先方向の周りのループに沿って検査開口を囲むように検査開口を囲む。したがって、検査開口は、特に、2つの端部で開いている。磁石ユニットはまた、設計関連凹部を有する場合、検査開口を取り囲む。
【0059】
放射ユニットは、電磁放射線または粒子放射線を放出する。電磁放射は、特にX線またはガンマ線であり得る。特にX線は、1pmから500pm、特に5pmから250pm、特に5pmから60pmの間の波長を有する電磁放射線を示す。ガンマは、特に、放射線の発生にかかわらず、5pm未満、特に1pm未満の波長を有する電磁放射線を指す。X線およびガンマ線のスペクトルは、単色または多色であり得る。粒子放射は、特に、共通の方向の粒子の流れに対応する。粒子は、特に、レプトンまたはバリオンであり得る。ベリーオンは、特に、陽子または中性子であり得る。レンズは、特に、電子、陽電子、またはミュー粒子であり得る。
【0060】
磁石ユニットの第1の領域、第2の領域、および/または出口領域は、第1の領域、第2の領域、および/または出口領域を通過した後の放射線の強度が、第1の領域、第2の領域、および/または出口領域を通過する前の放射線の強度の少なくとも10%、特に少なくとも50%、特に少なくとも90%、特に少なくとも95%、特に少なくとも99%、特に少なくとも99.9%である場合に、第1の放射ユニットからの放射線に対して特に透過性である。
【0061】
磁石ユニットは、第1の領域、第2の領域および/または出口領域を通過しない検査軸に対して放射状に放射される放射線の強度の減衰が、第1の領域、第2の領域および/または出口領域を通過する検査軸に対して放射状に放射される放射線の強度の減衰よりも2倍以上、特に5倍以上、特に10倍以上、特に50倍以上大きい場合、特に第1の領域、第2の領域および/または出口領域を通過しない検査軸に対して半径方向に放出される第1の放射線ユニットからの放射線よりも、検査軸に対して半径方向に放出されかつ第1の領域、第2の領域および/または出口領域を通過する第1の放射線ユニットからの放射線に対してより透過性である。この場合、強度は、単位面積当たりおよび単位時間当たりの放射線のエネルギーを示す。単色電磁放射線の場合、放射線の強度は、特に、可変電界の二次振幅に比例する。粒子放射線の場合、放射線の強度は、特に、粒子のエネルギーおよび単位時間当たりの粒子の数に比例する。
【0062】
第1のユニットおよび第2のユニットは、特に、それらが同じ角速度でその領域の周りを回転するとき、軸または領域の周りを同時に回転する。したがって、第1のユニットの第1の接続線と、軸または領域と、第2のユニットの第2の接続線と、軸または領域との間の角度も、特に一定のままである。
【0063】
磁石のコイル要素の冷却は、熱伝導、熱対流および/または熱放射によって行うことができる。MR装置の主磁石のコイルエレメントは、例えば、液体ヘリウムに蓄えられている熱対流による冷却のために構成されている。MR装置の主磁石のコイル要素は、さらに、熱伝導による冷却のために具現化することができる。
【0064】
超伝導体とは、臨界温度が下回ったときにゼロに低下する電気抵抗を有する材料を指す(別の技術用語は、転移温度である)。超伝導材料は、特に、強い磁場を発生させるためのコイルおよびコイル要素に使用される。
【0065】
第2のユニットから離れて面する第3のユニットの側面に配置される第1のユニットは、第3のユニットの一部である必要はなく、または第3のユニットによって構成される必要もない。
【0066】
第1のユニットは、この場合、特に、第3のユニットから見て、第2のユニットの後ろに配置されるが、第1のユニットは、特に、第2のユニットに取り付けられるか、または直接配置されることもできる。第2のユニットに面する第3のユニットの側面に配置される第1のユニットは、第3のユニットの一部であるか、または第3のユニットによって構成されなければならない。この場合、第1のユニットは、特に、第3のユニットから見て、第2のユニットの前に配置され、第1のユニットは、特に、第2のユニットに取り付けるか、または直接配置することもできる。
【0067】
以下は、図面に示された例示的な実施形態を参照して、本発明をより詳細に説明し、説明する。
【図面の簡単な説明】
【0068】
図1】医用イメージングシステムの斜視図である。
図2】内部および外部ウィンドウを有する磁石ユニットを示す図である。
図3】漏斗を有する磁石ユニットを示す図である。
図4】検査軸に垂直な医用イメージングシステムの断面を示す図である。
図5】検査軸に垂直な医用イメージングシステムの断面であり、磁石ユニットの漏斗を通る断面を示す図である。
図6】検査軸に平行な医用イメージングシステムの断面を示す図である。
図7】磁石ユニットの漏斗を通る断面を示す図である。
図8】磁石ユニットの窓を通る断面を示す図である。
図9】第2のX線源および第2のX線検出器を有する医用イメージングシステムを示す図である。
図10】粒子加速器および粒子ビームガイドを含む第1の粒子放射ユニットを有する医用イメージングシステムを示す図である。
図11】荷電粒子放射線を放出する粒子放射ユニットを有する医用イメージングシステムを示す図である。
図12】主磁石が勾配磁場コイルユニットおよび高周波アンテナから独立して回転できる医用イメージングシステムを示す図である。
図13】主磁石が勾配コイルおよび高周波アンテナから独立して回転され得る、医用イメージングシステムの側面を示す図である。
【発明を実施するための形態】
【0069】
図1は、医用イメージングシステム10の斜視図である。この例示的な実施形態では、医用イメージングシステム10は、磁石ユニット20と、第1のX線源30と、支持および回転器具40と、MR制御および評価ユニット50と、X線制御および評価ユニット60と、検査対象80が配置される支持器具70とを含む。磁石ユニット20は、患者80と共に患者支持器具70を受け入れるように構成された検査開口90を有する。
【0070】
この例示的な実施形態では、磁石ユニット20は、検査軸91の周りの中空円筒の形状で構成され、検査軸91は、第3の座標軸zに平行に延在する。第1の座標軸xおよび第2の座標軸yも示されており、これらは第3の座標軸zと共に3次元デカルト座標系を形成する。
【0071】
この例示的な実施形態では、磁石ユニット20は、支持および回転器具40によって、検査開口90の周りに回転可能に、特に検査軸91の周りに回転可能に、構成される。
【0072】
同時に、第1のX線源30は磁石ユニット20に恒久的に接続されているので、磁石ユニット20が検査軸91を中心に回転すると、第1のX線源30も検査軸91を中心に検査開口90を中心に回転する。磁石ユニット20はMR制御および評価ユニット50に接続されている。第1の放射ユニット30は、放射線制御および評価ユニット60に接続されている。MR制御および評価ユニット50は、更に、放射線制御および評価ユニット60に接続され、特に、MR制御および評価ユニット50および放射線制御および評価ユニット60は、画像情報および/または制御信号を互いに交換することができる。
【0073】
あるいは、MR制御および評価ユニット50および放射線制御および評価ユニット60を共通の制御および評価ユニットに実装することも可能である。
【0074】
図示の例示的な実施形態では、検査対象80は患者80であり、支持器具70は患者支持器具70である。患者支持器具70は、患者80を円筒状検査開口90内に移送するように構成されている。
【0075】
図2は、外部窓25.1および内部窓25.2を有する磁石ユニット20を示し、窓は、磁石ユニット20の第1のハウジング26の一部として構成される。この例示的な実施形態では、磁石ユニット20の第1の領域は、外部窓25.1および内部窓25.2によって境界付けられる。ここで、外部窓25.1および内部窓25.2は、ガラス製である。しかし、2つの窓25.1、25.2は、ベリリウム、アルミニウム、または他の材料で作ることもでき、他の材料は、第1の放射ユニット30からの放射線32に対して透過性である。図示の例示的な実施形態では、外部窓25.1および内部窓25.2は長方形である。しかし、2つの窓25.1、25.2は、円形、楕円形、または別の形状であってもよい。外部窓25.1および内部窓25.2の設計は、特に、磁石ユニット20の必要な安定性および第1の放射ユニット30からの放射線32のビーム経路の幾何学的形状を考慮することができる。
【0076】
図2に示される例示的な実施形態では、磁石ユニット20は、検査軸91の周りを回転するように構成され、磁石ユニット20の正確に1つの第1の領域のみが、外部窓25.1および内部窓25.2によって境界付けられる。磁石ユニット20が検査軸91の周りを回転しないように構成される場合、複数の第1の領域、すなわち複数の外部窓25.1および内部窓25.2を有する磁石ユニット20を、またはより大きな外部窓25.1およびより大きな内部窓25.2によって画定されるより大きな第1の領域を有する磁石ユニット20を、第1の放射ユニット30が異なる方向から検査対象80を照射することができるように、代替的に使用することが可能である。
【0077】
例示的な実施形態では、外部窓25.1および内部窓25.2は、磁石ユニット20の第1のハウジング26の曲率にアーチ形に適合される。平坦な外部窓25.1および/または平坦な内部窓25.2を使用することも可能である。
【0078】
図3は、第1の領域として漏斗24を形成する磁石ユニット20を示す。漏斗24は、特に、磁石ユニット20の第1のハウジング26によって形成されている。
【0079】
この例示的な実施形態では、漏斗24は、長方形の基部を有するプリズム形状で構成される。しかしながら、漏斗24はまた、異なる形状の基部を有するプリズム形状で、または角錐台または円錐台として構成され得る。特に、漏斗24は円筒形であることが可能である。漏斗24の設計は、特に、磁石ユニット20の必要な安定性、および第1の放射ユニット30からの放射線32のビーム経路の幾何学的形状を考慮することができる。例示的な実施形態では、漏斗24は空気で満たされる。しかしながら、漏斗24を、第1の放射ユニット30によって放射された放射線が透過することができる別の材料で充填することも可能である。第1の放射ユニット30が第1のX線源30である場合、漏斗24は特にプレキシグラスで充填することもできる。
【0080】
図3に示した実施例では、磁石ユニット20は検査軸91を中心に回転するように構成されており、磁石ユニット20の正確に1つの第1の領域のみが漏斗24によって形成されている。磁石ユニット20が検査軸91を中心に回転しないように構成されている場合、複数の第1の領域を有する磁石ユニット20、すなわち複数の漏斗24を、またはより大きな漏斗24、を有するより大きな第1の領域を有する磁石ユニット20を代替的に使用して、第1の放射ユニット30が異なる方向から検査対象80を照射することが可能である。
【0081】
図4は、検査軸91に直交する医用イメージングシステム10の断面、特に磁石ユニット20の断面を示す。図5はまた、検査軸91に直交する医用イメージングシステム10の断面、特に磁石ユニット20の断面を示す。図示の例示的な実施形態では、磁石ユニット20は、回転するように構成され、第1の放射ユニット30は、さらに、磁石ユニット20に恒久的に接続され、検査開口90の周りで磁石ユニット20と一緒にかつ同時に回転するように構成される。磁石ユニット20の方向は、第1の回転座標軸x’および第2の回転座標軸y’によって指定され、第2の回転座標軸y’は、第1の回転座標軸x’に直交し、第1の回転座標軸x’および第2の回転座標軸y’は、検査軸91、したがって第3の座標軸zに直交する。図示の例示的な実施形態では、第1の放射ユニット30は第1のX線源に対応し、医用イメージングシステム10はさらに第1のX線検出器31を含む。明らかに、磁石ユニット20を別の第1の放射ユニット30に接続し、検査軸91を中心に同時に回転するように構成することも可能である。図4および図5に示す例示的な実施形態では、第1のX線検出器31は、第1のX線源30と同時に、すなわち磁石ユニット20と同時に回転するように構成される。代替的に、第1のX線検出器31は、固定式として具体化することもでき、この場合、第1のX線源30からのX線32を異なる方向から検出するために、はるかに大きいおよび/または湾曲した第1のX線検出器31を使用することが必要である。
【0082】
図示の例示的な実施形態では、第1の放射ユニット30は、X線32を放出するように構成された第1のX線源30である。しかしながら、第1の放射ユニット30は、ガンマ放射線または粒子放射線を放出するように具体化することもできる。第1の放射ユニット30は、放射線源、特にガンマ線を放射するコバルト‐60源であってもよい。放射性源の使用は、放射性源が強い磁場によって影響されないという利点を有する。
【0083】
図示の例示的な実施形態では、第1のX線源30は、回転陽極を有する第1のX線管30として構成される。第1のX線管30は、特に、検査対象80のX線投影が記録されるという点で、検査対象80のX線撮像のための第1のX線検出器31と一緒に具現化することができる。この場合、回転陽極を有する第1のX線管および第1のX線検出器31が従来技術から知られている。異なる投影方向に対する検査対象の複数のX線投影の使用は、3次元X線画像データセットの再構成を可能にすることもできる。
【0084】
あるいは、第1のX線源30は、スタティック陽極または液体金属ジェット陽極を有する第1のX線管として具体化することもできる。第1のX線源は、さらに、線形加速器またはLINACとして具現化することができる。X線管と比較して、線形加速器は、特に、より短い波長を有するX線を生成することができる。これらのX線は、検査対象80の領域の操作のために特に使用することができる。この場合、照射は、組織、特に、組織を破壊することが特に可能である。線形加速器は、粒子放射線を生成することもできる。
【0085】
線形加速器は、軸に沿って構成された線形加速ユニットを備える。線形加速ユニットは、第1の回転された座標軸x’に平行に具体化することができる。線形加速ユニットは、別の方向、特に第3の座標軸zに平行な方向、または第2の回転座標軸y’に平行な方向にも具体化することができる。この場合、磁石ユニット20の上方のスペース要件は特に小さく、医用イメージングシステム10は、標準的な検査チャンバで使用することができるが、磁石ユニット20の第1の領域を通して放射線32を正確に放出するために、粒子放射線の場合には、追加の偏向ユニットを使用しなければならない。
【0086】
第1のX線検出器31は、図示の実施例に示されているように、平坦に形成されていてよい。この場合、例えばアモルファスシリコンまたは相補型金属酸化膜半導体(一般に「CMOS」と略記する)で作られたフラットX線検出器31の異なる実施形態が知られている。光子計数第1X線検出器およびスクリーンフィルムを含む第1X線検出器も知られており、スクリーンフィルムはX線32を可視光に変換する。また、第1のX線検出器31は、湾曲または部分的に湾曲していてもよい。
【0087】
図4および図5の例示的な実施形態に示すように、第1のX線検出器31は、検査開口90内に具体化することができる。さらに、X線検出器は、主磁石21と検査開口90との間、特に、部品間もしくは勾配磁場コイルユニット22内または部品間もしくは高周波アンテナユニット23内にも構成され得る。しかし、これに代えて、第1のX線検出器31は、磁石ユニット20の外側で、磁石ユニット20の第1のX線源とは反対側に配置することもできる。この場合、磁石ユニット20は、第1の放射ユニット30からの放射線32を透過する出口領域27を含み、検査対象80を通過した後、放射線32は出口領域27を通過する。
【0088】
図6は、第2の座標軸yに直交する断面を基準とした磁石ユニット20の動作モードの概略図である。磁石ユニット20は、患者80を受け入れるための検査開口90を取り囲んでいる。本実施形態では、は、円柱状検査開口90であり、円周方向において、中空円筒状の磁石ユニット20によって囲まれている。しかしながら、原則として、そこから逸脱している検査開口90の実施形態はいつでも考えられる。患者80は、患者支持器具70によって検査開口90内に押し込むことができる。この目的のために、患者支持器具70は、検査開口90内に移動可能に構成された患者テーブルを備える。
【0089】
磁石ユニット20は、検査開口90内に強力で特に均一な主磁場を発生させるための主磁石21を備えている。磁石ユニット20は、第1のハウジング26によって外部から遮蔽されている。
【0090】
磁石ユニット20は、さらに、撮像中に空間符号化のために使用される磁場勾配を生成するための勾配磁場コイルユニット22を備える。勾配磁場コイルユニット22は、MR制御および評価ユニット50の勾配制御ユニット53によって制御される。磁石ユニット20はさらに、本実施例では磁石ユニット20に永久的に組み込まれたボディコイルとして形成された高周波アンテナユニット23を有している。高周波アンテナユニット23は、主磁石21により発生された主磁場中に確立された原子核を励起するように設計されている。
【0091】
高周波アンテナユニット23は、MR制御および評価ユニット50の高周波アンテナ制御ユニット52によって制御され、磁石ユニット20の検査開口90によって実質的に形成された検査チャンバ内に高周波交番磁界を照射する。高周波アンテナユニット23はさらに、磁気共鳴信号を受信するように構成されている。
【0092】
勾配磁場コイルユニット22は、特に、第1の回転座標軸x’の方向、第2の回転座標軸y’の方向、または第3の座標軸yの方向に勾配を有する磁場を生成することができる。この目的のために、この例示的な実施形態では、勾配磁場コイルユニット22は、3つの勾配コイルサブユニットを含み、その各々は、座標軸x’、y’、z’のうちの1つの方向に勾配を有する磁場を生成することができる。この場合、各勾配コイルサブユニットが磁石ユニット20の第1の領域の外側に配置されるように、3つの勾配コイルサブユニットの各々に対して配置されることが知られている。
【0093】
主磁石21、勾配磁場コイルユニット22および高周波アンテナユニット23を制御するために、磁石ユニット20はMR制御および評価ユニット50に接続されている。MR制御および評価ユニット50は、例えば、所定のイメージング勾配エコーシーケンスを実行するために、システム制御ユニット51によって磁石ユニット20を集中的に制御する。この場合、制御は、高周波アンテナ制御ユニット52および勾配制御ユニット53を介して行われる。MR制御および評価ユニット50は、磁気共鳴検査中に取得された医用画像データを評価するための評価ユニット(詳細には図示せず)も備える。さらに、MR制御および評価ユニット50は、詳細には示されていないユーザインタフェースを備え、これは、表示ユニット54および入力ユニット55を備え、これらの各々は、システム制御ユニット51に接続されている。例えば、イメージングパラメータおよび再構成された磁気共鳴画像のような制御情報は、医用オペレータのために、例えば少なくとも1つのモニタ上の表示ユニット54上に表示することができる。入力ユニット55は、医療オペレータが走査プロセス中に情報および/またはパラメータを入力するために使用することができる。
【0094】
磁石ユニット20が検査ボリューム90の周りを回転するように構成され、勾配磁場コイルユニット22が磁石ユニット20と同時に回転するように構成される場合、勾配コイルパルスシーケンスは、第3の座標軸zに直交する平面内の勾配磁場のベクトルが患者に対して回転しないことを確実にするように修正される。
【0095】
図7は、磁石ユニット20を通る漏斗24を通る第1の回転座標軸y’に直交する断面を示す。図示の例示的な実施形態では、漏斗24は、主磁石21および勾配磁場コイルユニット22を貫通するが、高周波アンテナユニット23は貫通しない。この実施例では、高周波アンテナユニット23は少なくとも部分的に、第1の放射ユニット30からの放射線32を透過できるように構成されている。漏斗24が高周波アンテナユニット23を貫通することも可能である。さらに、漏斗24が勾配磁場コイルユニット22を貫通しないことも可能であり、この場合、勾配磁場コイルユニット22は、第1の放射ユニット30からの放射線32によって少なくとも部分的に貫通可能であるように構成されなければならない。漏斗24は、主磁石21、特にコイル要素21.1が検査開口90内に均一な磁場を発生できるように、主磁石21を貫通する。図示の例示的な実施形態では、主磁石21は、冷却剤21.3によって囲まれたコイルキャリア21.2上の複数の超伝導コイル要素21.1を含む。この場合、超伝導コイル要素21.1は検査開口90を取り囲む。コイルキャリア21.2は、一方では、コイル要素21.1の機械的安定性および寸法安定性を提供し、また、コイル要素21.1の冷却を提供する。
【0096】
この実施形態において、磁石ユニット20が検査ボリューム90の周りを回転するように構成され、勾配磁場コイルユニット22が磁石ユニット20と同時に回転するように構成される場合、勾配コイルパルスシーケンスは、第3の座標軸に直交する平面内の勾配磁場のベクトルが第1の座標軸xおよび第2の座標軸yに対して回転しないが、第1の回転座標軸x’および第2の回転座標軸y’に対して回転するように修正される。
【0097】
図8は、磁石ユニット20の外部窓25.1および内部窓25.2を通る第1の回転座標軸yに直交する断面を示す。図示の例示的な実施形態では、外部窓25.1および内部窓25.2は、磁石ユニット20の第1のハウジング26の一部である。ここで、外部窓25.1および内部窓25.2の両方は、長方形として構成される。明らかに、他の窓形状、特に円形窓25.1、25.2も可能である。
【0098】
この例示的な実施形態では、断熱材21.4はまた、第1の放射ユニット30からの放射線32が透過可能な領域21.5を含む。断熱材21.4のこれらの領域21.5は、例えば、断熱材21.4の材料から構成することができるが、この領域の外側の第1のハウジング26よりも薄く具体化することができる。断熱材21.4の領域21.5は、金属箔、特にアルミニウム箔または銅箔で作ることもできる。
【0099】
図示の例示的な実施形態では、外部窓25.1および内部窓25.2はベリリウムで作られている。さらに、窓25.1、25.2を、第1の放射ユニット30からの放射線32を透過する別の材料、例えばアルミニウムまたはガラスで作ることも可能である。
【0100】
図示の例示的な実施形態では、コイル要素21.1の導電性材料は、二ホウ化マグネシウムMgBである。臨界温度39Kのホウ化マグネシウムMgBは、通常圧力1013 hPaで沸点4.2Kを上回っている。コイル要素21.1のための代替の導電性材料、特に超伝導材料、特に常圧でヘリウムの沸点4.2Kより高い臨界温度、1013hPaを有する超伝導材料、例えば23 Kの臨界温度を有するニオブ‐ゲルマニウムNbsGeも考えられる。
【0101】
図7および図8の両方に示す例示的な実施形態では、冷却はコイルキャリア21.2を介した熱伝導によって行われ、コイルキャリア21.2は管システムによって冷却され、熱伝達のための冷却剤は管システム内を循環し、熱は熱交換器に伝達される。これは、任意の気体冷却剤21.3によって支援することができる。
【0102】
図7には示されていない管システムは、第1の放射ユニット30からの放射線32に対する第1の領域の透過性を改善するために、磁石ユニット20の第1の領域には構成されないように構成される。代替的に、特に回転しないように構成された磁石ユニット20の場合、コイル要素21.1は、冷却剤21.3、例えば液体ヘリウム21.3に浸漬することによって冷却することができる。この種の管システムは、例えば、DE 10 2004 061 869B4から既知である。
【0103】
図7および図8の両方に示す例示的な実施形態では、主磁石21のコイル要素21.1および主磁石21のコイルキャリア21.2は、磁石ユニット20の第1の領域に配置されていない。さらに、磁石ユニット20の第1の領域には、コイル要素21.1の一部およびコイルキャリア21.2の一部も配置されていない。磁石ユニット20の場合、コイル要素21.1は、典型的には、検査開口90内に電流が流れているときに第3の座標軸zの方向に均一な磁場を発生させるために、リング形状で検査軸91を取り囲む。リング状のコイル要素21.1は、第3の座標軸zに対して互いに離間している。磁石ユニット20の第1の領域にコイル要素21.1のどの部分も構成されていないことを保証するために、特に、第3座標軸zに関して第1領域の延長よりも大きい2つの異なるコイル要素21.1間の距離を選択することが可能であり、2つの異なるコイル要素21.1を第1領域の異なる側に配置することができる。この距離は、特に、他のすべての隣接するコイル要素21.1間の距離よりも大きくすることができる。
【0104】
特に、第3の座標軸zに対する2つのコイル要素21.1の間の距離が、第1の領域から遠く離れるよりも第1の領域の近くで大きくなるように、2つの複数のコイル要素21.1を第1の領域の複数の側に配置することも可能である。図7および図8に示す例示的な実施形態では、コイルキャリア21.2は、コイルキャリア21.2を通る放射線32のビーム経路の延長よりも大きい連続開口を第1の領域に具現化する。別法として、それぞれ少なくとも1つの別個のコイルキャリア21.2を第1の領域の異なる側に配置することが考えられる。さらに、コイルキャリア21.2の材料として、第1の放射ユニット30からの放射線32に対して透過性の材料を使用することも可能である。コイルキャリア21.2は、有利には、高い熱伝導率および低い機械的変形性を有する材料、特に金属、特にアルミニウムから作製される。特に、コイルキャリア21.2は、熱伝導によって主磁石20のコイル要素21.1を冷却するように具体化することができ、特に、コイルキャリア21.2の材料の熱伝導率は、10W/(m・K)を超える、特に20 W/(m・K)を超える、特に50 W/(m・K)を超える、または特に100 W/(m・K)を超える。ここで、単位W/(m・K)は、ワット/メートルおよびケルビンの略である。
【0105】
図9は、第1のX線源30と、第2のX線源33と、第1のX線検出器31と、第2のX線検出器34とを有する医用イメージングシステム10の概略断面図を示す。この場合、第1のX線源30は、磁石ユニット20を通り、検査対象80を通って第1の回転座標軸x’’の方向に第1のX線検出器31にX線32を放出するように構成され、第2のX線源33は、磁石ユニット20を通り、検査対象80を通って第2の回転座標軸y’の方向に第2のX線検出器34にX線35を放出するように構成される。この場合、回転された座標軸x’は、回転された座標軸y’に直交し、両方の回転された座標軸は、検査軸91に直交し、したがって座標軸zに直交する。この配置は、2つのX線投影が、直交する投影方向に関して同時に記録されることを可能にする。2つのX線投影を使用して、3次元画像データセットを再構成することができる。図示の実施形態では、磁石ユニット20は検査開口90の周り、特に検査軸91の周りを回転するように構成されている。第1のX線源30、第1のX線検出器31、第2のX線源33および第2のX線検出器34は、磁石ユニット20と同時に検査開口90の周りに、特に検査軸91の周りに回転するように構成され、例えば、それらは永久的に磁石ユニット20に接続される。
【0106】
図9において、第1のX線源30と第1のX線検出器31との間の接続線は座標軸x’に対応し、第2のX線源33と第2のX線検出器34との間の接続線は座標軸y’に対応する。この例示的な実施形態では、接続線は互いに直交しているが、他の角度も可能である。
【0107】
図10は、第2の座標軸yに直交する医用イメージングシステム10の概略断面図を示す。磁石ユニット20に加えて、医用イメージングシステム10は、粒子加速器30.1および荷電粒子用の可動粒子ビームガイド30.2(可動粒子ビームガイドの英語の技術用語は「ガントリー」である)を備えた放射ユニット30を含む。この例示的な実施形態では、粒子加速器30.1は静止したものとして構成され、粒子ビームガイド30.2は検査開口90の周り、特に検査軸91の周りを回転するように構成される。
【0108】
図示の実施形態では、磁石ユニット20は検査開口90を中心として回転するように構成されている。この場合、粒子ビームガイド30.2および磁石ユニット20は、同時に回転するように構成されている。可動粒子ビームガイド30.2は、磁場を生成し、荷電粒子に作用するローレンツ力によって粒子ビームガイド30.2に沿った曲線上で粒子を案内する偏向ユニットを備える。この場合、粒子ビームガイド30.2の磁場の強度は、案内される粒子の質量、電荷、および速度に適合させることができる。
【0109】
この例示的な実施形態では、医用イメージングシステム10は、出口領域27およびスクリーン28をさらに備える。出口領域27は、放射ユニット30によって漏斗24を通って検査対象80に送られた放射線32が出口領域27を通って磁石ユニット20から出るように構成されている。これは、粒子放射線32が磁石ユニット20を損傷しないことを保証する。スクリーン28は、鉛製であることが有利であり、粒子ビーム32を吸収して、粒子放射線32が危険にさらされるのを防止する。
【0110】
図示の実施形態では、磁石ユニット20の出口領域27は、検査軸91に対して磁石ユニット20の漏斗24に直接対向して配置されている。しかしながら、主磁石21の主磁場による放射線32の偏向が考慮されるように、出口領域27を別の位置に具体化することも可能である。
【0111】
図11は、図10に示される医用イメージングシステム10のさらなる断面を示す。主磁石21、勾配磁場コイルユニット22および高周波アンテナユニット23は時定数または時変の磁界または電界を発生するので、荷電粒子からなる放射線32はローレンツ力によって方向転換される。この例では、第1の放射ユニット30は、粒子ビーム32内の荷電粒子の速度および方向を、検査開口90内に広がる電界および磁界を考慮して検査対象80の所定の部分に到達するように適合させるように構成される。
【0112】
また、磁石ユニット20の磁界と粒子放射線ユニット30をマッチングさせるために、本実施形態では、放射線制御および評価ユニット60とMR制御および評価ユニット50とが接続されており、この場合、MR制御および評価ユニット50は、磁石ユニット20の磁界に関する情報を、粒子放射線32の粒子の速度と方向を適応させる放射線制御および評価ユニット60に提供する。しかしながら、放射線制御および評価ユニット60およびMR制御および評価ユニット50を、磁石ユニット20および第1の放射ユニット30の両方を制御し、得られたデータを評価する共通の制御および評価ユニットとして具現化することも可能である。
【0113】
図示の実施形態では、MR制御および評価ユニット50は、さらに、MRイメージングデータセットを放射線制御および評価ユニット60に伝送する。次に、放射線制御および評価ユニット60は、放射線32が検査対象80の所定の部分に到達するように放射ユニット30を制御することができる。この場合、検査対象80の変化または移動による検査対象80の所定の部分の可能な移動は、MRイメージングデータセットの分析によって検出され、放射線制御および評価ユニット60によって補償されることができる。
【0114】
図12は、主磁石21が勾配磁場コイルユニット22および高周波アンテナ23から独立して回転できる医用イメージングシステムの断面を示す。図13は、医用イメージングシステムの同じ実施形態の側面図を示す。
【0115】
この実施形態では、主磁石21は、第1のハウジング26内にいくつかのコイル要素21.1およびコイルキャリア21.2を備える。主磁石は、検査軸91を中心として第1のハウジング26と同時に回転するように構成されている。第1のハウジング26は、いくつかのコイル要素21.1を冷却するためのさらなる手段を備え、これらのコイル要素は、明瞭さのために示されていない。
【0116】
この実施形態では、第1の放射ユニット30は、ガンマ線を放出するように構成され、主磁石21の第2のハウジング27に取り付けられることによって主磁石21と同時に回転するように構成される放射性コバルト‐60源である。放射性コバルト‐60源内の放射性コバルト‐60は、ガンマ線の放出を停止するように制御することができないので、放射性コバルト‐60源は、ガンマ線32が検査ボリューム内で必要とされないときはいつでも、ガンマ線32を遮断するための閉鎖可能なシャッタを備える。あるいは、第1の放射ユニット30は、X線源、別のガンマ線源、または粒子放射線源であってもよい。
【0117】
勾配磁場コイルユニット22および高周波アンテナ23は、第2のハウジング27に取り付けられている。第2のハウジング27並びに勾配磁場コイルユニット22および高周波アンテナ23は固定されており、検査軸線を中心として回転するようには形成されていない。
【0118】
この実施形態では、第2のハウジング27は、閉じたハウジングではなく、勾配磁場コイルユニット22および高周波アンテナ23を一方の側からのみ支持するように構成されている。特に、第2のハウジング27は、第1の放射源30の放射線32と干渉しないように構成されている。
【0119】
さらに、勾配磁場コイルユニット22および高周波アンテナ23は分割されており、換言すれば、勾配磁場コイルユニット22を形成する2つの円筒形傾斜磁場コイルサブユニット22.1、22.2と、高周波アンテナ23を形成する2つの円筒形高周波サブアンテナ23.1、23.2とがある。
【0120】
放射線32が第3の座標軸zに対して座標値0を有する場合、第1の勾配コイルサブユニット22.1は、第3の座標軸zに対して正の座標を有し、第2の勾配コイルサブユニット22.2は、第3の座標軸zに対して負の座標を有し、さらに、第1の無線周波数サブアンテナ23.1は、第3の座標軸zに対して正の座標を有し、第2の無線周波数サブアンテナ23.2は、第3の座標軸zに対して負の座標を有する。あるいは、第2のハウジング27は、閉じたハウジングである。この別の実施形態では、第1のハウジング26の異なる実施形態が第1の放射線32に対して透過性であるように構成されるのと同様に、第2のハウジング27は第1の放射源30の放射線32に対して透過性であるように形成される。例えば、外部窓と内部窓とを備えることによって、または漏斗を具体化することによって、供給源となる。
【0121】
さらに、この実施形態では、医用イメージングシステム10は、第2のハウジング27内で第1のハウジング26を回転させるための手段28.1〜28.4を備える。この実施形態では、以下の手段を用いる28.1〜28.4はゴムホイールであり、一方のゴムホイール28.1はエンジンによって駆動され、他方のゴムホイール28.2、28.3、28.3は第2のハウジング27内での第1のハウジング26の回転を案内する。あるいは、第1のハウジング26を回転させる手段28.1〜28.4のうちの2つ以上を駆動することも可能である。
【0122】
この実施形態では、磁石ユニット20は、第1の領域内の第1のハウジング26内に内部窓25.2および外部窓25.1を含み、内部窓25.2および外部窓25.1の両方が放射線32に対して透過性である。内部窓25.2および外部窓25.1は、特にベリリウムで作ることができ、あるいは、アルミニウムまたはガラスのような別の材料で作ることができる。代替的に、第1の領域は、検査軸91に対して半径方向に延在する磁石ユニット20内の漏斗24として具現化することもでき、第1の領域は、検査軸91に対して半径方向に第1の放射ユニット30によって放出される放射線32に対して透過性である。この実施形態では、磁石ユニット20に取り付けられた第1の放射ユニット30は1つだけであり、第1の放射ユニット30はコバルト‐60源として構成され、さらに、磁石ユニットは、第1の放射ユニット30によって放出された放射線32に対して透過性である第1の領域を1つだけ備える。
【0123】
代替的に、かつ付加的に、磁石ユニット20に取り付けられた第2の放射ユニット33があってもよく、磁石ユニットは、第2の放射ユニット33によって放出される放射線35に対して透過性である第2の領域を備えてもよい。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13