特許第6828055号(P6828055)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ コーニンクレッカ フィリップス エヌ ヴェの特許一覧

<>
  • 特許6828055-患者緊急度の臨床医評価の推定及び使用 図000002
  • 特許6828055-患者緊急度の臨床医評価の推定及び使用 図000003
  • 特許6828055-患者緊急度の臨床医評価の推定及び使用 図000004
  • 特許6828055-患者緊急度の臨床医評価の推定及び使用 図000005
  • 特許6828055-患者緊急度の臨床医評価の推定及び使用 図000006
  • 特許6828055-患者緊急度の臨床医評価の推定及び使用 図000007
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6828055
(24)【登録日】2021年1月22日
(45)【発行日】2021年2月10日
(54)【発明の名称】患者緊急度の臨床医評価の推定及び使用
(51)【国際特許分類】
   G16H 50/20 20180101AFI20210128BHJP
【FI】
   G16H50/20
【請求項の数】12
【全頁数】22
(21)【出願番号】特願2018-557899(P2018-557899)
(86)(22)【出願日】2017年5月4日
(65)【公表番号】特表2019-517064(P2019-517064A)
(43)【公表日】2019年6月20日
(86)【国際出願番号】EP2017060591
(87)【国際公開番号】WO2017191227
(87)【国際公開日】20171109
【審査請求日】2020年4月30日
(31)【優先権主張番号】62/331,496
(32)【優先日】2016年5月4日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】590000248
【氏名又は名称】コーニンクレッカ フィリップス エヌ ヴェ
【氏名又は名称原語表記】KONINKLIJKE PHILIPS N.V.
(74)【代理人】
【識別番号】110001690
【氏名又は名称】特許業務法人M&Sパートナーズ
(72)【発明者】
【氏名】エシェルマン ラリー ジェームス
(72)【発明者】
【氏名】カールソン エリック トーマス
(72)【発明者】
【氏名】ヤン リン
(72)【発明者】
【氏名】シュウ ミンナン
(72)【発明者】
【氏名】コンロイ ブライアン
【審査官】 梅岡 信幸
(56)【参考文献】
【文献】 特表2015−529359(JP,A)
【文献】 特表2014−510603(JP,A)
【文献】 特開2007−317196(JP,A)
【文献】 特開2013−165780(JP,A)
【文献】 特表2013−513845(JP,A)
【文献】 米国特許出願公開第2011/0119212(US,A1)
【文献】 中国特許出願公開第103955608(CN,A)
【文献】 国際公開第2015/014622(WO,A1)
【文献】 国際公開第2006/136972(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G16H 10/00−80/00
G06Q 10/00−99/00
(57)【特許請求の範囲】
【請求項1】
1つ以上のプロセッサと、
前記1つ以上のプロセッサに結合されるメモリと、
を含み、
前記メモリは、前記1つ以上のプロセッサによる実行に応えて、前記1つ以上のプロセッサに、
複数の患者に関連付けられる複数の患者特徴ベクトルを取得させ、各患者特徴ベクトルは、前記複数の患者のうちの1人の患者に関連付けられる複数の健康指標特徴と、前記1人の患者に関連付けられる前記複数の健康指標特徴に少なくとも部分的に基づく医療関係者による前記1人の患者の治療に関連付けられる複数の治療特徴とを含み、
前記医療関係者による前記1人の患者の治療に関連付けられる複数の治療特徴を含む前記複数の患者特徴ベクトルに基づいて、機械学習モデルをトレーニングさせて、後続の患者特徴ベクトルを入力として受信し、臨床医緊急度評価のレベルの指示を出力として提供するようにし、
所与の患者に関連付けられる健康指標特徴及び治療特徴を含む1つ以上の特徴ベクトルを、前記機械学習モデルに入力として提供させ、
前記機械学習モデルの出力に基づいて、前記所与の患者の臨床医緊急度評価のレベルを推定させ、
前記所与の患者に関連付けられる臨床医緊急度評価の推定される前記レベルに少なくとも部分的に基づいて、1つ以上の医用アラームの閾値を調整すること、及び
前記所与の患者に関連付けられる臨床医緊急度評価の推定される前記レベルに少なくとも部分的に基づいて、前記所与の患者を入院、退院又は移動させるかどうかに関して助言する出力を、医療関係者に提供すること
のうちの少なくとも1つを実行させる、命令を記憶しており、
前記所与の患者の現在の臨床医緊急度評価の推定される前記レベルが、臨床医緊急度評価が正確であるかどうかの閾値を満たさないときは、前記医療関係者に、前記所与の患者の現在の臨床医緊急度評価が不正確であることを知らせるように、出力が前記医療関係者に提供されるようにする命令を更に含む、システム。
【請求項2】
1つ以上のプロセッサと、
前記1つ以上のプロセッサに結合されるメモリと、
を含み、
前記メモリは、前記1つ以上のプロセッサによる実行に応えて、前記1つ以上のプロセッサに、
複数の患者に関連付けられる複数の患者特徴ベクトルを取得させ、各患者特徴ベクトルは、前記複数の患者のうちの1人の患者に関連付けられる複数の健康指標特徴と、前記1人の患者に関連付けられる前記複数の健康指標特徴に少なくとも部分的に基づく医療関係者による前記1人の患者の治療に関連付けられる複数の治療特徴とを含み、
前記医療関係者による前記1人の患者の治療に関連付けられる複数の治療特徴を含む前記複数の患者特徴ベクトルに基づいて、機械学習モデルをトレーニングさせて、後続の患者特徴ベクトルを入力として受信し、臨床医緊急度評価のレベルの指示を出力として提供するようにし、
所与の患者に関連付けられる健康指標特徴及び治療特徴を含む1つ以上の特徴ベクトルを、前記機械学習モデルに入力として提供させ、
前記機械学習モデルの出力に基づいて、前記所与の患者の臨床医緊急度評価のレベルを推定させ、
前記所与の患者に関連付けられる臨床医緊急度評価の推定される前記レベルに少なくとも部分的に基づいて、1つ以上の医用アラームの閾値を調整すること、及び
前記所与の患者に関連付けられる臨床医緊急度評価の推定される前記レベルに少なくとも部分的に基づいて、前記所与の患者を入院、退院又は移動させるかどうかに関して助言する出力を、医療関係者に提供すること
のうちの少なくとも1つを実行させる、命令を記憶しており、
前記所与の患者の前記1つ以上の健康指標特徴にのみ基づく客観的患者緊急度レベルが、前記所与の患者の臨床医緊急度評価の前記レベルと一致するか否かを判定する命令を更に含む、システム。
【請求項3】
前記所与の患者の客観的患者緊急度のレベルが、前記所与の患者の臨床医緊急度評価の前記レベルと一致しないときは、前記医療関係者に、前記所与の患者の現在の臨床医緊急度評価が不正確であることを知らせるように、出力が前記医療関係者に提供されるようにする命令を更に含む、請求項に記載のシステム。
【請求項4】
前記所与の患者の客観的患者緊急度のレベルが、前記所与の患者の臨床医緊急度評価の前記レベルと一致しないときは、前記医療関係者に、前記所与の患者に対する追加の懸念が必要であることを知らせるように、前記所与の患者の客観的患者緊急度レベルが前記医療関係者に出力される様式を変更する命令を更に含む、請求項に記載のシステム。
【請求項5】
少なくとも1つの患者特徴ベクトルは、
患者の健康パラメータが、侵襲的に測定されているか、又は、非侵襲的に測定されているかを示す特徴、
患者の健康指標が測定される頻度を示す特徴、
患者がライフクリティカルシステムによって支援されているかどうかを示す特徴、及び
患者に投与される薬の投薬量又は継続時間を示す特徴
のうちの少なくとも1つを含む、請求項1又は2に記載のシステム。
【請求項6】
前記複数の患者特徴ベクトルそれぞれは、対応する患者に関連付けられるアウトカムを示すラベルを含む、請求項1又は2に記載のシステム。
【請求項7】
1つ以上のプロセッサによって、所与の患者に関連付けられる患者特徴ベクトルを取得するステップと、
前記1つ以上のプロセッサによって、前記患者特徴ベクトルを、前記1つ以上のプロセッサによって動作させられる機械学習モデルへの入力として提供するステップと、
前記1つ以上のプロセッサによって、前記機械学習モデルからの出力に基づいて、前記所与の患者に関連付けられる臨床医緊急度評価のレベルを推定するステップと、
を含み、
前記患者特徴ベクトルは、前記所与の患者の1つ以上の観察可能な健康指標を示す1つ以上の健康指標特徴と、前記所与の患者に提供された治療の1つ以上の特徴を示す1つ以上の治療特徴とを含み、
前記1つ以上のプロセッサによって、前記1つ以上の健康指標特徴にのみ基づいて、前記所与の患者の客観的患者緊急度のレベルを決定するステップと、
前記所与の患者の客観的患者緊急度レベルが、前記所与の患者の臨床医緊急度評価の前記レベルと一致するか否かを判定するステップを更に含む、コンピュータ実施方法。
【請求項8】
前記所与の患者の客観的患者緊急度のレベルが、前記所与の患者の臨床医緊急度評価の前記レベルと一致しないときは、医療関係者に、前記所与の患者の現在の臨床医緊急度評価が不正確であることを知らせるように、前記医療関係者に出力を提供するステップを更に含む、請求項に記載のコンピュータ実施方法。
【請求項9】
前記所与の患者の客観的患者緊急度のレベルが、前記所与の患者の臨床医緊急度評価の前記レベルと一致しないときは、医療関係者に、前記所与の患者に対する追加の懸念が必要であることを知らせるように、前記所与の患者の客観的患者緊急度レベルが前記医療関係者に出力される様式を変更するステップを更に含む、請求項に記載のコンピュータ実施方法。
【請求項10】
前記所与の患者に関連付けられる臨床医緊急度評価の推定される前記レベルに少なくとも部分的に基づいて、1つ以上の医用アラーム閾値を調整するステップを更に含む、請求項に記載のコンピュータ実施方法。
【請求項11】
前記所与の患者に関連付けられる臨床医緊急度評価の推定される前記レベルに少なくとも部分的に基づいて、前記所与の患者を入院、退院又は移動させるかどうかに関して助言する出力を、医療関係者に提供するステップを更に含む、請求項に記載のコンピュータ実施方法。
【請求項12】
前記1つ以上のプロセッサによって、前記客観的患者緊急度のレベルと前記所与の患者に関連付けられる臨床医緊急度評価の推定される前記レベルとを比較するステップと、
前記所与の患者に関連付けられる臨床医緊急度評価の推定される前記レベル及び前記客観的患者緊急度のレベルに少なくとも部分的に基づいて、1つ以上の医用アラーム閾値を調整するステップと、
を含む、請求項に記載のコンピュータ実施方法。
【発明の詳細な説明】
【技術分野】
【0001】
[0001] 本明細書に説明される様々な実施形態は、概して、健康管理に関する。より具体的には、排他的ではないが、本明細書に開示される様々な方法及び装置は、患者緊急度(patient acuity)の臨床医評価の推定及び使用に関する。
【背景技術】
【0002】
[0002] 様々な健康指標に基づいて、患者の悪化及び/又は患者が必要とする医療(即ち、「患者緊急度」)を評価する様々な技術が存在している。これらの健康指標には、年齢、性別、体重、身長、血圧、乳糖レベル、血糖、体温、遺伝的病歴等が含まれるが、これらに限定されない。これらの健康指標は、臨床判断支援(CDS)アルゴリズムによって利用され、患者緊急度の評価が提供される。一般に、CDSアルゴリズムは、医療専門家の意思決定の代わりになるものではなく、その補完をするものとして使用される。
【発明の概要】
【発明が解決しようとする課題】
【0003】
[0003] CDSアルゴリズムは、臨床医に、患者状態のそれまでに知られていない変化の存在を警告することが多いが、状況が違えば、臨床医は、当該変化(例えば緊急度の悪化)を既に把握していることがある。このような場合、CDSアルゴリズムは、臨床医に新しい情報を提供しないどころか、苛立たしさを感じさせるに過ぎない場合がある。このような状況が繰り返し起きると、臨床医は、CDSアルゴリズムの出力を完全に無視し始めてしまう。
【課題を解決するための手段】
【0004】
[0004] 本開示は、患者緊急度の臨床医評価を推定及び利用する発明方法及び装置に関する。様々な実施形態において、複数の患者に関連付けられる健康指標に関する病歴データだけでなく、これらの患者に提供された治療の特徴も使用して、臨床医緊急度評価指数(「CAAI」)を推定する方法を確立する。幾つかの実施態様では、このような方法の確立には、機械学習モデルをトレーニングすることが含まれる。推定CAAIは、様々な目的に使用することができる。
【0005】
[0005] 幾つかの実施形態では、CAAIは、例えば患者の緊急度の現在の臨床医評価が正確であるかどうかを決定するために、患者緊急度の他の指標と合わせて使用されてもよい。幾つかの実施形態では、CAAIは、患者を入院/退院/転院(「ADT」)させるかどうか、様々な治療及び手術を設定するかどうか、患者に関連付けられている医用アラームを変更するかどうか等の決定といった様々な医療上の決定を行う際に考慮される。幾つかの実施形態では、CAAIは、健康指標だけを考慮する別の指標よりも患者緊急度のよりロバスト及び/又は正確な指標として使用される。
【0006】
[0006] 更に又は或いは、CAAIは、様々な目的のために様々な医療関係者に(例えばコンピュータデバイス上の出力として)通信される。例えばCAAIは、勤務を開始したばかりの医者に提供される。当該医者は、CAAIがなければ、患者の緊急度をすぐに知ることができない。したがって、当該医者は、より迅速に物事をよく把握することができる。別の例として、CAAIは、看護師に提供され、どれくらい注意深く患者を診るべきか看護師を指導する。更に別の例では、CAAIは、医療技術者に提供され、医療機器をどのようの調整又は設定するか医療技術者を指導する。
【0007】
[0007] 本開示全体で説明される例は、機械学習分類器を使用して実現される。しかし、これは限定を意味していない。一般に、本明細書に説明される技術は、他のやり方で行われてもよい。例えば幾つかの実施態様では、関心患者のCAAIは、院内手続き及び方針の一部として確立される1つ以上の規則(例えば発見的問題解決法)を使用して決定される。そうすると、当該CAAIは、コンピュータを使用してもしなくても、上述のとおり、様々な目的に使用することができる。
【0008】
[0008] 一般に、1つの態様では、複数の患者に関連付けられる複数の患者特徴ベクトルが取得される。各患者特徴ベクトルは、患者の1つ以上の観察可能な健康指標を示す1つ以上の健康指標特徴と、患者に提供された治療の1つ以上の特徴を示す1つ以上の治療特徴とを含む。機械学習分類器が、患者特徴ベクトルに基づいてトレーニングされ、後続の患者特徴ベクトルを入力として受信し、また、臨床医緊急度評価のレベルの指示を出力として提供する。後に、所与の患者に関連付けられる患者特徴ベクトルが取得され、機械学習分類器に入力として提供される。機械学習分類器からの出力に基づいて、当該所与の患者に関連付けられる臨床医緊急度評価のレベルが推定される。
【0009】
[0009] 様々な実施形態において、所与の患者の臨床医緊急度評価の推定されるレベルが、臨床医緊急度評価閾値を満たさないことが決定される。したがって、医療関係者に、所与の患者の緊急度の現在の臨床医評価が不正確であることを知らせるように、出力が当該医療関係者に提供される。
【0010】
[0010] 様々な実施形態において、所与の患者の客観的緊急度レベルが、当該所与の患者の臨床医緊急度評価のレベルと一致しないことが決定される。様々なバージョンにおいて、医療関係者に、患者の緊急度の現在の臨床医評価が不正確であることを知らせるように、出力が当該医療関係者に提供される。様々なバージョンにおいて、医療関係者に、所与の患者に対する追加の懸念が必要であることを知らせるように、所与の患者の客観的緊急度レベルの指標が医療関係者に出力される様式が変更される。
【0011】
[0011] 様々な実施形態において、少なくとも1つの患者特徴ベクトルは、患者の健康パラメータが、侵襲的に測定されているか又は非侵襲的に測定されているかを示す特徴を含む。様々な実施形態において、少なくとも1つの患者特徴ベクトルは、患者の健康指標が測定される頻度を示す特徴を含む。様々な実施形態において、少なくとも1つの患者特徴ベクトルは、患者がライフクリティカルシステムによって支援されているかどうかを示す特徴を含む。様々な実施形態において、少なくとも1つの患者特徴ベクトルは、患者に投与される薬の投薬量又は継続時間を示す特徴を含む。様々な実施形態において、複数の患者特徴ベクトルそれぞれは、対応する患者に関連付けられるアウトカムを示すラベルを含む。
【0012】
[0012] 「患者緊急度」とは、本明細書において使用される場合、患者が必要とする医療の程度を意味するように使用される。患者緊急度は更に、患者の悪化に密接に関係している概念を指し、これは、患者の悪化のレベル(例えばどれくらい急に悪化しているか)を患者が必要とする治療量に相関させる。例えば出血している及び/又は他の致命症状のある重症患者は、集中治療を必要とし、したがって、例えば最良の治療が時間及び休養であるような、症状が安定した患者よりも高い患者緊急度を有する。「医療関係者」又は「臨床医」には、本明細書において使用される場合、次に限定されないが、医師、看護師、上級看護師、セラピスト、技術者等が含まれる。
【0013】
[0013] 当然ながら、上記概念と、以下に詳細に記載される追加の概念(ただし、これらの概念は相互に矛盾しない)とのあらゆる組み合わせは、本明細書に開示される発明主題の一部であると考えられる。具体的には、本開示の終わりに登場する請求項に係る主題のあらゆる組み合わせは、本明細書に開示される発明主題の一部であると考えられる。更に、当然ながら、参照することにより組み込まれた任意の開示にも登場する、本明細書にて明示的に用いられる専門用語を、本明細書に開示される特定の概念と最も整合する意味に合わせるべきである。
【0014】
[0014] 本明細書に説明される様々な実施形態は、1つ以上のプロセッサと、1つ以上のプロセッサに結合されるメモリとを含み、メモリは、1つ以上のプロセッサによる実行に応えて、1つ以上のプロセッサに、複数の患者に関連付けられる複数の患者特徴ベクトルを取得させ、後続の患者特徴ベクトルを入力として受信し、臨床医緊急度評価のレベルの指示を出力として提供するように、患者特徴ベクトルに基づいて、機械学習モデルをトレーニングさせる命令を記憶し、各患者特徴ベクトルは、複数の患者のうちの1人の患者に関連付けられる複数の健康指標特徴と、1人の患者に関連付けられる複数の健康指標特徴に少なくとも部分的に基づく医療関係者による1人の患者の治療に関連付けられる複数の治療特徴とを含む、システムに関する。
【0015】
[0015] 本明細書に説明される様々な実施形態は、1つ以上のプロセッサによって、所与の患者に関連付けられる患者特徴ベクトルを取得するステップと、1つ以上のプロセッサによって、患者特徴ベクトルを、1つ以上のプロセッサによって動作させられる機械学習モデルへの入力として提供するステップと、1つ以上のプロセッサによって、機械学習モデルからの出力に基づいて、所与の患者に関連付けられる臨床医緊急度評価のレベルを推定するステップとを含み、患者特徴ベクトルは、所与の患者の1つ以上の観察可能な健康指標を示す1つ以上の健康指標特徴と、所与の患者に提供された治療の1つ以上の特徴を示す1つ以上の治療特徴とを含む、コンピュータ実施方法に関する。
【0016】
[0016] 本明細書に説明される様々な実施形態は、コンピュータシステムによる実行に応えて、コンピュータシステムに、次の動作:複数の患者に関連付けられる複数の患者特徴ベクトルを取得する動作と、後続の患者特徴ベクトルを入力として受信し、臨床医緊急度評価のレベルの指示を出力として提供するように、患者特徴ベクトルに基づいて、機械学習モデルをトレーニングする動作と、所与の患者に関連付けられる患者特徴ベクトルを取得する動作と、機械学習モデルへの入力として、患者特徴ベクトルを提供する動作と、機械学習モデルからの出力に基づいて、所与の患者に関連付けられる臨床医緊急度評価のレベルを推定する動作とを行わせる命令を含み、各患者特徴ベクトルは、1人の患者の1つ以上の観察可能な健康指標を示す1つ以上の健康指標特徴と、1人の患者に提供された治療の1つ以上の特徴を示す1つ以上の治療特徴とを含む、非一時的コンピュータ可読媒体に関する。
【0017】
[0017] システムは、臨床医が患者状態について既に理解していること(即ち、臨床医緊急度評価)を推定するために、機械学習モデルを確立することによって、「客観的」緊急度評価(例えばCDSアルゴリズムの出力)を臨床医及び他のスタッフにどのように提示するかをより賢く選択することができる。臨床医緊急度評価が、客観的緊急度評価と既に一致する場合、臨床医は、患者状態について既に把握していると推断され、臨床医が客観的緊急度評価は役に立たないと見なすか又は(例えばアラーム疲労によって)客観的緊急度評価を無視し始める可能性を低減するために、より受動的な通知(又は更には全く通知をしないこと)を選択して、アラーム(又は他の能動的通知)が抑制される。反対に、より能動的な通知手段は、臨床医緊急度評価と客観的緊急度評価とに相違がある場合に取っておかれる。この場合、客観的緊急度評価が、臨床医に新しい情報を提供する可能性がより高い。
【0018】
[0018] メモリが更に、所与の患者に関連付けられる健康指標特徴及び治療特徴を含む1つ以上の特徴ベクトルを、機械学習モデルに入力として提供し、機械学習モデルの出力に基づいて、所与の患者の臨床医緊急度評価のレベルを推定する命令を含む様々な実施形態が説明される。
【0019】
[0019] 様々な実施形態は、所与の患者の臨床医緊急度評価の推定されるレベルが、臨床医緊急度評価閾値を満たさないことを決定し、医療関係者に、所与の患者の緊急度の現在の臨床医評価が不正確であることを知らせるように、出力が当該医療関係者に提供されるようにする命令を追加的に含む。
【0020】
[0020] 様々な実施形態は、所与の患者の客観的緊急度レベルが、当該所与の患者の臨床医緊急度評価のレベルと一致しないことを決定する命令を追加的に含む。
【0021】
[0021] 様々な実施形態は、医療関係者に、所与の患者の緊急度の現在の臨床医評価が不正確であることを知らせるように、出力が当該医療関係者に提供されるようにする命令を追加的に含む。
【0022】
[0022] 様々な実施形態は、医療関係者に、所与の患者に対する追加の懸念が必要であることを知らせるように、所与の患者の客観的緊急度レベルの指標が医療関係者に出力される様式を変更する命令を追加的に含む。
【0023】
[0023] 少なくとも1つの患者特徴ベクトルは、患者の健康パラメータが、侵襲的に測定されているか又は非侵襲的に測定されているかを示す特徴を含む様々な実施形態が説明される。
【0024】
[0024] 少なくとも1つの患者特徴ベクトルは、患者の健康指標が測定される頻度を示す特徴を含む様々な実施形態が説明される。
【0025】
[0025] 少なくとも1つの患者特徴ベクトルは、患者がライフクリティカルシステムによって支援されているかどうかを示す特徴を含む様々な実施形態が説明される。
【0026】
[0026] 少なくとも1つの患者特徴ベクトルは、患者がライフクリティカルシステムによって支援されているかどうかを示す特徴を含む様々な実施形態が説明される。
【0027】
[0027] 複数の患者特徴ベクトルそれぞれは、対応する患者に関連付けられるアウトカムを示すラベルを含む様々な実施形態が説明される。
【0028】
[0028] 幾つかの実施態様は、トレーニングされたモデルの利用に関する。例えばトレーニングされたモデルは、反復更新に利用され、トレーニングされたモデルは更に発展され、更新される。これは、様々な実施形態において、様々な患者特徴ベクトルを、前にトレーニングされたモデルに入力することによって達成される。患者特徴ベクトルは、既にトレーニングされたモデルへの入力として提供される。使用時、所与の患者に関連付けられる患者特徴ベクトルが取得され、機械学習モデルに入力として提供される。患者特徴ベクトルの使用及びその入力後、機械学習モデルの出力は、所与の患者及び患者特徴ベクトルに関連付けられる臨床医緊急度評価の推定されるレベルを含む。したがって、様々な例において、トレーニングされた機械学習モデルを使用して、CAAIを生成し、客観的尺度を取得し、アラーム特徴を比較及び選択する方法も提供される。
【0029】
[0029] 幾つかの実施態様では、患者特徴ベクトルからもたらされる候補CAAIを生成するステップを含む方法が提供される。方法は更に、現在の患者特徴ベクトル及び治療ベクトルを、トレーニングされた機械学習分類器に入力として入力するステップと、トレーニングされたモデルを介して、臨床医緊急度評価の推定レベルを、関連付けられる患者の出力として生成するステップとを含む。更に、臨床医緊急度評価の推定レベルは、上記されたようなトレーニングされた機械学習モデルを使用して生成されてもよい。
【0030】
[0030] 幾つかの態様において、トレーニングされた機械学習モデルを使用するコンピュータ実施方法が説明される。当該方法は、1つ以上のプロセッサによって、所与の患者に共に関連付けられる患者特徴ベクトル及び治療特徴ベクトルを取得するステップと、1つ以上のプロセッサによって、1つ以上のプロセッサによって動作させられる機械学習モデルへの入力として、患者特徴ベクトル及び治療特徴ベクトルを提供するステップと、1つ以上のプロセッサによって、機械学習モデルからの出力に基づいて、所与の患者に関連付けられる臨床医緊急度評価のレベルを推定するステップとを含む。更に、様々な実施態様において、機械学習モデルが、本明細書に説明される様々なコンピュータ実施トレーニング方法ステップを使用してトレーニングされた、トレーニング済機械学習モデルの使用について説明される。
【0031】
[0031] 幾つかの実施態様において、機械学習モデルのトレーニングには、複数のトレーニング例のトレーニング出力に基づく畳み込みネットワーク上で逆伝搬を行うことを含む。
【0032】
[0032] 他の実施態様は、上記方法のうちの1つ以上の方法といった方法を行うように、プロセッサ(例えば中央処理演算ユニット(CPU))によって実行可能である命令を記憶した非一時的コンピュータ可読記憶媒体を含む。更に別の実施態様は、上記方法のうちの1つ以上の方法といった方法を行うように、記憶されている命令を実行するように動作可能である1つ以上のプロセッサを含む1つ以上のコンピュータ及び/又は1つ以上の学習モデルからなるシステムを含む。
【0033】
[0033] 様々な実施形態は、臨床医に臨床判断支援情報を提示する方法、当該方法を行うデバイス、及び、当該方法を実行するための命令が符号化された非一時的機械可読記憶媒体に関し、当該方法は、患者を記述する複数の特徴を受信するステップと、患者状態の推定値として、患者緊急度値を生成するように、複数の特徴の少なくとも第1の部分に、第1のトレーニングされたモデルを適用するステップと、患者状態の臨床医評価の推定値として、臨床医緊急度評価値を生成するように、複数の特徴の少なくとも第2の部分に、第2のトレーニングされたモデルを適用するステップと、患者緊急度値を、臨床医緊急度評価値と比較するステップと、患者緊急度値と臨床医緊急度評価値との比較に基づいて、患者緊急度値を提示するための少なくとも1つの提示特徴を決定するステップとを含む。
【0034】
[0034] 複数の特徴の第2の部分が、患者に提供された治療の少なくとも1つの特徴を含む様々な実施形態が説明される。
【0035】
[0035] 様々な実施形態は、患者緊急度値と臨床医緊急度評価値との比較が、臨床医緊急度評価値は、患者緊急度値と実質的に同じであることを決定すると、患者緊急度値に基づいて生成されるアラームを抑制するステップを追加的に含む。
【0036】
[0036] 上記決定するステップは、患者緊急度値と臨床医緊急度評価値との比較が、臨床医緊急度評価値は、患者緊急度値とは大幅に異なることを決定すると、注意喚起提示特徴を選択するステップを含む様々な実施形態が説明される。当然ながら、注意喚起提示特徴は、臨床医が出力コンピュータを見ていないとき、又は、出力コンピュータをちらりとしか見ていないときに、臨床医の注目を引くことができる様々な特徴を含む。例えば注目を喚起するために、出力患者緊急度値のテキストサイズを大きくしたり、画面上の他の情報出力から目立たせるために患者緊急度値の色を変更したり、患者緊急度値を点滅させたり、可聴音を出力したりする。幾つかの実施形態では、注目喚起提示特徴は、臨床医緊急度評価値が、患者緊急度値と大幅に一致しない場合に(幾つかの実施形態では、その場合においてのみ)使用される「注目喚起」であるように選択される1つ以上の特徴からなる所定のセットであってよい。少なくとも1つの提示特徴が、可聴音、テキストサイズ、テキストの色及びテキスト点滅設定のうちの少なくとも1つを含む様々な実施形態が説明される。
【0037】
[0037] 当然ながら、上記概念と、以下に詳細に記載される追加の概念とのあらゆる組み合わせは、本明細書に開示される主題の一部であると考えられる。例えば本開示の終わりに登場する請求項に係る主題のあらゆる組み合わせは、本明細書に開示される主題の一部であると考えられる。
【図面の簡単な説明】
【0038】
[0038] 図面において、同様の参照符号は、一般に、様々な図を通して同じ部品を指している。更に、図面は必ずしも縮尺通りではなく、一般に、本明細書に説明される実施形態の様々な原理の説明に重点が置かれている。
【0039】
図1A】[0039] 図1Aは、複数の健康指標に基づき従来の患者緊急度指数が決定される方法を説明する。
図1B】[0040] 図1Bは、様々な実施形態に従って、複数の健康指標及び治療特徴に基づき、本明細書に開示される技術を使用して臨床医緊急度評価指数が決定される方法を説明する。
図2】[0041] 図2は、様々な実施形態に従って、開示される技術が採用される環境を概略的に示す。
図3】[0042] 図3は、様々な実施形態に従って、本開示の選択された態様で構成される機械学習分類器をトレーニングする例示的な方法を概略的に示す。
図4】[0043] 図4は、様々な実施形態に従って、CAAIを推定し、当該推定を様々な目的に使用する例示的な方法を概略的に示す。
図5】[0044] 図5は、様々な実施形態による例示的なコンピュータシステムのコンポーネントを概略的に示す。
【発明を実施するための形態】
【0040】
[0045] 様々な健康指標に基づいて、患者緊急度を評価する様々な技術が存在する。しかし、観察される健康指標は、必ずしも患者緊急度に関して包括的な見解を提供しない。医療関係者によって患者に提供された治療は、それ自体が、患者緊急度を高度に示す場合がある。したがって、当技術分野において、患者緊急度の臨床医評価を推定し、患者緊急度の確定された臨床医評価を様々なやり方で利用するために、臨床医によって提供された治療の特徴を考慮に入れる必要がある。より一般的には、本出願人は、医学的指標といった様々な信号及び/又は患者に提供された治療の特徴に基づいて、患者の臨床医緊急度評価を予測及び/又は推定することが有益であることを認識及び理解している。臨床医緊急度評価(例えば臨床医の患者の状態に対する現在の見解の推定)を考慮に入れることによって、システムは、関連の患者緊急度尺度を出力する方法をより賢く決定することができる。例えば急性腎障害(AKI)に対する臨床医緊急度評価が、別のCDSアルゴリズムによるAKIの「従来」の評価とほぼ一致する場合、客観的評価の出力が受動的に提示される(例えば単にモニタの画面上に表示される)。その一方で、AKIに対する臨床医の緊急度評価が、客観的AKI CDSアルゴリズムよりもはるかに低い(即ち、この例では、あまり深刻ではない)場合、出力はより能動的に提示される(例えば点滅テキスト、アラーム、主治医に送られるメッセージ等)。上記に鑑みて、本発明の様々な実施形態及び実施態様は、患者緊急度の臨床医評価を推定及び利用することに関する。
【0041】
[0046] 図1Aを参照するに、「従来」の患者緊急度指数が決定される方法の一例が示される。患者に関連付けられる様々ないわゆる「健康指標」(例えば観察可能な属性)を使用して、患者の緊急度が決定される。本例では、患者の年齢、体重、性別、血圧、心拍数及び複数の検査結果LAB1〜Nを使用して、患者に関連付けられる緊急度指数(又は「スコア」)が決定される。体温、血糖値、酸素濃度等といった他の健康指標も、図1Aに示される健康指標に加えて又は代わりに使用してもよい。このような従来の指数は、患者の緊急度の評価には有用ではあるが、様々な病気及び疾患の診断及び/又は治療における臨床医の専門知識及び/又は経験を説明することができない。場合によっては、従来の指数は、臨床医が既に知っていることを単に反映し、したがって、冗長的な情報となってしまう場合がある。
【0042】
[0047] したがって、様々な実施形態において、本明細書に説明される技術は、患者のいわゆる「臨床医緊急度評価指数」、即ち、「CAAI」を決定する。CAAIは、図1Aに示される1つ以上の健康指標を考慮することに加えて、医療関係者によって患者に提供された治療の1つ以上の特徴も考慮する。多くの場合、患者に提供された治療の特徴は、客観的健康指標自体よりも臨床医の患者に対する懸念(つまり、患者緊急度)をより強く反映することができる。本明細書に説明されるように、CAAIは様々な目的に使用される。
【0043】
[0048] 図1Bは、様々な実施形態に従って、開示される技術を使用して、CAAIを決定する方法の一例を示す。100において大まかに示されるように、図1Aにおいて考慮されたものと同じ健康指標のうちの1つ以上が考慮される。しかし、102において大まかに示されるように、患者に提供された治療の1つ以上の特徴も、健康指標に加えて又はその代わりに考慮される。本例では、CAAI決定のために考慮される治療特徴には、特定の検査(LAB)が行われたやり方(侵襲的又は非侵襲的)、処方(又は投与された)薬(MEDICINE)、処方(又は投与された)MEDICINEの投薬量、MEDICINEが投与される頻度(及び/又は投与するように処方された頻度)、及び、複数の他の治療特徴(図1Bに、TREATMENT、…、TREATMENTと示される)が含まれる。これらは、考慮すべき治療特徴の例に過ぎず、限定を意味してはいない。これらの特徴を使用して推定されるCAAIは、多くの場合、他の従来の指数よりもよりロバストであり、及び/又は、より正確に患者緊急度を反映する。
【0044】
[0049] 図2は、様々なコンポーネントが、本明細書に説明される技術を実行するように相互に作用する例示的な環境200を示す。環境200は、本開示の選択された態様で構成される様々なコンポーネントを含み、臨床医評価決定エンジン202、1つ以上の健康指標データベース204、1つ以上の治療データベース206、1つ以上の医学的評価エンジン208、及び/又は、1つ以上の医用アラームエンジン210を含む。スマートホン202a、ラップトップコンピュータ212b、タブレットコンピュータ212c及びスマートウォッチ212dといった様々なクライアントデバイス212も、図2に示される他のコンポーネントと通信する。幾つかの実施形態では、図2のコンポーネントは、1つ以上の無線又は有線ネットワーク214を介して通信可能に結合されるが、そうである必要はない。また、コンポーネントは、図2において、別々に示されているが、当然ながら、図2に示される1つ以上のコンポーネントは、(1つ以上のプロセッサを含んでよい)1つのコンピュータシステム内で組み合わせられても、及び/又は、複数のコンピュータシステム(例えば複数のサーバ)に亘って実現されてもよい。
【0045】
[0050] 臨床医評価決定エンジン202は、様々な治療特徴に基づいて、1人以上の患者について、CAAIを決定する。幾つかの実施形態では、臨床医評価決定エンジン202は、健康指標及び治療特徴を含む1つ以上の特徴ベクトルを、患者に関する入力として受信し、当該入力に基づいて推定されるCAAIを出力として提供するようにトレーニングされる1つ以上の機械学習分類器216を含む。機械学習分類器216の出力は、本明細書に説明される様々なコンポーネントによって、様々なやり方で使用される。本明細書には、機械学習分類器を使用してCAAIだけでなく、客観的患者緊急度指標を作成することについて様々な実施形態が説明されるが、当然ながら、様々な実施形態は、例えば緊急度指数を数値で表すべき場合に有用である線形回帰モデルといった他の機械学習モデルを、追加的に又は代替的に使用してもよい。
【0046】
[0051] 健康指標データベース204は、複数の患者に関連付けられる観察された及び/又は観察可能な健康指標の記録を含む。例えば健康指標データベース204は、特に患者の1つ以上の健康指標を示すデータを含む複数の患者記録を含む。例示的な健康指標は、本明細書の他の部分に説明されている。他の実施形態では、健康指標データベースは、例えば研究の一環として収集された複数の患者に関連付けられる匿名健康指標を含む。
【0047】
[0052] 治療データベース206は、医療関係者による患者の治療に関する情報を含み、健康指標データベース204には含まれない患者に提供された治療の様々な特徴を含む。例えば健康指標データベース204は、血圧、心拍数、血糖値、体温、乳糖レベル等といった複数の患者の様々なバイタルサイン測定値を含むが、治療データベース206は、どのようにバイタルサインが取得されたかの特徴を示す記録を含む。例えば治療データベース206は、特定のバイタルサイン測定値が侵襲的に取られたか又は非侵襲的に取られたか(後者の場合、臨床医の懸念の度合いはより高い)を示すデータ、特定のバイタルサインが取られた/測定された頻度を示すデータ、測定を行った理由を示すデータ等を含む。より一般的に、治療データベース206は、患者に提供された治療の特徴を示す記録を含む。これらの記録には、次に限定されないが、特定の薬が処方されたか又は特定の治療が施されたかどうか、薬が処方された/治療が施された頻度、処方薬/施された治療の量(即ち、投薬量)、特定の治療及び/又は予防ステップが取られたかどうか、流体が投与されているかどうか、どれくらいの頻度で流体が投与されているか、及び/又は、どれくらいの量の流体が投与されているか等が含まれる。
【0048】
[0053] 幾つかの実施形態では、機械学習分類器216は、健康指標データベース204から取得される健康指標特徴、及び/又は、治療データベース206から取得される1つ以上の治療特徴を含む1つ以上の患者特徴ベクトルを使用してトレーニングされる。機械学習分類器216は、十分にトレーニングされると、後続の患者に関連付けられる患者特徴ベクトルを入力として受信し、当該後続の患者に関する臨床医緊急度評価のレベルの指示を出力として提供する。要するに、機械学習分類器216は、過去の患者が、様々な健康指標に応じて、どのように治療されたかを「学習」し、その知識を使用して、1人以上の臨床医が、様々な同じ信号に基づいて、現在、患者の緊急度をどのように評価するかを「推測」又は「推定」する。この推測又は推定は、上述のとおり、「CAAI」と呼び、様々な目的に使用される。
【0049】
[0054] CAAIが使用される1つの目的は、現在の患者の緊急度を評価することである。医学的評価エンジン208は、患者の緊急度を決定するために、1人以上の医療関係者によって操作可能である1つ以上のクライアントデバイス212によってアクセス可能である。幾つかの実施形態では、医学的評価エンジン208は、患者のCAAIに基づいて、当該患者が特定のレベルの緊急度があると分類する。例えば患者特徴ベクトルは、機械学習分類器216に、入力として提供され、機械学習分類器216は、次に、CAAIを提供する。CAAIは、次に、医学的評価エンジン208に戻される。医学的評価エンジン208は、当該CAAIを単独で又は他のデータ点と共に使用して、患者の緊急度の評価を提供する。この評価は、医療関係者がクライアントデバイス212において利用可能にされるので、医療関係者は、それに応じて反応することができる。例えば新しいER医師が勤務を開始したばかりだと仮定する。当該医師がよく知らない複数のER患者についてすぐに把握させるために、当該医師に、患者のCAAI指標が(例えば何れかのクライアントデバイス212において)提供される。したがって、当該医師は、どの患者が最も緊急な処置を必要とするか、すぐに確認することができる。
【0050】
[0055] 幾つかの実施形態では、医学的評価エンジン208又は図2に示される別のコンポーネントは、CAAIに基づいて、所与の患者の緊急度の現在の臨床医評価が正確であるかどうかを決定する。例えば医学的評価エンジン208は、機械学習分類器216によって出力されたCAAIが、臨床医緊急度評価閾値を満たさないと決定する。幾つかの実施形態では、機械学習分類器216は、入力ベクトルを、臨床医緊急度評価の「等級」又は「スコア」に対応する出力クラスにマッピングする。医学的評価エンジン208が、臨床医緊急度評価決定エンジン202から、機械学習分類器216が臨床医緊急度評価に不合格の等級を与えたことの指示を受信すると、医学的評価エンジン208は、聴覚的、視覚的及び/若しくは触覚的出力を提供するか、並びに/又は、当該出力を1つ以上のクライアントデバイス212上に提供して、医療関係者に患者の緊急度の現在の臨床医評価を再評価すべきであることを伝える。
【0051】
[0056] 更に又は或いは、幾つかの実施形態では、医学的評価エンジン208は、所与の患者の「客観的」緊急度レベルが、当該患者に関連付けられる健康指標及び治療特徴に基づいて、当該所与の患者について推定されるCAAIと一致する(例えばCAAIの所定範囲内にある)かどうかを決定する。これに応じて、医学的評価エンジン208は、出力を、(例えばクライアントデバイス212において)医療関係者に提供して、医療関係者に、患者の緊急度の現在の臨床医評価が不正確であることを知らせる。例えば医学的評価エンジン208は、客観的患者緊急度を(例えば大きい又は点滅テキスト、アラーム音を用いて、医療スタッフのデバイスに送られるメッセージを使用して)より能動的に出力することを選択してもよい。
【0052】
[0057] 「客観的」患者緊急度とは、本明細書において用いられる場合、緊急度の臨床医評価を反映し、患者に提供された主観的治療の特徴にも基づいているCAAIとは対照的に、観察可能な健康指標(例えば年齢、心拍数、血圧、性別等)だけに基づく患者緊急度の(例えばCDSアルゴリズムによって出力される)客観的測定値を意味する。使用される幾つかの例示的な「客観的」指数には、血行動態不安定指数(「HII」)又は早期劣化指数(「EDI」)が含まれる。これらは共にフィリップスヘルスケア社によって開発された。他の「客観的」指数は、幾つか例を挙げると、急性肺損傷(「ALI」)及び/又は急性呼吸促迫症候群(「ARDS」)を検出するアルゴリズムといった様々なアルゴリズムを使用して、患者健康指標に基づいて計算されてもよい。様々な実施形態では、複数のCAAIアルゴリズムがトレーニングされ、これらの客観的患者緊急度のうちの1つ以上とのペアリングのために配置される。例えば血行動態不安定のCAAIを使用して、臨床医評価をHIIと比較し、その一方で、EDIの別のCAAIを使用して、臨床医評価をEDIと比較する。幾つかの実施形態では、CAAIの出力は、対応する客観的CDSアルゴリズムによって出力されるタイプと同じタイプであるため、値を直接比較することができる。例えば客観的CDSアルゴリズムが、1から10の段階の値を出力する場合、対応するCAAIアルゴリズムも、1から10の段階の値を出力する。別の実施形態として、客観的CDSアルゴリズムが分類を出力する場合、対応するCAAIアルゴリズムも分類を出力する。
【0053】
[0058] 幾つかの実施形態では、所与の患者の客観的緊急度レベルの指標が医療関係者に出力される様式が、例えば医学的評価エンジン208によって、上記健康指標ベースの指数のうちの1つ以上を使用して生成された患者の客観的緊急度レベルと、当該患者に関連付けられるCAAIとの比較に基づいて、変更される。医学的評価エンジン208が、患者のCAAIは、例えばHIIを使用して計算された患者の客観的緊急度と「一致」する(例えばその所定範囲内にある)と決定したと仮定する。この状況では、医学的評価エンジン208は、臨床医が当該患者について十分に考えていると決定する。したがって、医学的評価エンジン208は、医療関係者に出力される1つ以上のHII指標が、あまり目立たないように出力される(例えば1つ以上のクライアントデバイス212の画面上に表示される)ようにするか、及び/又は、全く出力されないようにして、情報過多で医療関係者を苛立たせないようにするか、又は、医療関係者に情報が集中しないようにする。
【0054】
[0059] その一方で、医学的評価エンジン208が、患者のCAAIは、患者のHII(又は別の同様の客観的緊急度指数)と一致しないと決定すると、これは、医療関係者が、患者の悪化を過小評価していた場合である。したがって、医学的評価エンジン208は、1つ以上のHII指標が、(例えば1つ以上のクライアントデバイス212上に)より目立つように、より頻繁に出力されるようにして、医療関係者にこの不一致について知らせる。
【0055】
[0060] 医学的評価エンジン208又は別のコンポーネントは、機械学習分類器216によって出力されたCAAIに基づいて、他の決定をしてもよい。幾つかの実施形態では、患者に関連付けられるCAAIに少なくとも部分的に基づいて、当該患者のADTが決定される。上述のとおり、CAAI自体を、(臨床医緊急度評価の指標としてのその役割に加えて)患者緊急度の尺度として使用することができる。したがって、CAAIは、患者の退院及び/又は患者の集中治療室(「ICU」)から例えば回復室への移動が妥当であるように、患者が必要とする治療量が十分に低いかどうかを決定する。その一方で、医学的評価エンジン208は、患者のCAAIに少なくとも部分的に基づいて、当該患者を手術室又はトリアージステーションといった別の場所からICUに移動すべきであることを決定することができる。
【0056】
[0061] CAAIが使用される別の目的は、患者を治療及び/又はモニタリングするために使用される1つ以上の機械に関連付けられる1つ以上の医用アラームを調整することである。様々な実施形態では、医用アラームエンジン210は、1つ以上の閾値又は他の基準を選択し、これらの閾値又は基準が満たされると、1つ以上のアラームをトリガする。これらの閾値及び/又は基準は、(例えばクライアントデバイス212a〜212dを介して)医療関係者に、及び/又は、患者を治療若しくはモニタリングする1つ以上の医療機械(図示せず)において利用可能にされる。
【0057】
[0062] 機械学習分類器216によって提供されたCAAIが、1つのバイタルサイン又はバイタルサインの組み合わせ(例えば最小/最大許容血圧、最小/最大許容血糖値、最小/最大許容血圧/心拍数等)に関連付けられる閾値を選択するために使用されると仮定する。また、時間の経過と共に、医学的理解が進化する又は院内のベストプラクティスが変化し、その結果として、同じ一連の症状に対処するための様々な治療計画が進化すると仮定する。治療のこのような進化は、CAAIの対応する進化をもたらし、ひいては、1つ以上の医用アラームの変更につながる。
【0058】
[0063] 次に、図3を参照するに、機械学習分類器(例えば図2における216)をトレーニングする例示的な方法300が示される。簡潔及び明瞭とするために、図3及び本明細書に開示される他のフローチャートのステップは、システムによって行われるものとして説明される。しかし、当然ながら、1つ以上のステップが、同じ又は異なるシステムの様々なコンポーネントによって行われてもよい。例えばステップの多くは、例えば機械学習分類器216と協働して臨床医緊急度評価決定エンジン202によって行われる。
【0059】
[0064] ステップ302において、システムは、例えば図2における健康指標データベース204から、複数の患者に関連付けられる複数の健康指標特徴ベクトルを取得する。上述のとおり、これらの健康指標特徴ベクトルには、特徴として、患者に関連付けられる様々な観察可能な健康指標が含まれる。これらの健康指標特徴には、次に限定されないが、年齢、性別、体重、血圧、体温、心拍数、中心静脈圧(「CVP」)、心電図(「EKG」)測定値、酸素濃度、遺伝性といった遺伝的指標及び/又は人種的指標等が含まれる。
【0060】
[0065] ステップ304において、システムは、例えば図2における治療データベース206から、複数の患者に関連付けられる複数の治療特徴ベクトルを取得する。各治療特徴ベクトルは、医療関係者による複数の患者のうちの所与の患者の治療に関連付けられる複数の治療特徴を含む。多くの場合、所与の患者に提供された治療は、当該所与の患者に関連付けられる健康指標特徴ベクトルの対応する複数の健康指標特徴に少なくとも部分的に基づいている(例えば対応している)。「治療」には、例えば患者に薬を投与する若しくは治療を施す、又は、患者の1つ以上の状況をモニタリングする等、患者のために医療関係者が取った行動が含まれる。「治療ベクトル」には、医療関係者によって患者に提供された1つ以上の治療の1つ以上の属性又は特徴が含まれる。例えば治療は、患者の血圧を測ることである。患者の血圧測定の特徴は、血圧が侵襲的に測定されたのか又は非侵襲的に測定されたのかということ、血圧測定の頻度等である。同様の特徴が、他の健康指標測定にも関連付けられてよい。1つの非限定的な例として、患者のグラスゴー昏睡尺度(「GCS」)が測定されたかどうかということと、それが測定された頻度とが、治療ベクトルの特徴である。
【0061】
[0066] 更に別の非限定的な例として、治療ベクトルは、患者が、人工呼吸器、透析装置等といったライフクリティカルシステムによって支援されているかどうかを示す特徴を含む。更に又は或いは、患者に動脈ライン又は静脈ラインが配置されているかどうかといったように、所与の患者を治療/生命維持/モニタリングするために使用されるライフクリティカルシステムの様々な動作パラメータが治療ベクトルの特徴を構成してもよい。別の非限定的な例として、治療ベクトルは、患者に投与される薬の投薬量、頻度、又は、患者に施される治療の頻度及び/又は継続時間を示す特徴を含む。別の非限定的な例として、治療ベクトルは、乳酸塩が測定されたかどうかといったように、患者に対して1つ以上の検査が指示されているかどうかを示す特徴を含む。
【0062】
[0067] ステップ306において、システムは、ステップ302において取得された複数の健康指標ベクトルと、ステップ304において取得された対応する治療ベクトルとに基づいて、機械学習分類器(例えば216)をトレーニングする。様々な実施形態では、機械学習分類器は、ステップ306において、後続の健康指標及び治療特徴ベクトルを入力として受信し、臨床医緊急度評価(即ち、CAAI)のレベルの指示を出力として提供するようにトレーニングされる。上述のとおり、様々な実施形態では、健康指標特徴及び治療特徴は、2つの異なるベクトルではなく、患者毎に、単一のベクトルに組み込まれても又は3つ以上の異なるベクトルに組み込まれてもよい。
【0063】
[0068] 機械学習分類器は、様々なやり方でトレーニングされる。教師付き機械学習を採用する(例えば勾配降下を使用する)幾つかの実施形態では、機械学習分類器は、複数のトレーニング例を用いてトレーニングされる。各トレーニング例は、入力として、(2つの別個のベクトル又は単一の患者特徴ベクトルとしての)健康指標及び治療ベクトルを、所望の出力(「監視信号」とも呼ぶ)として、「ラベル」を含む1つの対からなる。
【0064】
[0069] 様々なタイプのラベルが使用されてよい。幾つかの実施形態では、患者アウトカムに関連付けられるラベルが使用される。患者アウトカムラベルは、プラス評価、ニュートラル評価若しくはマイナス評価、又は、様々な中間評価といった様々な形を取ってよい。更に又は或いは、患者アウトカムラベルは、死亡率、疾病率、生活の質、(例えば病院における)滞在日数、必要なフォローアップ治療の量等といった緊急度の様々な尺度を示してもよい。複数のアウトカム測定基準が使用される場合、これらは、優先順位、方針等に応じて様々なやり方で重み付けされてよい。幾つかの実施形態では、臨床医からなる委員会が重み付けを提供してもよい。臨床医は、良いアウトカム、又は、例えば死亡、重障害の脳機能、身体の部位の不動化等といった悪いアウトカムの複数の尺度に同意する。1つの可能なアプローチは、分類器のトレーニングの際に、少数の特に悪いアウトカムを使用して、特に望ましくない緊急度クラスの患者にラベル付けし、より望ましいクラスから、「軽度」ではあるが、依然として負のアウトカムを除外することである。次に、分類器は、より軽度のアウトカムを使用して動作させられる。分類器の結果は、臨床医の委員会に対して示され、当該結果が臨床医の直観と一致するかどうかが確認される。これは、臨床医の直観が満たされるまで、トレーニングセットにおいて負のラベルとして使用される様々な重症度の負のアウトカムを用いて繰り返される。
【0065】
[0070] 様々な実施形態では、分類器は、様々なタイプの問題に対してCAAIを出力するようにトレーニングされる。例えば1つの機械学習分類器は、HIIと共に使用されるべき血行動態不安定用のCAAIを出力するようにトレーニングされる。別の機械学習分類器は、AKIの指数と共に使用されるように、AKIについてトレーニングされてよい。幾つかの実施形態では、DNR(蘇生禁止)又は何らかの同様の指示(例えば緩和優先医療)が指定されている患者は、緊急度が高くても治療を拒絶する場合があるので、機械学習分類器のトレーニングからは外される。
【0066】
[0071] これらのトレーニング例に基づいて、後続の健康指標/治療ベクトルを、推定患者アウトカムにマッピングするために使用可能である推測関数が生成される。新しい患者に関連付けられる新しい健康指標/治療ベクトルが、負のアウトカムにマッピングされる場合、例えば患者の緊急度の臨床医評価は、不正確であり、当該患者は、現在提供されている及び/又は考えられている医療よりも多くの医療を必要とするという決定がなされる。更に又は或いは、幾つかの実施形態では、例えば機械学習分類器がロジスティック回帰モデル又は神経回路網モデルとして表現される場合といったように、機械学習分類器は、勾配降下法又は正規方程式法を使用してトレーニングされる。勾配降下法又は正規方程式法は、例えば線形回帰モデルといった他の機械学習モデルにも使用されてよい。当然ながら、例えば確率的勾配降下法及びバッチ勾配降下法といったように、勾配降下を実現するために様々なアプローチが可能である。
【0067】
[0072] 幾つかの実施形態では、機械学習分類器は、例えば事前設定された状態(例えばデフォルトトレーニングデータで既にトレーニングされている)において、例えば病院といった場所において又は複数の医療施設を含む地理的地域全体で起動される。起動後、回顧的データのスライディング時間ウィンドウ(例えば6カ月)を使用して、機械学習分類器は、最新及び/又はローカルのベストプラクティスにそれらが進化するにつれて更新される。
【0068】
[0073] 図4は、様々な目的のために、機械学習分類器216の出力(例えばCAAI)を使用する例示的な方法400を概略的に示す。ステップ402において、例えば図2における健康指標データベース204及び/又は治療データベース206から、関心患者に関連付けられる(上述のとおり、1つ以上の患者特徴ベクトルにまとめられてもよい)健康指標及び治療ベクトルが取得される。ステップ404において、ステップ402において取得された健康指標及び治療ベクトルが、機械学習分類器(例えば図2における216)に入力として提供される。ステップ406において、関心患者の臨床医緊急度評価(即ち、CAAI)のレベルが、機械学習分類器の出力に少なくとも部分的に基づいて推定される。
【0069】
[0074] 方法400の残りのステップは、ステップ406において決定されたCAAIのオプションの応用である。例えばステップ408において、例えば図2における医用アラームエンジン202によって管理される1つ以上のアラーム閾値が、推定されたCAAIに少なくとも部分的に基づいて調整される。幾つかの実施形態では、CAAIは、既存の医用アラームを評価するために使用される。1つ以上の医用アラームがトリガされているにも関わらず、CAAIが、比較的低い臨床医の懸念を示すと仮定する。これは、(例えば臨床医はアラームを深刻に捉えていないか又は間違っているとさえ考えていることによって)臨床医がアラームを無視しているか、及び/又は、アラームの使い過ぎであることを示唆する。したがって、様々な実施形態では、医用アラームエンジン202は、アラームが臨床医の懸念に影響を及ぼす可能性を高めるために、アラームの頻度を下げるように調整する。
【0070】
[0075] ステップ410において、CAAIに少なくとも部分的に基づいて、1つ以上のADT決定がなされ、出力が結果として提供される。例えばCAAIが比較的低く、CAAIが高くないべきであることを疑う根拠がなければ、医療関係者に、患者の退院及び/又は低集中治療施設への移動を検討すべきことを助言する出力が提供される。ステップ412において、例えばステップ402において取得された(治療ベクトルではなく)健康指標ベクトルの1つ以上の特徴に基づいて、関心患者の客観的緊急度(例えばHII、EDI等)が、上記技術のうちの1つ以上を使用して決定される。ステップ414において、関心患者の客観的緊急度は、ステップ406において決定されたCAAIと比較され、それらが「一致」するかどうかが決定される。上述のとおり、幾つかの実施形態では、実際の患者緊急度と患者に関連付けられるCAAIとは、互いの所定範囲内にある場合に「一致」する。幾つかの実施形態では、一方又は両方の値が、比較し易くするために正規化される。
【0071】
[0076] ステップ414における回答がノーである場合、方法400は、ステップ416に進む。ステップ416において、1人以上の医療関係者に、CAAIが患者の実際の緊急度と整合しない可能性が高いことを示す聴覚的、視覚的及び/又は触覚的出力が、例えば1つ以上のクライアントデバイス212において提供される。場合によっては、臨床医の患者の緊急度の評価が、患者の実際の緊急度を過小評価することがあり、この場合、臨床医は、懸念の度合いを高めるように促される。別の場合では、臨床医の患者の緊急度の評価が、患者の客観的緊急度を過大評価することがあり、この場合、臨床医は、治療を減らすか、及び/又は、他の緊急度の高い患者に集中することが促される。ステップ414における回答がイエスである場合、方法400は終了する。
【0072】
[0077] CAAIを推定するために、本明細書に説明されるような機械学習分類器をトレーニングして使用することの1つの非限定的な技術的利点は、機械学習分類器が、空間領域及び/又は時間だけでなく、様々な施術者及び/又は実務間での医療知識と医療業務との違いを反映するように、自分自身を「調整」できる点である。例えば、また、上で示唆されるように、機械学習分類器は、例えば新しい医療知識が医療基準及び/又はベストプラクティスの変化をもたらすにつれて、時間の経過と共に進化する。更に、様々な地理的地域において使用される機械学習分類器は、地理的地域間での医療基準及び/又はベストプラクティスにおける違いといった様々な要因によって、互いに異なって動作する。更に、様々な実務グループ及び/又は実務者によって使用される機械学習分類器は、実務/施術者間での医療基準及び/又はベストプラクティスにおける違いといった様々な要因によって、互いに異なって動作する。
【0073】
[0078] 幾つかの実施形態では、CAAIは、新しい緊急度指標/指数を開発するために、及び/又は、既存の指標/指数を精緻化するために使用されてよい。例えばCAAIは、例えば高度対低度の臨床的問題としてエピソードにラベル付けする患者エピソードベクトルにおいて、特徴として含まれてもよい。このような患者エピソードベクトルは、将来の高度の臨床的問題エピソードを、それが起きる前によりうまく予測することができるように、機械学習分類器をトレーニングするために使用される。
【0074】
[0079] CAAIは、臨床医の懸念が、時間の経過と共に十分であるか又は不十分であるかを決定するだけでなく、臨床医の一貫性を評価するために使用されてもよい。例えば正のアウトカムをもたらすことが分かっている同様の病歴例に基づいて、所与の患者の予想CAAIが決定される。次に、現在のCAAIが、当該患者について計算され、予想CAAIと比較される。ある期間(例えば夜間勤務時間中、勤務時間と勤務時間との間、週末等)に亘って、複数の現在のCAAIが複数の予想CAAIよりも低い場合、これは、モニタリングが不十分であることを裏付ける。その一方で、ある期間に亘って、複数の現在のCAAIが複数の予想CAAIよりも高い場合、これは、モニタリングが過剰であることを裏付ける。この場合、1つ以上の治療を止めることが提案される。更に、(例えば1つの期間中に推定されるか、又は、第1の医療チームによって治療された患者からの)CAAIの1つのグループを、(例えば別の期間中に推定されるか、又は、第2の医療チームによって治療された患者からの)CAAIの別のグループと比較して、これらの2つのグループ間で、臨床医の緊急度評価がどれくらい一貫しているかを決定してもよい。一貫性がない場合、プロトコルが不十分であること、又は、プロトコルの順守が不十分であることが示唆される。
【0075】
[0080] 図5は、例示的なコンピュータシステム510のブロック図である。コンピュータシステム510は、典型的に、バスサブシステム512を介して幾つかの周辺デバイスと通信する少なくとも1つのプロセッサ514を含む。これらの周辺デバイスには、例えばメモリサブシステム525及びファイルストレージサブシステム526を含むストレージサブシステム524、ユーザインターフェース出力デバイス520、ユーザインターフェース入力デバイス522及びネットワークインターフェースサブシステム516が含まれる。入出力デバイスによって、コンピュータシステム510とのユーザインタラクションが可能となる。ネットワークインターフェースサブシステム516は、外側ネットワークへのインターフェースを提供し、他のコンピュータシステム内の対応するインターフェースデバイスに結合される。
【0076】
[0081] ユーザインターフェース入力デバイス522には、キーボード、マウスといったポインティングデバイス、トラックボール、タッチパッド又はグラフィクスタブレット、スキャナ、ディスプレイに組み込まれるタッチスクリーン、音声認識システムといったオーディオ入力デバイス、マイクロホン及び/又は他のタイプの入力デバイスが含まれる。一般に、「入力デバイス」との用語の使用は、コンピュータシステム510内又は通信ネットワーク上に情報を入力するためのあらゆる可能なタイプのデバイス及び方法を含むことを意図している。
【0077】
[0082] ユーザインターフェース出力デバイス520には、ディスプレイサブシステム、プリンタ、ファックスマシーン、又は、オーディオ出力デバイスといった非視覚的ディスプレイが含まれる。ディスプレイサブシステムには、陰極線管(CRT)、液晶ディスプレイ(LCD)といったフラットパネルデバイス、投影デバイス、又は、可視画像を作成する他の機構が含まれる。ディスプレイサブシステムは更に、オーディオ出力デバイスを介して、非視覚的ディスプレイも提供する。一般に、「出力デバイス」との用語の使用は、コンピュータシステム510からの情報を、ユーザ又は別の機械若しくはコンピュータシステムに出力するためのあらゆる可能なタイプのデバイス及び方法を含むことを意図している。
【0078】
[0083] ストレージサブシステム524は、本明細書に説明されるモジュールの幾つか又はすべての機能を提供するプログラミング及びデータ構造を記憶する。例えばストレージサブシステム524には、方法300及び/若しくは400の選択された態様を行うか、並びに/又は、臨床医緊急度評価決定エンジン202、機械学習分類器216、医学的評価エンジン208及び/若しくは医用アラームエンジン210のうちの1つ以上を実現する論理回路が含まれる。
【0079】
[0084] これらのソフトウェアモジュールは、通常、プロセッサ514によって単独で、又は、他のプロセッサと組み合わされて実行される。ストレージサブシステム内に使用されるメモリ525は、プログラム実行中に命令及びデータを記憶するメインランダムアクセスメモリ(RAM)530及び固定命令が記憶される読み出し専用メモリ(ROM)532を含む幾つかのメモリを含む。ファイルストレージサブシステム526は、プログラム及びデータファイル用の永久ストレージを提供し、ハードディスクドライブ、関連のリムーバブル媒体を有するフロッピー(登録商標)ディスクドライブ、CD−ROMドライブ、光学ドライブ又はリムーバブル媒体カートリッジが含まれる。幾つかの実施態様の機能を実現するモジュールは、ファイルストレージサブシステム526によって、ストレージサブシステム524に、又は、プロセッサ514によってアクセス可能である他の機械に記憶される。「非一時的コンピュータ可読媒体」との用語は、本明細書において使用される場合、一時的メモリ(例えばDRAM及びSRAM)及び非一時的メモリ(例えばフラッシュメモリ、磁気ストレージ及び光学ストレージ)の両方を包含するが、一時的信号は除外されると理解される。
【0080】
[0085] バスサブシステム512は、コンピュータシステム510の様々なコンポーネント及びサブシステムが意図通りに互いに通信可能にする機構を提供する。バスサブシステム512は、単一バスとして概略的に示されているが、バスサブシステムの代替実施態様は、複数のバスを使用してもよい。
【0081】
[0086] コンピュータシステム510は、ワークステーション、サーバ、コンピュータクラスタ、ブレードサーバ、サーバーファーム又は任意の他のデータ処理システム若しくはコンピュータデバイスを含む様々なタイプであってよい。コンピュータ及びネットワークの常に変化する性質により、図5に示されるコンピュータシステム510の説明は、幾つかの実施態様を説明するための具体例であることしか意図していない。図5に示されるコンピュータシステムよりも多くの又はより少ないコンポーネントを有するコンピュータシステム510の多くの他の構成が可能である。
【0082】
[0087] 本明細書において、幾つかの発明実施形態を説明し例示したが、当業者であれば、本明細書にて説明した機能を実行するための、並びに/又は、本明細書にて説明した結果及び/若しくは1つ以上の利点を得るための様々な他の手段及び/若しくは構造体を容易に想到できよう。また、このような変更及び/又は改良の各々は、本明細書に説明される発明実施形態の範囲内であるとみなされる。より一般的には、当業者であれば、本明細書にて説明されるすべてのパラメータ、寸法、材料、及び構成は例示のためであり、実際のパラメータ、寸法、材料、及び/又は構成は、発明教示内容が用いられる1つ以上の特定用途に依存することを容易に理解できよう。当業者であれば、本明細書にて説明した特定の発明実施形態の多くの等価物を、単に所定の実験を用いて認識又は確認できよう。したがって、上記実施形態は、ほんの一例として提示されたものに過ぎず、発明実施形態は、添付の特許請求の範囲及びその等価物の範囲内で、具体的に説明された又はクレームされた以外の方法で実施可能であることは理解されるべきである。本開示の発明実施形態は、本明細書にて説明される個々の特徴、システム、商品、材料、キット及び/又は方法に関する。更に、2つ以上のこのような特徴、システム、商品、材料、キット及び/又は方法の任意の組み合わせも、当該特徴、システム、商品、材料、キット及び/又は方法が相互に矛盾していなければ、本開示の本発明の範囲内に含まれる。
【0083】
[0088] 本明細書にて定義されかつ用いられた定義はすべて、辞書の定義、参照することにより組み込まれた文献における定義及び/又は定義された用語の通常の意味に優先されて理解されるべきである。
【0084】
[0089] 「a」及び「an」の不定冠詞は、本明細書及び特許請求の範囲において使用される場合、特に明記されない限り、「少なくとも1つ」を意味するものと理解されるべきである。
【0085】
[0090] 「及び/又は」との表現は、本明細書及び特許請求の範囲において使用される場合、等位結合された要素の「いずれか又は両方」を意味すると理解されるべきである。即ち、要素は、ある場合は接続的に存在し、その他の場合は離接的に存在する。「及び/又は」を用いて列挙される複数の要素も同様に解釈されるべきであり、即ち、要素のうちの「1つ以上」が等位結合される。「及び/又は」節によって具体的に特定された要素以外の他の要素も、それが具体的に特定された要素に関連していても関連していなくても、任意選択的に存在してよい。したがって、非限定的な例として、「A及び/又はB」への参照は、「含む」といった非制限的言語と共に用いられた場合、一実施形態では、Aのみ(任意選択的にB以外の要素を含む)を指し、別の実施形態では、Bのみ(任意選択的にA以外の要素を含む)を指し、更に別の実施形態では、A及びBの両方(任意選択的にその他の要素を含む)を指す。
【0086】
[0091] 本明細書及び特許請求の範囲に使用される場合、「又は」は、上に定義したような「及び/又は」と同じ意味を有すると理解すべきである。例えばリストにおけるアイテムを分ける場合、「又は」又は「及び/又は」は包括的と解釈される。即ち、多数の要素又は要素のリストのうちの少なくとも1つを含むが、2つ以上の要素も含み、また、任意選択的に、リストにないアイテムを含むと解釈される。「〜のうちの1つのみ」又は「ちょうど1つの」といった反対を明らかに示す用語、又は、特許請求の範囲に用いられる場合は、「〜からなる」という用語だけが、多数の要素又は要素のリストのうちのまさに1つの要素が含まれることを指す。一般に、「又は」との用語は、本明細書において使用される場合、「いずれか」、「〜のうちの1つの」、「〜のうちの1つのみ」、又は「〜のうちのちょうど1つのみ」といった排他的な用語が先行する場合にのみ、排他的な代替(即ち「一方又は他方であるが、両方ではない」)を示すと解釈される。「本質的に〜からなる」は、特許請求の範囲に用いられる場合、特許法の分野にて用いられる通常の意味を有する。
【0087】
[0092] 本明細書及び特許請求の範囲に用いられるように、1つ以上の要素を含むリストを参照した際の「少なくとも1つ」との表現は、要素のリストにおける任意の1つ以上の要素から選択された少なくとも1つの要素を意味すると理解されるべきであるが、要素のリストに具体的に列挙された各要素の少なくとも1つを必ずしも含むわけではなく、要素のリストにおける要素の任意の組み合わせを排除するものではない。この定義は、「少なくとも1つの」との表現が指す要素のリストの中で具体的に特定された要素以外の要素が、それが具体的に特定された要素に関係していても関連していなくても、任意選択的に存在してもよいことを可能にする。したがって、非限定的な例として、「A及びBの少なくとも1つ」(又は、同等に「A又はBの少なくとも1つ」、又は、同等に「A及び/又はBの少なくとも1つ」)は、一実施形態では、少なくとも1つのA(任意選択的に2つ以上のAを含む)であって、Bがない(任意選択的にB以外の要素を含む)ことを指し、別の実施形態では、少なくとも1つのB(任意選択的に2つ以上のBを含む)であって、Aがない(任意選択的にA以外の要素を含む)ことを指し、更に別の実施形態では、少なくとも1つのA(任意選択的に2つ以上のAを含む)と、少なくとも1つのB(任意選択的に2つ以上のBを含む)を指す(任意選択的に他の要素を含む)。
【0088】
[0093] 更に、当然ながら、特に明記されない限り、本明細書に記載された2つ以上のステップ又は動作を含むどの方法においても、当該方法のステップ又は動作の順番は、記載された方法のステップ又は動作の順序に必ずしも限定されない。
【0089】
[0094] 特許請求の範囲だけでなく、上記明細書においても、「備える」、「含む」、「担持する」、「有する」、「含有する」、「関与する」、「保持する」、「〜から構成される」等といったあらゆる移行句は、非制限的、即ち、含むがそれに限定されないことを意味すると理解されるべきである。米国特許庁特許審査手続便覧の第2111.03項に記載されるとおり、「〜からなる」及び「本質的に〜からなる」といった移行句のみが、制限又は半制限移行句である。なお、特許協力条約(「PCT」)の規則第6.2(b)項の規定により、請求項において使用される特定の表現及び参照符号は、範囲を制限するものではない。
図1A
図1B
図2
図3
図4
図5