(58)【調査した分野】(Int.Cl.,DB名)
【発明の概要】
【0003】
産業又は消費者アプリケーションにおけるランダムビット又は乱数の普及率と暗号の重要度によって、高品質のランダムビット又は乱数を生成することが望まれている。多くの材料は、高品質のランダムビットを生成するのに使用され得るその特性における固有の物理的変動性を有する。簡潔に言えば、一態様では、本開示では、材料試料に存在する物理的変動を用いることによってランダムビットを生成するシステム及び方法が開示される。材料の固有の物理的変動性を使用すると、高品質の乱数を取得する別個で費用効果の高い方法が提供される。本開示における一部の実施形態では、乱数を生成するために、製造プロセスに固有のランダム性も活用される。
【0004】
一態様では、乱数を生成する方法は、1つ以上の材料試料を用意することを含む。材料試料のそれぞれに対する1つ以上の材料特性が測定され、その測定された材料特性がそれぞれ変動性を有する。材料試料のそれぞれに対して測定された材料特性から1つ以上の初期ランダムビットストリームが導出される。
【0005】
別の態様では、材料試料のバッチから乱数を抽出する方法が提供される。材料試料のバッチは、実質的に同一の組成を有し、実質的に同一のプロセスによって製作され得る。材料試料のそれぞれに対する1つ以上の材料特性が測定される。測定された材料特性はそれぞれ変動性を有する。材料試料のそれぞれに対して測定された材料特性から1つ以上の初期ランダムビットストリームが導出される。材料試料のバッチに対する導出された初期ランダムビットストリームが合成され、合成されたランダムビットストリームに達する。ランダム性抽出アルゴリズムを合成ランダムビットストリームに適用することによって、1つ以上の乱数が生成される。
【0006】
本開示の例示的実施形態では、様々な予期せぬ結果及び利点が得られる。本開示の例示の実施形態のうち1つの利点は、本明細書に記載される利用されたランダム性が、材料特性の固有の物理的変動性に由来し、様々なアプリケーションにおいて有用な別個で費用効果の高い、高品質のランダムビットストリームを提供することである。
【0007】
例示的実施形態の列挙
例示的実施形態を以下に列挙する。実施形態A〜K、L〜P、及びQ〜Xのいずれかを組み合わせることができることを理解されたい。
【0008】
実施形態A。
1つ以上の材料試料を用意することと、
材料試料のそれぞれに対する1つ以上の材料特性を測定することであって、測定された材料特性が変動性を有する、ことと、
材料試料のそれぞれに対する測定された材料特性から1つ以上の初期ランダムビットストリームを導出することと、を含む、乱数を生成する方法。
【0009】
実施形態B。ランダム性抽出アルゴリズムを導出された初期ランダムビットストリームに適用することによって、1つ以上の二次ランダムビットストリームを生成することを更に含む、実施形態Aに記載の方法。
【0010】
実施形態C。材料特性を測定することは、材料試料の表面用の画像をキャプチャすることを含む、実施形態A又はBに記載の方法。
【0011】
実施形態D。初期ランダムビットストリームを導出することは、材料試料の画像から、材料試料の表面のサブストラクチャ又はテクスチャに関連する特性の特徴の表面変動を決定することと、表面変動を初期ランダムビットストリームに変換することと、を更に含む、実施形態Cに記載の方法。
【0012】
実施形態E。表面変動を決定することは、画像の画素の強度値に基づいて画像を二進表現に変換することを更に含む、実施形態Dに記載の方法。
【0013】
実施形態F。材料特性は光学的特徴、音響的特徴、弾性的特徴、構造的特徴、電子的特徴、磁気的特徴、エレクトレック関連の特徴、又は機械的特徴を含み、材料特性の変動性は、自然に形成される、又は材料試料を作製するための特定の製造プロセスに関連する、先行する実施形態のいずれか一実施形態に記載の方法。
【0014】
実施形態G。ランダム性抽出アルゴリズムは、ブロックパリティ抽出器を含む、先行する実施形態のいずれか一実施形態に記載の方法。
【0015】
実施形態H。二次ランダムビットストリームは、独立同分布(IID)のランダムビットの検定に合格できる、先行する実施形態のいずれか一実施形態に記載の方法。
【0016】
実施形態I。1つ以上の材料試料は、材料試料のバッチであり、材料試料のバッチの組成は、実質的に同じであり、実質的に同じプロセスによって製作される、先行する実施形態のいずれか一実施形態に記載の方法。
【0017】
実施形態J。材料試料のバッチからの初期ランダムビットストリームを合成して、合成されたランダムビットストリームに達することと、ランダム性抽出アルゴリズムを合成ランダムビットストリームに適用することによって二次ランダムビットストリームを生成することと、を更に含む、実施形態Iに記載の方法。
【0018】
実施形態K。材料試料のバッチは、研磨剤、光学フィルム及び不織材からなる群から選択される、実施形態I又はJに記載の方法。
【0019】
実施形態L。試料材料のバッチから乱数を抽出する方法であって、材料試料のバッチは、実質的に同じ組成からなり、実質的に同じプロセスによって製作される方法であって、
材料試料のそれぞれに対する1つ以上の材料特性を測定することであって、測定された材料特性が変動性を有する、ことと、
材料試料のそれぞれに対する測定された材料特性から1つ以上の初期ランダムビットストリームを導出することと、
材料試料のバッチに対して導出された初期ランダムビットストリームを合成して、合成されたランダムビットストリームに達することと、
ランダム性抽出アルゴリズムを合成ランダムビットストリームに適用することによって、1つ以上の乱数を生成することと、を含む方法。
【0020】
実施形態M。材料特性を測定することは、材料試料のバッチに対する表面画像をキャプチャすることを含む、実施形態Lに記載の方法。
【0021】
実施形態N。初期ランダムビットストリームを導出することは、表面画像から、特性の特徴の表面変動を決定することを更に含む、実施形態Mに記載の方法。
【0022】
実施形態O。表面変動を決定することは、画像の画素の強度値に基づいて画像を二進表現に変換することを更に含む、実施形態Nに記載の方法。
【0023】
実施形態P。材料特性は光学的特徴、音響的特徴、弾性的特徴、構造的特徴、電子的特徴、磁気的特徴、エレクトレック関連の特徴、又は機械的特徴を含む、実施形態L〜Oのいずれか一実施形態に記載の方法。
【0024】
実施形態Q。
1つ以上の材料試料に対する1つ以上の材料特性を測定するように構成された測定構成要素であって、測定された材料特性が変動性を有する、測定構成要素と、
測定構成要素に機能的に接続され、1つ以上の初期ランダムビットストリームを材料試料のそれぞれに対する測定された材料特性から導出するように構成されたプロセッサを含む計算構成要素と、を備える、乱数発生器。
【0025】
実施形態R。プロセッサは、ランダム性抽出アルゴリズムを導出された初期ランダムビットストリームに適用することによって、1つ以上の二次ランダムビットストリームを生成するように構成された、実施形態Qに記載の乱数発生器。
【0026】
実施形態S。材料特性データを記憶するように構成されたメモリを更に備える、実施形態Q又はRに記載の乱数発生器。
【0027】
実施形態T。測定構成要素は、材料試料の1つ以上の画像をキャプチャするように構成されたカメラを含む、実施形態Q〜Sのいずれか一実施形態に記載の乱数発生器。
【0028】
実施形態U。プロセッサは、材料試料の1つ以上の画像から、材料試料の表面のサブストラクチャ又はテクスチャに関連する特性の特徴の表面変動を決定するように構成され、更にプロセッサは、表面変動を初期ランダムビットストリームに変換するように構成された、実施形態Tに記載の乱数発生器。
【0029】
実施形態V。プロセッサは、1つ以上の画像を、各画像の画素の強度値に基づいて二進表現に変換するように構成された、実施形態Uに記載の乱数発生器。
【0030】
実施形態W。材料特性は光学的特徴、音響的特徴、弾性的特徴、構造的特徴、電子的特徴、磁気的特徴、エレクトレック関連の特徴、又は機械的特徴を含む、実施形態Q〜Vのいずれか一実施形態に記載の乱数発生器。
【0031】
実施形態X。ランダム性抽出アルゴリズムは、ブロックパリティ抽出器を含む、実施形態R〜Vのいずれか一実施形態に記載の乱数発生器。
【0032】
本開示の例示的実施形態の、様々な態様及び利点が要約されてきた。上記の「発明の概要」は、それらの本開示の特定の例示的実施形態の、図示される各実施形態又は全ての実装を説明することを意図するものではない。以下の図面及び「発明を実施するための形態」は、本明細書に開示される原理を使用する特定の好ましい実施形態を、より詳細に例示するものである。
【発明を実施するための形態】
【0034】
多くの材料は、高品質のランダムビットを生成するのに使用され得るその特性における固有の物理的変動性を有する。簡潔に言えば、一態様では、本開示では、材料試料に存在する物理的変動を用いることによってランダムビットを生成するシステム及び方法が開示される。材料の固有の物理的変動性を使用すると、高品質の乱数を取得する費用効果の高い方法が提供される。一部の実施形態では、材料特性の物理的変動性は、自然に形成され、その材料に存在することができ、他の実施形態では、特定の製造プロセスは、材料特性の物理的変動性を生成又は修正することができる。本開示における一部の実施形態では、乱数を生成するために、製造プロセスに固有のランダム性も活用される。
【0035】
図1は、乱数又はランダムビットストリームを生成する方法100を図示する。110においては、1つ以上の材料試料が用意される。材料試料は、例えば、3M Company(St.Paul,MN)から市販されている各種の材料試料とすることができる。材料試料は、例えば、研磨剤、光学フィルム、不織材などを含むことができる。材料試料は、自然に形成される、又は特定の製造プロセスに由来し得る変動性を有する少なくとも1つの材料特性を呈する。材料特性は、例えば、光学的特徴、音響的特徴、弾性的特徴、構造的特徴、電子的特徴、磁気的特徴、エレクトレック関連の特徴、機械的特徴などを含むことができる。次いで、方法100は、120に進む。
【0036】
120では、材料試料のそれぞれに対して1つ以上の材料特性が測定される。一部の実施形態では、材料試料の表面画像を、例えば、デジタルカメラによってキャプチャすることができる。次いで、方法100は、130に進む。
【0037】
130では、材料試料のそれぞれに対して測定された材料特性から1つ以上の初期ランダムビットストリームが導出される。一部の実施形態では、特性の特徴の表面変動は、材料試料の表面画像から決定され得る。特性の特徴は、例えば、材料試料の表面のサブストラクチャ又はテクスチャに関連し得る。一部の実施形態では、材料試料の表面画像は、例えば、画像の画素の強度値に基づいて二進表現に変換され得る。次いで、方法100は、140に進む。
【0038】
場合によって、140では、1つ以上の二次ランダムビットストリームは、ランダム性抽出アルゴリズムを初期ランダムビットストリームに適用することによって生成される。ランダム性抽出アルゴリズムは、例えば、ブロックパリティ抽出器、フォン・ノイマン抽出器、ランダムウォーク抽出器などのうち1つ以上を含むことができる。一部の実施形態では、2つ以上のランダム性抽出アルゴリズムを、初期ランダムビットストリームに同時に、又は順次適用でき、二次ランダムビットストリームを生成することができる。
【0039】
図2は、一実施形態に係る、例えば、方法100を実装することによって、材料試料から乱数を生成する乱数発生器200を図示する。乱数発生器200は、測定構成要素224、計算構成要素226、及び1つ以上の入力/出力デバイス216を備える。
【0040】
測定構成要素224は、材料試料の1つ以上の材料特性を測定するように構成されている。測定構成要素224は、例えば、光学的特徴、音響的特徴、弾性的特徴、構造的特徴、電子的特徴、磁気的特徴、エレトレック、又は機械的特徴のうち1つ以上を含む固有の変動性を有する材料特性を測定する各種測定ツールとすることができる。一部の実施形態では、測定構成要素224は、例えば、材料試料の1つ以上の画像をキャプチャするカメラを含むことができる。
【0041】
図2の実施形態では、計算構成要素226は、プロセッサ212及びメモリ214を含むことができる。計算構成要素226は、測定構成要素224と機能的に接続され、測定された材料特性に関連する信号を測定構成要素224から受信し、受信した信号から1つ以上の初期ランダムビットストリームを導出する。プロセッサ212は、1つ以上のランダム性抽出アルゴリズムを導出された初期ランダムビットストリームに適用して、1つ以上の二次ランダムビットストリームを生成することができる。ランダム性抽出アルゴリズムは、例えば、ブロックパリティ抽出器、フォン・ノイマン抽出器、ランダムウォーク抽出器などのうち1つ以上を含むことができる。一部の実施形態では、ランダム性抽出アルゴリズムは、所定であり、メモリ214に記憶され得る。一部の実施形態では、ランダム性抽出アルゴリズムは、導出された初期ランダムビットストリームに従ってメモリ214に記憶された初期ランダムビットストリームのリストから選択され得る。生成された乱数はメモリ214に記憶されてもよい。プロセッサ212はまた、例えば、更に後述する二値化及びベクトル化などのランダムビットストリームへの追加の処理を実行することができる。
【0042】
一部の実施形態では、測定構成要素224は、現場で作動可能な携帯型デバイスとすることができる。測定構成要素224は、信号を送受信することによって、例えば、計算構成要素226などのリモートコンピューティングデバイスと無線通信することができる。計算構成要素226は、例えば、コンピュータ、サーバ、モバイル電話などと一体化されてもよい。計算構成要素226は、受信された材料特性信号を処理し、生成された乱数を入力/出力デバイス上に表示すべく入力/出力デバイス216に送信することができる。
【0043】
メモリ214は情報を記憶する。一部の実施形態では、メモリ214は、本明細書に記載された方法又はプロセスを実行する命令を記憶することができる。一部の実施形態では、材料特性データは、メモリ214に予め記憶されてもよい。材料試料からの1つ以上の特性、例えば、光学的特徴、音響的特徴、弾性的特徴、構造的特徴、電子的特徴、磁気的特徴、エレクトレック関連の特徴、又は機械的特徴は、材料特性データとして記憶され得る。
【0044】
メモリ214は、任意の揮発性又は不揮発性記憶素子を含むことができる。例としては、同期ダイナミックランダムアクセスメモリ(SDRAM)などのランダムアクセスメモリ(RAM)、リードオンリメモリ(ROM)、不揮発性ランダムアクセスメモリ(NVRAM)、電気的に消去可能なプログラマブルリードオンリメモリ(EEPROM)、及びフラッシュメモリが含まれ得る。また、例としては、ハードディスク、磁気テープ、磁気又は光学データ記憶媒体、コンパクトディスク(CD)、デジタル多目的ディスク(DVD)、ブルーレイディスク及びホログラフィックデータ記憶媒体も含まれ得る。
【0045】
プロセッサ212としては、例えば、1つ以上の汎用マイクロプロセッサ、特別設計されたプロセッサ、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、離散論理回路の集合、及び/又は本明細書に記載された技法を実行可能な任意のタイプの処理デバイスが含まれ得る。一部の実施形態では、プロセッサ212(又は、本明細書に記載された任意の他のプロセッサ)がコンピューティングデバイスとして説明され得る。一部の実施形態では、メモリ214は、本明細書に記載されたプロセス又は方法を実施するようにプロセッサ212によって実行されるプログラム命令(例えば、ソフトウェア命令)を記憶するように構成され得る。他の実施形態では、本明細書に記載されたプロセス又は方法は、プロセッサ212の特別にプログラムされた回路によって実行され得る。一部の実施形態では、プロセッサ212は、本明細書に記載された乱数を生成する技法を実行するように構成され得る。プロセッサ212(又は本明細書に記載された任意の他のプロセッサ)は、1つ以上のプロセッサを含むことができる。
【0046】
入力/出力デバイス216は、ユーザ又は他のデバイスから情報を入力し、又はそれに情報を出力するように構成された1つ以上のデバイスを含むことができる。一部の実施形態では、入力/出力デバイス216は、ユーザが乱数の生成の評価を制御できるユーザインターフェイス218を提示することができる。例えば、ユーザインターフェイス218は、ユーザに視覚情報を提示する表示画面を含むことができる。一部の実施形態では、表示画面は、タッチセンシティブディスプレイを含む。一部の実施形態では、ユーザインターフェイス218は、ユーザに情報を提示するための1つ以上の異なるタイプのデバイスを含むことができる。ユーザインターフェイス218は、例えば、任意の数の視覚的(例えば、ディスプレイデバイス、ライトなど)、可聴式(例えば、1つ以上のスピーカ)、及び/又は触覚(例えば、キーボード、タッチ画面、又はマウス)フィードバックデバイスを含むことができる。一部の実施形態では、入力/出力デバイス216は、表示画面(例えば、液晶ディスプレイ又は発光ダイオードディスプレイ)及び/又はプリンタ(例えば、印刷デバイス又は印刷デバイスに命令を出力する構成要素)のうち1つ以上を表すことをできる。一部の実施形態では、入力/出力デバイス116は、本明細書に記載された実施形態を実施するようにプロセッサ112によって実行されるプログラム命令(例えば、ソフトウェア命令)を受け入れる、又は受信するように構成され得る。
【0047】
乱数発生器200はまた、他の構成要素を含んでもよく、プロセッサ212、メモリ214及び入力/出力デバイス216を含む図示された構成要素のうちいずれかの機能は、複数の構成要素又は、例えば、コンピュータなどの別個のデバイスにわたって分散されてもよい。乱数発生器200は、ワークステーション、デスクトップコンピューティングデバイス、ノートブックコンピュータ、タブレットコンピュータ、モバイルコンピューティングデバイス、又は任意の他の好適なコンピューティングデバイス又はコンピューティングデバイスの集合として構成されてもよい。乱数発生器200は、ローカルネットワーク上で動作してもよく、クラウドコンピューティング環境内でホストされてもよい。
図2の図示された構成要素は、本開示の各種の態様を説明するためだけに示されたものであり、構成要素の追加又は削除は、当業者には明らかであろう。
【0048】
一部の実施形態では、乱数発生器200は、ユーザが材料試料、例えば、3M製造の材料試料を取り、その材料試料を発生器200に挿入することを可能にする。材料試料に存在する固有のランダム性を測定することができ、ランダム性抽出アルゴリズムを適用し、次いでランダムビットのシーケンスを製作することができる。その後、このランダムビットは、例えば、暗号化を必要とする任意のアプリケーション用の任意のコンピューティングデバイスによって使用され得る。
【0049】
一部の実施形態では、乱数発生器200などの材料ベースの乱数発生器は、物体識別に使用され得る。材料特徴から一意的に導出された乱数は、デジタル材料認証を可能にする。例えば、
図1の方法100及び
図2の乱数発生器200は、暗号又はステガノグラフィーの特徴を、例えば、パスポート又は身分証明書などの個人文書に追加するのに使用され得る。
【0050】
図3A〜
図3Eは、一実施形態に係る材料試料の光学画像からの乱数の生成を図示する。
図3Aは、材料試料に対して測定された光学画像32を示す。光学画像32は、例えば、材料試料の表面上のサブストラクチャ又はテクスチャに関連することができる様々な強度を有する画素を含む。光学画像32は、例えば、
図2の測定構成要素226によってキャプチャすることができる。画素の様々な強度は、例えば、材料試料表面のサブストラクチャ又はテクスチャの固有のランダム性を反映する。光学画像32の例示の部分322の画像画素の強度値が表34に示されている。強度値は、例えば、
図2の計算構成要素226を介して、0〜1の間になるよう正規化することができ、配列mxnに列挙される。光学画像32の任意の部分又は光学画像32全体を使用して対応する強度値を取得することができることを理解されたい。
【0051】
光学画像32は、
図3Bに示す二進表現32’に変換することができる。したがって、表34の画像画素の強度値は、表34’の2進値0又は1に変換される。変換は、例えば、
図2の計算構成要素226によって行われ得る。次いで表34’の2進値の配列は、計算構成要素226によってベクトル化され、初期ビットストリーム36を取得する。初期ビットストリーム26は、
図3Cに示すように、一連の0又は1ビットを含む。一部の実施形態では、初期ランダムビットストリーム36は、
図3Bに示すように光学画像32の二進表現32’に対応する(mxn)個の2進ビットを含むことができる。初期ビットストリーム36は、表34’の2進値の配列のうち少なくとも一部から任意の適切な方法によって得られ得ることを理解されたい。表34’の2進値の配列から初期ビットストリーム36を取得する命令は、メモリ214に記憶され、計算構成要素226のプロセッサ212によって実行され得る。
【0052】
次いで、初期ランダムビットストリーム36は、
図3Dに示すように二次ランダムビットストリーム38を生成するためにランダム性抽出アルゴリズムを適用することによって処理される。ランダム性抽出アルゴリズムは、例えば、ブロックパリティ抽出器、フォン・ノイマン抽出器、ランダムウォーク抽出器などのうち1つ以上を含むことができる。ランダム性抽出アルゴリズムは、初期ビットストリーム及び/又は二次ランダムビットストリームに繰り返し適用され、最終ランダムビットストリームを生成することができることを理解されたい。2つ以上のランダム性抽出アルゴリズムを組み合わせて順次又は同時に初期ランダムビットストリームに適用することができることも理解されたい。
【0053】
一部の実施形態では、
図2の計算構成要素226は、例えば、ブロックパリティ抽出器などの所定のランダム性抽出アルゴリズムを使用して、初期ランダムビットストリーム36を処理し、二次ランダムビットストリーム38を生成することができる。一部の実施形態では、計算構成要素226は、初期ランダムビットストリーム36に従って、メモリ214に記憶されたランダム性抽出アルゴリズムのリストから1つ以上のランダム性抽出アルゴリズムを選択でき、1つ以上の選択されたランダム性抽出アルゴリズムを適用して、初期ランダムビットストリーム36を処理し、二次ランダムビットストリーム38を生成することができる。
【0054】
図3Eの実施形態では、例示の初期ランダムビットストリーム37は、二次ビットストリーム39を生成するためにブロックパリティ抽出器を適用することによって処理される。初期ビットストリーム37は、k個のブロック(kは1以上の整数)に分割される。ブロックのそれぞれは、lビットを含むことができ、又は長さl(lは1以上の整数)を有することができる。各ブロックのパリティは、二次ビットストリーム39の対応するビットを決定するよう計算され得る。例えば、特定のブロックについては、特定のブロック内で0ビットの数が1ビットの数より多い場合、二次ビットストリーム39の対応するビットは、0であると決定され得る。特定のブロック内で0ビットの数が1ビットの数以下である場合、二次ビットストリーム39の対応するビットは、1であると決定され得る。
【0055】
一部の実施形態では、例えば、
図3D又は
図3Eの初期ランダムビットストリーム36又は37などの初期ランダムビットストリームは、n個の独立したバイアスされた(ただし、必ずしも同分布される必要はない)ビットを含むことができる。初期ランダムビットストリームのi番目のビットは、一部の
【数1】
に対して、パラメータ
【数2】
を有するベルヌーイランダム変数として分布され得る。全ての定数
【数3】
、全ての整数n及びmについて、
【数4】
である初期ランダムビット用の
【数5】
抽出器である関数f
【数6】
が存在する。
【0056】
図4A〜
図4Eは、一実施形態に係る材料試料のバッチの光学画像からの乱数の生成を図示する。本明細書に記載された「材料試料のバッチ」は、実質的に同一の組成を含み、かつ/又は実質的に同一のプロセスで製作される複数の材料試料を指す。材料試料のそれぞれは、各変動性又は固有のランダム性を有する同様の特性を呈することができる。
【0057】
図4Aは、第1の材料試料及び第2の材料試料に対してそれぞれ測定された光学画像41及び42を示す。第1及び第2の材料試料は、材料試料の同一のバッチからのものである。光学画像41及び42はそれぞれ、各材料試料の表面上のサブストラクチャ又はテクスチャに関連する様々な強度を有する画素を含む。画素の様々な強度は、各材料試料表面のサブストラクチャ又はテクスチャの固有のランダム性を反映する。光学画像41及び42の各部分の画像画素の強度値が表44及び45にそれぞれ示されている。強度値は、0〜1の間になるよう正規化され、配列に列挙される。表44及び45の強度値は互いに変動する。かかる変動は、材料試料の特性に固有のランダム性、及び材料試料のバッチを製作するプロセスに固有のランダム性を反映する。
【0058】
光学画像41及び42は、
図4Bに示す二進表現41’及び42’にそれぞれ変換することができる。したがって、表44及び45の画像画素の強度値は、表44’及び45’の2進値0又は1に変換される。次いで、2進値の配列は、
図4Cに示すように、それぞれ一連のビット0又は1を含む各初期ビットストリーム46a及び46bを取得するように、例えば、
図2の計算構成要素226を介してベクトル化される。初期ランダムビットストリーム46a及び46bはそれぞれ、
図4Bに示すように光学画像41及び42の二進表現41’及び42’に対応する(mxn)個の2進ビットを含むことができる。
【0059】
第1及び第2の材料試料からそれぞれ導出される初期ランダムビットストリーム46a及び46bは、合成されたランダムビットストリームを取得するため、例えば、
図2の計算構成要素226を介して合成され得る。
図4Dの実施形態では、初期ランダムビットストリーム46a及び46bは、合成された初期ランダムビットストリーム46になるよう連結される。初期ランダムビットストリーム46a及び46bは、合成された初期ランダムビットストリームに達するよう様々な方法で合成され得ることを理解されたい。初期ビットストリーム46a及び46bから合成された初期ビットストリーム46を取得する命令は、メモリ214に記憶され、計算構成要素226のプロセッサ212によって実行され得る。
【0060】
次いで、合成された初期ランダムビットストリーム46は、
図4Eに示すように二次ランダムビットストリーム48を生成するようランダム性抽出アルゴリズムを、例えば計算構成要素226を介して適用することによって、処理される。ランダム性抽出アルゴリズムは、例えば、ブロックパリティ抽出器、フォン・ノイマン抽出器、ランダムウォーク抽出器などのうち1つ以上を含むことができる。ランダム性抽出アルゴリズムは、初期ビットストリーム及び二次ランダムビットストリームに繰り返し適用されて、最終ランダムビットストリームを生成することができることを理解されたい。1つより多いランダム性抽出アルゴリズムを組み合わせて初期ランダムビットストリームに適用することができることも理解されたい。
【0061】
材料試料のバッチを使用することで、単一の材料試料から取得されたランダムビットストリームより比較的長い二次ランダムビットストリーム48などのランダムビットストリームを生成することができる。加えて、材料試料のバッチから取得されたランダムビットストリームは、材料試料の認証に使用されてもよい。
【0062】
上記したように、初期ランダムビットストリームは、二次ランダムビットストリームを生成するようにランダム性抽出アルゴリズムを適用することによって処理され得る。ランダム性抽出器の性能は、ランダム性の様々な検定を通じてランダム性抽出器の出力を実行することによって正当化され得る。一部の実施形態では、米国立標準技術研究所による検定スイートを用いることができる。検定スイートは、例えば、度数検定、ブロック内の度数検定、ラン検定、ブロックの最長ラン検定、スペクトル離散フーリエ変換(DFT)検定、オーバーテンプレートマッチング検定、近似エントロピ検定、累積合計検定などの検定を含むことができる。
【0063】
一部の実施形態では、上記検定のそれぞれは、初期又は二次ランダムビットストリームの統計をとり、この統計を基準分布に適合させることによって設定され得る。基準分布は、例えば、正規又はカイ二乗とすることができる。ランダム性の仮説の下での不合格の確率(すなわち、p値)を計算することができる。一部の実施形態では、p値が0.01未満である場合、検定不合格が返される。一部の実施形態では、本明細書に記載された二次ランダムビットストリームは、独立同分布(IID)のランダムビットの検定に合格できる。
【0064】
特に指示がない限り、本明細書及び実施形態で使用する量又は成分、特性の測定値などを表す全ての数は、全ての場合、「約」という用語によって修飾されていると解するものとする。したがって、特に指示がない限り、前述の明細書及び添付の実施形態の列挙において示す数値パラメータは、本開示の教示を利用して当業者が得ようとする所望の特性に依存して変化しうる。最低でも、請求項記載の実施形態の範囲への均等論の適用を限定する試みとしてではなく、報告される有効桁の数に照らして、通常の四捨五入を適用することにより、各数値パラメータは少なくとも解釈されるべきである。
【0065】
本開示の例示的な実施形態は、本開示の趣旨及び範囲を逸脱することなく、様々な修正及び変更をとってもよい。したがって、本開示の実施形態は、以下に記述する例示の実施形態に限定されず、請求項及びそれと同等の任意のものに定められた制限によって支配されるものと理解されたい。
【0066】
本開示の様々な代表的な実施形態を、特に図面を参照しながら説明する。本開示の代表的な実施形態は、開示の趣旨及び範囲から逸脱することなく、様々な修正や変更が可能である。したがって、本開示の実施形態は以下に記述する例示的実施形態に限定されず、請求項及びそれと同等の任意のものに定められた制限によって支配されるものと理解されたい。
【0067】
本開示の動作は、以下の詳細な実施例に関して更に説明される。これらの実施例は、様々な具体的な好ましい実施形態及び技術を更に示すために提供される。しかしながら、本開示の範囲内に留まりつつ多くの変形及び変更を加えることができるということは理解されるであろう。
【実施例】
【0068】
これらの実施例は単にあくまで例示を目的としたものであり、添付した特許請求の範囲に過度に限定することを意味するものではない。本開示の広い範囲を記載する数値範囲及びパラメータは、近似値ではあるが、特定の実施例で記載される数値は、可能な限り正確に報告される。しかしながら、いずれの数値も、それらの各試験測定値内に見出される標準偏差から必然的に生じる、特定の誤差を本質的に含む。少なくとも、また特許請求の範囲への均等論の適用を制限しようとするものではないが、各数値パラメータは少なくとも、報告された有効数字の桁数を考慮し、通常の四捨五入を適用することによって、解釈されるべきである。
【0069】
材料試料の検定
3M Company(Saint Paul,MN)から市販されているフレームエンボスフィルム、ブローンマイクロ繊維(BMF)濾過材料、不織物材料、及び樹脂材料の光学画像を用いて、初期ランダムビットストリームを導出する。
図5及び
図6は、それぞれ例示のフレームエンボスフィルム試料及び例示の不織物試料の光学画像を図示する。
【0070】
ランダム性抽出アルゴリズムの検定
様々なランダム性抽出アルゴリズムを上記初期ランダムビットストリームに適用し、二次ランダムビットストリームを生成した。特に、ブロックパリティ抽出器を初期ランダムビットストリームに適用した。
【0071】
米国立標準技術研究所による検定スイートを使用し、導出された初期ランダムビットストリーム及び生成された各二次ランダムビットストリームを評価した。検定スイートは、例えば、度数検定、ブロック内の度数検定、ラン検定、ブロックの1sの最長ラン検定、スペクトル離散フーリエ変換(DFT)検定、オーバーテンプレートマッチ検定、近似エントロピ検定、累積合計検定などの検定を含む。
【0072】
上記検定のそれぞれは、初期又は二次ランダムビットストリームの統計をとり、この統計を基準分布に適合させることによって設定した。基準分布は、例えば、正規又はカイ二乗とすることができる。ランダム性の仮説の下での不合格の確率(すなわち、p値)を計算することができる。p値が0.01未満である場合、検定不合格が返される。
【0073】
表1は、フレームエンボスフィルム試料から導出された初期ランダムビットストリームのランダム性に関する検定結果を列挙したものである。材料試料から導出された1000個の異なるビット列について検定を実行することによって、各不良率を計算した。
【表1】
【0074】
表2は、ブロックパリティ抽出器を適用することによって表1の初期ランダムビットストリームから導出された二次ランダムビットストリームのランダム性に関する検定結果を列挙したものである。1000個の異なるビット列について検定を実行することによって、各不良率を計算した。二次ランダムビット当たりl=45初期ランダムビットで128ビット列が抽出された。二次ランダムビット当たりl=5初期ランダムビットで1024ビット列が抽出された。
【表2】
【0075】
表3は、不織物材料試料から導出された初期ランダムビットストリームのランダム性に関する検定結果を列挙にしたものである。材料試料から導出された1000個の異なるビット列について検定を実行することによって、各不良率を計算した。
【表3】
【0076】
表4は、ブロックパリティ抽出器を適用することによって表3の初期ランダムビットストリームから導出された二次ランダムビットストリームのランダム性に関する検定結果を列挙したものである。1000個の異なるビット列について検定を実行することによって、各不良率を計算した。二次ランダムビット当たりl=288初期ランダムビットで128ビット列が抽出された。二次ランダムビット当たりl=90初期ランダムビットで1024ビット列が抽出された。
【表4】
【0077】
ブロックパリティ抽出器のアプリケーションは、最先端の擬似乱数生成器(PRNG)、具体的には、MATLABに組み込まれたものに対してベンチマークとした。PRNGは、小さなランダムシードをとり、ランダムに見えるより長い列を生成した。表5は、MATLAB PRNGによって生成された列のランダム性に関する検定結果を列挙したものである。全体として、ブロックパリティ抽出器(例えば、表2及び表4)の検定結果は、MATLAB PRNG(例えば、表5)と同等の性能を有する。
【表5】
【0078】
本明細書全体を通して、「一実施形態」、「特定の実施形態」、「1つ以上の実施形態」、又は「実施形態」への言及は、用語「実施形態」の前に、用語「例示的」が含まれているか否かに関わらず、その実施形態に関連して説明される特定の特徴、構造、材料、又は特性が、本開示の特定の例示的実施形態のうちの少なくとも1つの実施形態に含まれることを意味する。それゆえ、本明細書全体を通して、様々な箇所での「1つ以上の実施形態では」、「特定の実施形態では」、「一実施形態では」、又は「実施形態では」などの語句の出現は、必ずしも、本開示の特定の例示的実施形態のうちの、同じ実施形態に言及するものではない。更に、特定の特徴、構造、材料、又は特性は、任意の好適な方法で1つ又は複数の実施形態に組み合わされてもよい。
【0079】
本明細書では、特定の例示的実施形態が詳細に説明されてきたが、当業者には、上述の説明を理解した上で、これらの実施形態の代替物、変更物、及び等価物を容易に想起することができる点が、理解されるであろう。したがって、本開示は、本明細書で上記された例示的実施形態に、過度に限定されるものではないことを理解されたい。特に、本明細書で使用するとき、端点による数値範囲の列挙は、その範囲内に包含される全ての数を含む(例えば、1〜5は、1、1.5、2、2.75、3、3.80、4、及び5を含む)ことが意図される。更には、本明細書で使用される全ての数は、用語「約」によって修飾されるものと想定される。更に、種々の例示的な実施形態が説明されてきた。これらの実施形態及び他の実施形態は、以下の特許請求の範囲に含まれるものである。
本発明の実施態様の一部を以下の〔態様1〕−〔態様20〕に記載する。
〔態様1〕
1つ以上の材料試料を用意することと、
前記材料試料のそれぞれに対する1つ以上の材料特性を測定することであって、前記測定された材料特性が変動性を有する、ことと、
前記材料試料のそれぞれに対する前記測定された材料特性から1つ以上の初期ランダムビットストリームを導出することと、を含む、乱数を生成する方法。
〔態様2〕
ランダム性抽出アルゴリズムを前記導出された初期ランダムビットストリームに適用することによって、1つ以上の二次ランダムビットストリームを生成することを更に含む、態様1に記載の方法。
〔態様3〕
前記材料特性を測定することは、前記材料試料の表面用の画像をキャプチャすることを含む、態様1に記載の方法。
〔態様4〕
前記初期ランダムビットストリームを導出することは、前記材料試料の前記画像から、前記材料試料の前記表面のサブストラクチャ又はテクスチャに関連する特性の特徴の表面変動を決定することと、前記表面変動を前記初期ランダムビットストリームに変換することと、を更に含む、態様3に記載の方法。
〔態様5〕
前記表面変動を決定することは、前記画像の画素の強度値に基づいて前記画像を二進表現に変換することを更に含む、態様4に記載の方法。
〔態様6〕
前記材料特性は光学的特徴、音響的特徴、弾性的特徴、構造的特徴、電子的特徴、磁気的特徴、エレクトレック関連の特徴、又は機械的特徴を含み、材料特性の前記変動性は、自然に形成される、又は前記材料試料を作製するための特定の製造プロセスに関連する、態様1に記載の方法。
〔態様7〕
前記ランダム性抽出アルゴリズムは、ブロックパリティ抽出器を含む、態様2に記載の方法。
〔態様8〕
前記二次ランダムビットストリームは、独立同分布(IID)のランダムビットの検定に合格できる、態様2に記載の方法。
〔態様9〕
前記1つ以上の材料試料は、材料試料のバッチであり、前記材料試料のバッチの組成は、実質的に同じであり、実質的に同じプロセスによって製作される、態様1に記載の方法。
〔態様10〕
前記材料試料のバッチからの前記初期ランダムビットストリームを合成して、合成されたランダムビットストリームに達することと、ランダム性抽出アルゴリズムを前記合成ランダムビットストリームに適用することによって前記二次ランダムビットストリームを生成することと、を更に含む、態様9に記載の方法。
〔態様11〕
前記材料試料のバッチは、研磨剤、光学フィルム及び不織材からなる群から選択される、態様9に記載の方法。
〔態様12〕
試料材料のバッチから乱数を抽出する方法であって、前記材料試料のバッチの前記組成は、実質的に同じで、実質的に同じプロセスによって製作され、前記方法は、
前記材料試料のそれぞれに対する1つ以上の材料特性を測定することであって、前記測定された材料特性が変動性を有する、ことと、
前記材料試料のそれぞれに対する前記測定された材料特性から1つ以上の初期ランダムビットストリームを導出することと、
前記材料試料のバッチの前記導出された初期ランダムビットストリームを合成して、合成されたランダムビットストリームに達することと、
ランダム性抽出アルゴリズムを前記合成ランダムビットストリームに適用することによって、1つ以上の乱数を生成することと、を含む方法。
〔態様13〕
前記材料特性を測定することは、前記材料試料のバッチに対する表面画像をキャプチャすることを含む、態様12に記載の方法。
〔態様14〕
前記初期ランダムビットストリームを導出することは、前記表面画像から、特性の特徴の表面変動を決定することを更に含む、態様13に記載の方法。
〔態様15〕
前記表面変動を決定することは、前記画像の画素の強度値に基づいて前記画像を二進表現に変換することを更に含む、態様14に記載の方法。
〔態様16〕
前記材料特性は光学的特徴、音響的特徴、弾性的特徴、構造的特徴、電子的特徴、磁気的特徴、エレクトレック関連の特徴、又は機械的特徴を含む、態様12に記載の方法。
〔態様17〕
1つ以上の材料試料に対する1つ以上の材料特性を測定するように構成された測定構成要素であって、前記測定された材料特性が変動性を有する、測定構成要素と、
前記測定構成要素に機能的に接続され、1つ以上の初期ランダムビットストリームを前記材料試料のそれぞれに対する前記測定された材料特性から導出するように構成されたプロセッサを含む、計算構成要素と、を備える乱数発生器。
〔態様18〕
前記プロセッサは、ランダム性抽出アルゴリズムを前記導出された初期ランダムビットストリームに適用することによって、1つ以上の二次ランダムビットストリームを生成するように構成された、態様17に記載の乱数発生器。
〔態様19〕
材料特性データを記憶するように構成されたメモリを更に備える、態様17に記載の乱数発生器。
〔態様20〕
前記測定構成要素は、前記材料試料の1つ以上の画像をキャプチャするように構成されたカメラを含む、態様17に記載の乱数発生器。