(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0007】
本発明は、カナダ標準濾水度が200ml未満であって、平均繊維径が500nm以上である酸化ミクロフィブリルセルロース繊維を提供する。本発明において「X〜Y」はその端値であるXおよびYを含む。
【0008】
1.酸化ミクロフィブリルセルロース繊維
(1)酸化ミクロフィブリルセルロース繊維
ミクロフィブリルセルロース繊維(以下「MFC」ともいう)とは、パルプ等のセルロース系原料をフィブリル化して得られる500nm以上の平均繊維径(平均繊維幅ともいう)を有する繊維であり、酸化ミクロフィブリルセルロース繊維(以下「酸化MFC」ともいう)とは、酸化セルロース系原料をフィブリル化して得られるMFCである。フィブリル化は後述するとおり機械的処理によって実施されることが好ましいが、酸化パルプはほぐれやすくなっているため、一連の酸化工程(特に酸化後の脱水洗浄)において繊維が細かくなったり、ゆるんだりしてある程度フィブリル化が進行していると考えられる。よって本発明において、酸化MFCは機械的処理を経ていない酸化パルプも含む。本発明において平均繊維径とは長さ加重平均繊維径であり、当該繊維径はABB株式会社製ファイバーテスターやバルメット社製フラクショネータ等の画像解析型繊維分析装置で測定できる。例えばMFCは、セルロース系原料をビーターやディスパーザーなどで比較的弱く解繊または叩解処理して得られる。したがってMFCは、高圧ホモジェナイザーなどでセルロース系原料を強く解繊処理して得られるセルロースナノファイバーと比較して繊維径が大きく、また繊維自体の微細化(内部フィブリル化)を抑制しながら効率的に繊維表面を毛羽立たせた(外部フィブリル化した)形状を有する。
【0009】
前述のとおり、本発明の酸化MFCはパルプを化学変性(酸化)処理した酸化パルプであってもよいが、酸化の後に機械的に解繊等の処理を施して得られる機械的処理酸化ミクロフィブリルセルロース繊維(以下「機械的処理酸化MFC」ともいう)であることが好ましい。すなわち本発明の酸化MFCは、機械的処理の有無にかかわらず、繊維表面に電荷を有するカルボキシル基を有するため、未変性のパルプと比較して、保水度が向上し、各種薬品との親和性も変化する。しかしながら、酸化パルプに機械的処理を施して得られた機械的処理酸化MFCは比表面積が増大するので、高いレベルで本発明の効果を得ることができる。機械的処理酸化MFCは酸化パルプ等の酸化したセルロース系原料を比較的弱く解繊または叩解処理して得られるので、繊維間に存在する強固な水素結合が化学変性によって弱められ、単に機械的に解繊または叩解処理しただけのMFCと比較して、繊維同士がほぐれやすく、繊維の損傷が少なく、かつ適度な内部フィブリル化および外部フィブリル化した形状を有する。さらに、本発明の酸化MFCを水に分散して得られた水分散体は、高い親水性、保水性、粘度を有する。
【0010】
上記のとおり、MFCはセルロース系原料とはフィブリル化の度合いが異なる。フィブリル化の度合いを定量化することは一般に容易ではないが、発明者らはMFCのカナダ標準式濾水度や保水度、透明度によってフィブリル化度合を定量化することが可能であることを見出した。
【0011】
本発明の酸化MFCはアニオン性基であるカルボキシル基が導入されており、カルボキシル基の形態、すなわち当該基が酸型(H型)であるか塩型(Na型)であるかによって、水との親和性をはじめ各種物性が変化する。用途によってカルボキシル基の形態は適宜調整されるので特性も異なる。特に断りがない限り、本発明の酸化MFCの繊維特性は、アルカリ性の水分散体を与えるもの、具体的にはpH8の1重量%水分散体を与える酸化MFCについて測定された値で評価される。酸化MFCは通常のパルプとは異なり、アニオン性の置換基が導入されているため、アニオン性であることの特徴を利用した分散剤や凝集剤等の添加剤として好適に使用することができる。
【0012】
<カナダ標準式濾水度>
前記条件を満たすように測定された本発明の酸化MFCのカナダ標準濾水度は200ml未満であるが、150ml以下が好ましい。当該濾水度の下限は限定されないが、0mlより高いことが好ましい。原料である酸化パルプを処理する際に短繊維化、ナノ化およびフィブリル化の度合いを調整することによって本発明の酸化MFCのカナダ標準式濾水度を調整できる。発明者らは、鋭意検討を行った結果、酸化パルプのフィブリル化を進めてカナダ標準式濾水度を低下させることで、通常の化学パルプやセルロースナノファイバー(「CNF」ともいう)とは異なる新規材料が得られることを見出した。すなわち、本発明の酸化MFCはカナダ標準式濾水度が200ml未満であるため、十分にフィブリル化が進んだ繊維形状を有していると推測される。また、繊維を強力に解繊しシングルナノレベルまで微小化したCNFのカナダ標準式濾水度は0mlであるので本発明の酸化MFCはCNFとは異なる。カナダ標準式濾水度が200ml未満である酸化MFCは、保水性が非常に良好であり保水材料としても好適に使用することができる。また、本発明の酸化MFCを製紙用添加剤として使用した場合、酸化MFC表面のフィブリルがセルロース繊維間の結合点の増加に寄与すると考えられるため、酸化MFC同士や酸化MFCとパルプの間で強固なネットワークが形成され、紙のバリア性や紙力を向上させた紙を製造できる。
【0013】
<保水度>
本発明の酸化MFCの保水度は、300%以上であることが好ましい。保水度が300%未満であると本発明の酸化MFCを含む組成物の保水性を向上させるという本発明の効果を十分に得ることができない可能性がある。保水度は、JIS P−8228:2018に従って測定される。
【0014】
<水分散体における透明度>
本発明の酸化MFCは、水を分散媒とする水分散体としたときに、透明度が低いという特徴を有する。本発明において透明度とは、酸化MFC等の対象となる材料を固形分1%(w/v)の水分散体とした際の、波長660nmの光の透過率をいう。具体的な透明度の測定方法は、以下の通りである:
酸化MFC分散体(固形分1%(w/v)、分散媒:水)を調製し、UV−VIS分光光度計UV−1800(島津製作所製)を用い、光路長10mmの角型セルを用いて、660nm光の透過率を測定する。
【0015】
本発明において前記透明度は、好ましくは40%以下であり、より好ましくは30%以下であり、さらに好ましくは20%以下であり、よりさらに好ましくは10%以下である。一般にセルロース系材料の前記透明度は、結晶性を維持したままナノ化が進んだ場合に上昇するが、本発明の酸化MFCはナノ化がそれほど進んでおらず繊維の形状を維持しているため、前記透明度が低くなる。前記透明度が40%以下の酸化MFCを紙に内添した場合、酸化MFCは紙中で繊維形状を維持するため、紙厚の低下や紙の密度低下が起こりにくく、剛度を落とさずに紙力を向上させることができる。
【0016】
<電気伝導度>
本発明の酸化MFCの電気伝導度は、1.0重量%濃度の水分散体としてpH8の条件下で測定した場合に、好ましくは500mS/m以下であり、より好ましくは300mS/m以下であり、さらに好ましくは200mS/m以下であり、よりさらに好ましくは100mS/m以下であり、最も好ましくは70mS/mである。前記電気伝導度の下限は、好ましくは5mS/m以上であり、より好ましくは10mS/m以上である。酸化MFCの当該電気伝導素は原料である酸化セルロース系材料の電気伝導度と比較して高い値を示す。また、当該電気伝導度が上限値を超えることは酸化セルロース系材料の水分散液中に溶存する金属塩や無機塩の濃度が一定値以上であることを意味する。当該材料の金属塩や無機塩等の濃度が低いと繊維同士の静電反発が起こりやすく、効率的にフィブリル化を進めることができる。
【0017】
以下、酸化MFCの製造方法について説明する。
1)セルロース系原料
セルロース系原料は、特に限定されないが、例えば、植物、動物(例えばホヤ類)、藻類、微生物(例えば酢酸菌(アセトバクター))、微生物産生物に由来するものが挙げられる。植物由来のものとしては、例えば、木材、竹、麻、ジュート、ケナフ、農地残廃物、布、パルプ(針葉樹未漂白クラフトパルプ(NUKP)、針葉樹漂白クラフトパルプ(NBKP)、広葉樹未漂白クラフトパルプ(LUKP)、広葉樹漂白クラフトパルプ(LBKP)、針葉樹未漂白サルファイトパルプ(NUSP)、針葉樹漂白サルファイトパルプ(NBSP)、サーモメカニカルパルプ(TMP)、針葉樹溶解パルプ、広葉樹溶解パルプ、再生パルプ、古紙等)が挙げられる。また、上述のセルロース系原料を粉砕処理したセルロースパウダーを使用してもよい。本発明で用いるセルロース原料は、これらのいずれかまたは組合せであってもよいが、好ましくは植物または微生物由来のセルロース繊維であり、より好ましくは植物由来のセルロース繊維であり、さらに好ましくは木質系パルプであり、最も好ましくは針葉樹パルプである。
【0018】
セルロース繊維の平均繊維径は特に制限されないが、一般的なパルプである針葉樹クラフトパルプの場合は30〜60μm程度、広葉樹クラフトパルプの場合は10〜30μm程度である。その他のパルプの場合、一般的な精製を経たものの平均繊維径は50μm程度である。例えばチップ等の数cm大のものを精製した原料を用いる場合、リファイナー、ビーター等の離解機で機械的処理を行い、平均繊維径を50μm以下程度に調整することが好ましく、30μm以下程度とすることがより好ましい。
【0019】
2)酸化
セルロース原料を酸化することによって酸化セルロースが得られる。酸化方法は特に限定されないが、一例として、N−オキシル化合物と、臭化物、ヨウ化物およびこれらの混合物からなる群より選択される物質との存在下で、酸化剤を用いて水中でセルロース原料を酸化する方法が挙げられる。この方法によれば、セルロース表面のグルコピラノース環のC6位の一級水酸基が選択的に酸化され、アルデヒド基、カルボキシル基、およびカルボキシレート基からなる群より選ばれる基が生じる。反応時のセルロース原料の濃度は特に限定されないが、5重量%以下が好ましい。
【0020】
N−オキシル化合物とは、ニトロキシラジカルを発生しうる化合物である。ニトロキシルラジカルとしては例えば、2,2,6,6−テトラメチルピペリジン1−オキシル(TEMPO)が挙げられる。N−オキシル化合物としては、目的の酸化反応を促進する化合物であれば、いずれの化合物も使用できる。N−オキシル化合物の使用量は、原料となるセルロースを酸化できる触媒量であれば特に制限されない。例えば、絶乾1gのセルロースに対して、0.01mmol以上が好ましく、0.02mmol以上がより好ましい。上限は、10mmol以下が好ましく、1mmol以下がより好ましく、0.5mmol以下がさらに好ましい。従って、N−オキシル化合物の使用量は絶乾1gのセルロースに対して、0.01〜10mmolが好ましく、0.01〜1mmolがより好ましく、0.02〜0.5mmolがさらに好ましい。
【0021】
臭化物とは臭素を含む化合物であり、例えば、水中で解離してイオン化可能な臭化アルカリ金属、例えば臭化ナトリウム等が挙げられる。また、ヨウ化物とはヨウ素を含む化合物であり、例えば、ヨウ化アルカリ金属が挙げられる。臭化物またはヨウ化物の使用量は、酸化反応を促進できる範囲で選択できる。臭化物およびヨウ化物の合計量は絶乾1gのセルロースに対して、0.1mmol以上が好ましく、0.5mmol以上がより好ましい。当該量の上限は、100mmol以下が好ましく、10mmol以下がより好ましく、5mmol以下がさらに好ましい。従って、臭化物およびヨウ化物の合計量は絶乾1gのセルロースに対して、0.1〜100mmolが好ましく、0.1〜10mmolがより好ましく、0.5〜5mmolがさらに好ましい。
【0022】
酸化剤としては、特に限定されないが例えば、ハロゲン、次亜ハロゲン酸、亜ハロゲン酸、過ハロゲン酸、これらの塩、ハロゲン酸化物、過酸化物などが挙げられる。中でも、安価で環境負荷が少ないことから、次亜ハロゲン酸またはその塩が好ましく、次亜塩素酸またはその塩がより好ましく、次亜塩素酸ナトリウムがさらに好ましい。酸化剤の使用量は、絶乾1gのセルロースに対して、0.5mmol以上が好ましく、1mmol以上がより好ましく、3mmol以上がさらに好ましい。当該量の上限は、500mmol以下が好ましく、50mmol以下がより好ましく、25mmol以下がさらに好ましい。従って、酸化剤の使用量は絶乾1gのセルロースに対して、0.5〜500mmolが好ましく、0.5〜50mmolがより好ましく、1〜25mmolがさらに好ましく、3〜10mmolが特に好ましい。N−オキシル化合物を用いる場合、酸化剤の使用量はN−オキシル化合物1molに対して1mol以上が好ましく、上限は40molが好ましい。従って、酸化剤の使用量はN−オキシル化合物1molに対して1〜40molが好ましい。
【0023】
酸化反応時のpH、温度等の条件は特に限定されず、一般に、比較的温和な条件であっても酸化反応は効率よく進行する。反応温度は4℃以上が好ましく、15℃以上がより好ましい。当該温度の上限は40℃以下が好ましく、30℃以下がより好ましい。従って、反応温度は4〜40℃が好ましく、15〜30℃程度、すなわち室温であってもよい。反応液のpHは、8以上が好ましく、10以上がより好ましい。pHの上限は、12以下が好ましく、11以下がより好ましい。従って、反応液のpHは、好ましくは8〜12、より好ましくは10〜11程度である。通常、酸化反応の進行に伴ってセルロース中にカルボキシル基が生成するため、反応液のpHは低下する傾向にある。そのため、酸化反応を効率よく進行させるためには、水酸化ナトリウム水溶液などのアルカリ性溶液を添加して、反応液のpHを上記の範囲に維持することが好ましい。酸化の際の反応媒体は、取扱いの容易さや、副反応が生じにくいこと等の理由から、水が好ましい。
【0024】
酸化における反応時間は、酸化の進行程度に従って適宜設定することができ、通常は0.5時間以上であり、その上限は通常は6時間以下、好ましくは4時間以下である。従って、酸化における反応時間は通常0.5〜6時間、例えば0.5〜4時間程度である。酸化は、2段階以上の反応に分けて実施してもよい。例えば、1段目の反応終了後に濾別して得られた酸化セルロースを、再度、同一または異なる反応条件で酸化させることにより、1段目の反応で副生する食塩による反応阻害を受けることなく、効率よく酸化させることができる。
【0025】
カルボキシル化(酸化)方法の別の例として、オゾン酸化が挙げられる。この酸化反応により、セルロースを構成するグルコピラノース環の少なくとも2位および6位の水酸基が酸化されると共に、セルロース鎖の分解が起こる。オゾン処理は通常、オゾンを含む気体とセルロース原料とを接触させることにより行われる。気体中のオゾン濃度は、50g/m
3以上であることが好ましい。上限は、250g/m
3以下であることが好ましく、220g/m
3以下であることがより好ましい。従って、気体中のオゾン濃度は、50〜250g/m
3であることが好ましく、50〜220g/m
3であることがより好ましい。オゾン添加量は、セルロース原料の固形分100重量%に対し、0.1重量%以上であることが好ましく、5重量%以上であることがより好ましい。オゾン添加量の上限は、通常30重量%以下である。従って、オゾン添加量は、セルロース原料の固形分100重量%に対し、0.1〜30重量%であることが好ましく、5〜30重量%であることがより好ましい。オゾン処理温度は、通常0℃以上であり、好ましくは20℃以上であり、上限は通常50℃以下である。従って、オゾン処理温度は、0〜50℃であることが好ましく、20〜50℃であることがより好ましい。オゾン処理時間は、通常は1分以上であり、好ましくは30分以上であり、上限は通常360分以下である。従って、オゾン処理時間は、通常は1〜360分程度であり、30〜360分程度が好ましい。オゾン処理の条件が上述の範囲内であると、セルロースが過度に酸化および分解されることを防ぐことができ、酸化セルロースの収率が良好となる。
【0026】
オゾン処理されたセルロースに対しさらに、酸化剤を用いて追酸化処理を行ってもよい。追酸化処理に用いる酸化剤は、特に限定されないが例えば、二酸化塩素、亜塩素酸ナトリウム等の塩素系化合物、酸素、過酸化水素、過硫酸、過酢酸などが挙げられる。追酸化処理の方法としては例えば、これらの酸化剤を水またはアルコール等の極性有機溶媒中に溶解して酸化剤溶液を作成し、酸化剤溶液中にセルロース原料を浸漬させる方法が挙げられる。酸化MFCに含まれるカルボキシル基、カルボキシレート基、アルデヒド基の量は、酸化剤の添加量、反応時間等の酸化条件をコントロールすることで調整できる。
【0027】
カルボキシル基量の測定方法の一例を以下に説明する。酸化セルロースの0.5重量%スラリー(水分散液)60mLを調製し、0.1M塩酸水溶液を加えてpH2.5とした後、0.05Nの水酸化ナトリウム水溶液を滴下してpHが11になるまで電気伝導度を測定する。電気伝導度の変化が緩やかな弱酸の中和段階において消費された水酸化ナトリウム量(a)から、下式を用いて算出することができる。
カルボキシル基量〔mmol/g酸化セルロース〕=a〔mL〕×0.05/酸化セルロース重量〔g〕
【0028】
このようにして測定した酸化セルロース中のカルボキシル基の量は、絶乾重量に対して、0.1mmol/g以上が好ましく、0.5mmol/g以上がより好ましく、0.8mmol/g以上がさらに好ましい。当該量の上限は、3.0mmol/g以下が好ましく、2.5mmol/g未満がより好ましく、2.0mmol/g以下がさらに好ましい。従って、当該量は0.1〜3.0mmol/gが好ましく、0.1以上2.5mmol/g未満がより好ましく、0.5以上2.5mmol/g未満がさらに好ましく、0.8〜2.0mmol/gがよりさらに好ましい。
【0029】
<セルロースI型の結晶化度>
本発明の酸化MFCにおけるセルロースの結晶化度に関して、結晶I型が50%以上であることが好ましく、60%以上であることがより好ましく、65%以上であることがより好ましい。結晶性を上記範囲に調整することにより、酸化MFCを紙に添加した際に保水性付与等の効果が得られる。また、原料酸化パルプの結晶I型が50%以上であると、パルプ繊維の形状を維持しながら、叩解または解繊処理によるフィブリル化を効率的に進めることができ、本発明の酸化MFCを効率的に調製できる。
【0030】
酸化MFCのセルロースI型の結晶化度の測定方法は、以下の通りである:
試料をガラスセルに載置し、X線回折測定装置(LabX XRD−6000、島津製作所製)を用いて測定する。結晶化度の算出はSegal等の手法を用いて行い、X線回折図の2θ=10°〜30°の回折強度をベースラインとして、2θ=22.6°の002面の回折強度と2θ=18.5°のアモルファス部分の回折強度から次式により算出する。
【0031】
Xc=(I
002c−I
a)/I
002c×100
Xc=セルロースのI型の結晶化度(%)
I
002c:2θ=22.6°、002面の回折強度
I
a:2θ=18.5°、アモルファス部分の回折強度。
【0032】
3)機械的処理
本工程では、酸化パルプを機械的に解繊、叩解、離解し、平均繊維径を500nm以上とする。機械的な解繊、叩解、または離解を「機械的処理」といい、酸化パルプの水分散体を解繊または叩解することを湿式粉砕ともいう。機械的処理は1回行ってもよいし、同じ処理または異なる処理を組合せて複数回行ってもよい。複数回の場合の各処理の時期はいつでもよく、使用する装置は同一でも異なってもよい。本工程は、例えば以下のように実施してよい。
前記水分散体を脱水などにより高濃度化(20重量%以上)してから叩解処理する;
前記水分散体を低濃度(20重量%未満、好ましくは10重量%以下)にしてから叩解または離解などの機械的処理を行う;
酸化パルプを乾燥してから機械的に解繊または叩解処理する;
酸化パルプをあらかじめ乾式粉砕し短繊維化してから機械的に解繊または叩解処理する。
本発明では、短繊維化を抑制しつつフィブリル化を進めるために、機械的処理は1回行うことが好ましく、酸化パルプの低濃度水分散体をリファイナーまたは高速離解機で処理することがより好ましい。
【0033】
機械的処理に用いる装置は特に限定されないが、例えば、高速回転式、コロイドミル式、高圧式、ロールミル式、超音波式などのタイプの装置が挙げられ、高圧または超高圧ホモジナイザー、リファイナー、ビーター、PFIミル、ニーダー、ディスパーザー、高速離解機など回転軸を中心として金属または刃物とパルプ繊維を作用させるもの、あるいはパルプ繊維同士の摩擦によるものを使用することができる。
【0034】
解繊または叩解を酸化パルプの水分散体に対して実施する場合、水分散体中の酸化パルプの固形分濃度の下限は、通常は0.1重量%以上が好ましく、0.2重量%以上がより好ましく、0.3重量%以上がさらに好ましい。これにより、酸化パルプの量に対する液量が適量となり効率的になる。当該濃度の上限は通常は50重量%以下が好ましい。
【0035】
本工程により酸化MFCが得られる。酸化MFCの平均繊維径は、長さ加重平均繊維径にして500nm以上であり、1μm以上が好ましく、10μm以上がより好ましい。平均繊維径の上限は60μm以下が好ましく、40μm以下がより好ましい。平均繊維長は長さ加重平均繊維長にして300μm以上が好ましく、400μm以上がより好ましい。平均繊維長の上限は、3000μm以下が好ましく、1500μm以下が好ましく、1100μm以下がさらに好ましく、最も好ましくは900μm以下である。本発明によれば、事前に原料パルプを酸化し、繊維の切断を抑制した方法で機械的処理に供するため、繊維を極端に短くすることなくフィブリル化を進めることができる。また、酸化によりセルロース繊維の水との親和性が向上しているため、繊維長が長い場合であっても濾水度を低くすることができる。
【0036】
長さ加重平均繊維径および長さ加重平均繊維長は、画像解析型繊維分析装置で測定することができ、例えば、ABB株式会社製ファイバーテスターやバルメット株式会社製フラクショネータを用いて求められる。酸化MFCの平均アスペクト比は、10以上が好ましく、30以上がより好ましい。上限は特に限定されないが、1000以下が好ましく、100以下がより好ましく、80以下がさらに好ましい。平均アスペクト比は、下記の式により算出できる。
平均アスペクト比=平均繊維長/平均繊維径
【0037】
本工程で得た、酸化MFCのカルボキシル基の量は、それぞれ原料とした酸化パルプのカルボキシル基の量と同じであることが好ましい。
【0038】
2.組成物
本発明の組成物は酸化MFCと水を含む。本発明の組成物は、前述のとおり酸化MFCと水を含んでいて保水性を求められる用途であれば幅広く使用することが可能である。本発明の組成物は、例えば、増粘剤、ゲル化剤、保形剤、乳化安定剤、分散安定化剤などに利用できる。具体的には製紙用原料(添加剤、原料パルプ)、食品、化粧品、医薬品、農薬、トイレタリー用品、スプレー剤、塗料等に使用することができるが、紙の製造における抄紙工程で使用する紙料(パルプスラリー)または塗工工程で使用する顔料塗工液またはクリア塗工液であることが好ましいので、以下、これらを例にして説明する。
【0039】
(1)パルプスラリー
パルプスラリーは酸化MFCと水の他に原料パルプを含む。原料パルプとは紙の主成分をなすパルプである。本発明で用いる原紙のパルプ原料は特に限定されず、グランドパルプ(GP)、サーモメカニカルパルプ(TMP)、ケミサーモメカニカルパルプ(CTMP)等の機械パルプ、脱墨古紙パルプ(DIP)、未脱墨古紙パルプなどの古紙パルプ、針葉樹クラフトパルプ(NKP)、針葉樹クラフトパルプ(LKP)等の化学パルプ等を使用できる。古紙パルプとしては、上質紙、中質紙、下級紙、新聞紙、チラシ、雑誌、段ボール、印刷古紙などの選別古紙やこれらが混合している無選別古紙由来のものを使用できる。
【0040】
酸化MFCの含有量は原料パルプに対して1×10
-4〜20重量%であることが好ましく、1×10
-3〜5重量%であることがより好ましい。当該含有量が上限値を超えると保水性が高すぎるため、抄紙時の水切れが悪化する恐れがあり、下限値未満であると添加量が少なすぎるため、保水性の向上や紙としたときの紙力向上効果が得られない可能性がある。
【0041】
パルプスラリーは公知の填料を含有してよい。填料としては、重質炭酸カルシム、軽質炭酸カルシウム、クレー、シリカ、軽質炭酸カルシウム−シリカ複合物、カオリン、焼成カオリン、デラミカオリン、炭酸マグネシウム、炭酸バリウム、硫酸バリウム、水酸化アルミニウム、水酸化カルシウム、水酸化マグネシウム、水酸化亜鉛、酸化亜鉛、酸化チタン、ケイ酸ナトリウムの鉱酸による中和で製造される非晶質シリカ等の無機填料や、尿素−ホルマリン樹脂、メラミン系樹脂、ポリスチレン樹脂、フェノール樹脂などの有機填料が挙げられる。これらは、単独で使用してもよいし併用してもよい。この中でも、中性抄紙やアルカリ抄紙における代表的な填料であり、高い不透明度が得られる炭酸カルシウムや軽質炭酸カルシウムが好ましい。填料の含有率は、原料パルプに対して、5〜20重量%が好ましい。本発明においては紙中灰分が高くても紙力の低下が抑制されるため、当該填料の含有率は10重量%以上であることがより好ましい。
【0042】
本発明の酸化MFCはパルプスラリーにおいて紙力向上剤、保水剤、歩留向上剤として機能しうる。パルプスラリーには、本発明のMFCの他に内添薬品として、嵩高剤、乾燥紙力向上剤、湿潤紙力向上剤、濾水性向上剤、染料、カチオン系、ノニオン系、アニオン系等の各種サイズ剤等を必要に応じて添加してもよい。
【0043】
本発明のパルプスラリーは任意の方法で調製されるが、原料パルプをリファイナー処理またはミキシング処理する工程で酸化MFCを添加することが好ましい。ミキシング工程で酸化MFCを添加する場合、填料や歩留剤等その他助剤と酸化MFCを予め混合したものを原料パルプスラリーに添加してもよい。
【0044】
パルプスラリーの固形分濃度は抄紙条件等によって適宜調整されるが、0.1〜1.0重量%が好ましい。当該パルプスラリーは公知の抄紙方法に供され紙が製造される。抄紙は、例えば、長網抄紙機、ギャップフォーマー型抄紙機、ハイブリッドフォーマー型抄紙機、オントップフォーマー型抄紙機、丸網抄紙機等を用いて行うことができるが、これらに限定されない。
【0045】
(2)クリア塗工液
クリア塗工液とは、澱粉、酸化澱粉、加工澱粉、デキストリンなどの各種澱粉類、カルボキシメチルセルロース、ポリアクリルアミド、ポリビニルアルコールなどの表面処理剤として通常使用される水溶性高分子を主成分とする塗工液であり、水溶性高分子の他に、耐水化剤、外添サイズ剤、表面紙力剤、染顔料、蛍光着色剤、保水剤などの各種添加剤を含んでいてもよい。前記水溶性高分子は接着剤でもある。
【0046】
クリア塗工液中の酸化MFCの含有量は特に限定されず、固形分の全量が酸化MFCでもよいが、塗工適性等の観点から上述の水溶性高分子と混合して使用することが好ましく、水溶性高分子と酸化MFCの混合割合は、水溶性高分子:酸化MFC=1:10000〜10000:1が好ましく、1:1〜500:1程度であることがより好ましい。
【0047】
クリア塗工液を用いて、公知の方法で原紙の片面あるいは両面に塗工することでクリア塗工層を設けることができる。本発明においてクリア塗工とは、例えば、サイズプレス、ゲートロールコータ、プレメタリングサイズプレス、カーテンコータ、スプレーコータなどのコータ(塗工機)を使用して、原紙に塗工や含浸を行うことをいう。クリア塗工層の塗工量は、片面あたり固形分で0.1〜1.0g/m
2が好ましく、0.2〜0.8g/m
2がより好ましい。
【0048】
(3)顔料塗工液
顔料塗工液とは白色顔料を主成分として含む組成物である。白色顔料としては、炭酸カルシウム、カオリン、クレー、焼成カオリン、無定形シリカ、酸化亜鉛、酸化アルミニウム、サチンホワイト、珪酸アルミニウム、珪酸マグネシウム、炭酸マグネシウム、酸化チタン、プラスチックピグメント等の通常使用されている顔料が挙げられる。
【0049】
酸化MFCの含有量は白色顔料100重量部に対して1×10
-3〜1重量部が好ましい。当該含有量がこの範囲であると、塗工液の粘度を大幅に増大することなく、適度な保水性を持った顔料塗工液を得ることができる。
【0050】
顔料塗工液は接着剤を含む。当該接着剤としては、酸化澱粉、陽性澱粉、尿素リン酸エステル化澱粉、ヒドロキシエチルエーテル化澱粉等のエーテル化澱粉、デキストリン等の各種澱粉類、カゼイン、大豆蛋白、合成蛋白等の蛋白質類、ポリビニルアルコール、カルボキシメチルセルロースやメチルセルロース等のセルロース誘導体、スチレン−ブタジエン共重合体、メチルメタクリレート−ブタジエン共重合体の共役ジエン系重合体ラテックス、アクリル系重合体ラテックス、エチレン−酢酸ビニル共重合体等のビニル系重合体ラテックス等が挙げられる。これらは単独、あるいは2種以上併用して用いることができ、澱粉系接着剤とスチレン−ブタジエン共重合体を併用することが好ましい。
【0051】
顔料塗工液は、一般の紙製造分野で使用される分散剤、増粘剤、消泡剤、着色剤、帯電防止剤、防腐剤等の各種助剤を含んでいてもよい。
【0052】
顔料塗工液を用い、公知の方法で原紙の片面あるいは両面に塗工することで顔料塗工層を設けることができる。塗工液中の固形分濃度は、塗工適性の観点から、30〜70重量%程度が好ましい。顔料塗工層は1層でもよく、2層でもよく、3層以上でもよい。複数の顔料塗工層が存在する場合、酸化MFCを含む顔料塗工液でいずれかの1層が形成されていればよい。顔料塗工層の塗工量は、用途によって適宜調整されるが、印刷用塗工紙とする場合は片面あたりトータルで5g/m
2以上であり、10g/m
2以上であることが好ましい。上限は、30g/m
2以下であることが好ましく、25g/m
2以下であることが好ましい。
【0053】
(3)乾燥固形物
本発明の組成物は乾燥することにより乾燥固形物とすることができる。特に原料パルプや水溶性高分子、白色顔料と本発明の酸化MFCを含有する水分散体を乾燥させた乾燥固形物(原紙、クリア塗工層、顔料塗工層)は、強度としなやかさを有する。この理由は明らかではないが以下のように推察される。本発明の酸化MFCの水分散体は、シングルナノレベルまで解繊が進んだCNFと比較して、緩やかに解繊処理されているため繊維表面のフィブリル化は進んでいるものの繊維の形状を維持したまま水中に分散している。そのため、これを乾燥させて得られる固形物は繊維のネットワークを含み、フィブリル化した繊維によって形成された水素結合点により当該ネットワークがより強化されているので、強度としなやかさを兼ね備えた乾燥固形物となる。当該乾燥固形物に水を添加することで組成物として使用できる。
【0054】
3.酸化MFCを含有する紙
本発明の酸化MFCを含有するパルプスラリーは保水性が高いので、これから製造された紙は高い紙力および透気抵抗度を有する。また、本発明の酸化MFCを含有する顔料塗工液またはクリア塗工液から形成された顔料塗工層またはクリア塗工層を備える紙は、接着剤の原紙へのしみこみの程度が抑制されるので、高い塗工層強度や透気抵抗度を有する。
【0055】
本発明の酸化MFCを含有する紙の坪量は10〜400g/m
2が好ましく、15〜100g/m
2がより好ましい。本発明の酸化MFCを含有する紙の原紙は単層でも多層でもよい。酸化MFCを含有するパルプスラリーから製造された紙は原紙層に酸化MFCを含むが、原紙層が多層である場合は、少なくともいずれか一層が当該酸化MFCを含有すればよい。また、当該紙の灰分は顔料塗工層の有無によって異なるが、顔料塗工層を設けない紙(原紙またはクリア塗工紙)の場合は0〜30%であることが好ましく、顔料塗工層を設ける紙の場合は10〜50%であることが好ましい。
【0056】
酸化MFCを含有する紙は必要に応じてクリア塗工層を備えていてもよい。また、酸化MFCを含有する紙に公知の表面処理等を施してもよい。
【実施例】
【0057】
以下、実施例を挙げて本発明を説明する。物性評価は以下のとおりに行った。
平均繊維長、平均繊維径:試料にイオン交換水を加えて0.2重量%スラリーを調整し、バルメット社製フラクショネータを用いて測定した。
カナダ標準濾水度(c.s.f.):JIS P 8121−2:2012に従った。
電気伝導度:試料(酸化MFC等)の濃度が1.0重量%である水分散体を準備し、pH8の条件下で、堀場製ポータブル型電気伝導度計を用いて測定した。
バルク厚さ、およびバルク密度:JIS P 8223:2006を参考にして測定した。
比引張強さ:JIS P 8223:2006を参考にして測定した。
ショートスパン比圧縮強さ:JIS P 8156:2012を参考とした。
リングクラッシュ比圧縮強さ:JIS P 8126:2005を参考とした。
透気抵抗度:JIS P 8117:2009に従い、王研式透気度・平滑度試験機により測定した。
【0058】
[実施例A1]
針葉樹由来の漂白済み未叩解クラフトパルプ(白色度85%)5.00g(絶乾)をTEMPO(Sigma Aldrich社)39mg(絶乾1gのセルロースに対し0.05mmol)と臭化ナトリウム514mg(絶乾1gのセルロースに対し1.0mmol)を溶解した水溶液500mlに加え、パルプが均一に分散するまで撹拌した。反応系に次亜塩素酸ナトリウム水溶液を、次亜塩素酸ナトリウムが5.0mmol/gになるように添加し、酸化反応を開始した。反応中は系内のpHが低下するが、3M水酸化ナトリウム水溶液を逐次添加し、pH10に調整した。次亜塩素酸ナトリウムを消費し、系内のpHが変化しなくなった時点で反応を終了した。反応後の混合物をガラスフィルターで濾過してパルプ分離し、パルプを十分に水で洗浄することで酸化されたパルプ(カルボキシル化セルロース)を得た。カルボキシル基量が1.4mmol/gのTEMPO酸化パルプ(酸化MFC)を製造した。
【0059】
[実施例A2]
実施例A1で得たTEMPO酸化パルプを水に分散し4重量%の水分散体とし、シングルディスクリファイナー(製品名:14インチ ラボリファイナー(相川鉄工株式会社製))で処理して実施例A2の機械的処理酸化MFCを得た。
【0060】
[実施例A3]
実施例A2の処理を高速離解機(製品名:トップファイナー(相川鉄工株式会社製))で行った以外は、実施例A2と同様にして実施例A3の機械的処理酸化MFCを得た。
【0061】
[実施例A4]
針葉樹由来の漂白済み未叩解クラフトパルプ(白色度85%)5.00g(絶乾)をTEMPO(Sigma Aldrich社)39mg(絶乾1gのセルロースに対し0.05mmol)と臭化ナトリウム514mg(絶乾1gのセルロースに対し1.0mmol)を溶解した水溶液500mlに加え、パルプが均一に分散するまで撹拌した。反応系に次亜塩素酸ナトリウム水溶液を、次亜塩素酸ナトリウムが1.5mmol/gになるように添加し、酸化反応を開始した。反応中は系内のpHが低下するが、3M水酸化ナトリウム水溶液を逐次添加し、pH10に調整した。次亜塩素酸ナトリウムを消費し、系内のpHが変化しなくなった時点で反応を終了した。反応後の混合物をガラスフィルターで濾過してパルプ分離し、パルプを十分に水で洗浄することで酸化されたパルプ(カルボキシル化セルロース)を得た。カルボキシル基量が0.6mmol/gのTEMPO酸化パルプを製造した。当該TEMPO酸化パルプを使用した以外は実施例A2と同様にしてリファイナー処理を行い、実施例A4の機械的処理酸化MFCを得た。
【0062】
[比較例A2]
酸化しないパルプ(NBKP、日本製紙株式会社製)を用いた以外は実施例A2と同様にして、リファイナーで処理されたNBKPパルプを得た。これらの物性を表1に示す。表1中、比較例A2の原料としたNBKPを比較例A1と表記した。
【0063】
[実施例B1]
96重量%の段ボール古紙(日本製紙株式会社製)、4重量%の実施例A2で調製した酸化MFC(c.s.f.10ml以下)を混合して固形分濃度0.8重量%の混合パルプとした。当該混合パルプの合計量に対し、1.0重量%の硫酸バンド、0.15重量%のポリアクリルアミド、0.2重量%のサイズ剤を添加して紙料を調製した。得られたパルプスラリーを用いて坪量100g/m
2を目標に手抄きシートを製造して評価した。手すきシートはJIS P 8222を参考に製造した。
【0064】
[実施例B2、B3]
実施例A3、A4で得た酸化MFCを用いた以外は、実施例B1と同様にして手抄きシートを製造して評価した。
【0065】
[比較例B1、B2]
酸化MFCを用いなかった以外は、実施例B1と同様にして手すきシートを製造し、評価した。比較例B1は実施例B1と同じロットの段ボール古紙を使用し、比較例B2は比較例B3と同じロットの段ボール古紙を使用した。
【0066】
[比較例B3]
酸化MFCの代わりに、比較例A2で得たパルプを用いた以外は、実施例B1と同様にして手すきシートを製造し、評価した。これらの物性を表2に示す。
【0067】
【表1】
【0068】
【表2】
【0069】
本発明の紙は優れた紙力および透気抵抗度を有することが明らかである。