(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0014】
単に非限定的な例として示す図面を参照して行う以下の説明を熟読することにより、本発明をよく理解しうると思う。
図面では、同じ符号は同じ要素を示している。この明細書において、当業者によく知られた特徴や機能については、詳細な記載を省略している。
【0015】
本明細書において、「計算能力」とは、電子計算機によって実行されるオペレーションの数を意味する。従って、計算能力を減少させることは、同じ結果、あるいは同じ種類の結果を得るために行なわれるオペレーションの数を減少させることを意味する。
【0016】
図1は、「電気自動車」として知られている、電気的な牽引力を備える自動車2を示している。電気自動車はよく知られており、以下では、発明を理解するために必要とされる構成の要素だけについて説明する。自動車2は、車輪6を駆動し、自動車2を車道8に沿って移動させることのできる電動機4と、この電動機4に電力を供給するバッテリ10とを備えている。
【0017】
バッテリ10は、電気的接続用の2つのターミナル12、14を有し、複数のセル(セル群)が、これらのターミナル12、14の間で電気的に接続されている。ターミナル12、14は、エネルギーを供給される電気的な負荷に接続されている。ここでは、ターミナルは特に電動機4に接続されている。
【0018】
図1を単純化するために、4個のセル18〜21だけを示してある。通常、これらのセル群は、複数のステージにグループ化され、これらのステージは、ターミナル12、14の間で直列に接続されている。ここでは、2つのステージだけを示している。第1のステージは、セル18及び19を含み、第2のステージは、セル20及び21を含んでいる。各ステージはそれぞれ、並列に接続されているいくつかのブランチを含んでいる。1つのステージにおいて、各ブランチはそれぞれ、1個のセル、あるいは直列接続された複数のセル群を含んでいる。
ここでは、第1のステージは、2つのブランチを含み、各ブランチは、それぞれ一つのセルを含んでいる。第2のステージは、
図1に示す例では、第1のステージと構造上同一である。
【0019】
バッテリ10のセル群は全て、製作公差を除いて、構造的に同一である。従って、セル18についてのみ、以下、詳細に記載する。
【0020】
セル18は、他のセル群やバッテリ10のターミナル12、14に、このセルを電気的に接続するための、2つの電気的な接続ターミナル30、32を有している。セル18は、さらに、しばしばセルの「パック」と呼ばれるものを形成するために、自由度なしで、バッテリ10の他のセル群に機械的に固定されている。セル18は、使用されていない場合、電気的エネルギーを蓄積することができる。この蓄積された電気的エネルギーは、その後、セル18を放電して、電動機4に電力を供給するために使用される。あるいは、セル18は、さらにセルを充電するための電気的エネルギーを受け取ることができる。セルの完全な放電の後にセルを完全に再充電することは、充電/放電サイクルとして呼ばれているが、以下では、単に「セルのサイクル」と呼ぶ。
【0021】
セル18は、既知のタイプのもので、例えば、LiPB(リチウム・イオン・ポリマー・バッテリ)、あるいは他のタイプのものである。
【0022】
セル18は、初期の公称静電容量C
nini、初期の内部抵抗RO
ini、電流測定強度i
max、最大電圧U
max、最小電圧U
min及び関数OCV(SOC
k)の特性を有している。容量C
niniは、セル18の初期の容量である。セルの容量は、そのセルに蓄積することができる電気的エネルギーの最大量を表わす。この容量は、Ahで表現される。セル18の年齢、すなわち充電・放電サイクル回数の増加に伴い、セルの容量は減少する。時刻kにおける、セル18の公称静電容量を、C
n,k.として示すものとする。
【0023】
初期の内部抵抗RO
iniは、セルが老化し始める前の、セル18の内部抵抗の値である。セルの内部抵抗は、電気セルの電気的モデルの大多数にある物理量である。セルが老化すると、一般的に、内部抵抗は増加する。時刻kにおいて、セル18の内部抵抗は、RO
kで表示される。
【0024】
I
maxは、セル18が破損されずに供給することができる最大の電流測定値である。
【0025】
U
maxは、セルが破損されずに、セルのターミナル30、32間で絶えず供給できる最大電圧である。
【0026】
電圧U
minは、セル18が完全に放電された場合の、ターミナル30、32間の最小電圧である。以下では、I
max、U
max、U
minは、時間の経過に対して変わらない一定の物理量であると考える。
【0027】
OCV(SOC
k)は、充電状態SOC
kの関数として予め定義した関数であり、セル18の無負荷電圧を返す。無負荷電圧は、セル18が2時間どの電気的負荷からも電気的に隔離されていた後に、ターミナル30、32間で測定可能な電圧である。
【0028】
セル18の時刻kにおける充電状態は、SOC
kで示される。この充電状態は、セル18の充填率を表わしている。セル18に蓄積された電気的エネルギーの量が、その容量C
n,kと等しい場合、充填率は100%である。セル18に蓄積された電気的エネルギーの量が0である場合、充填率は0%であり、この場合、電気的負荷にエネルギーを与えるために、セル18から電気的エネルギーを抽出することはできない。
【0029】
パラメーターC
nini、RO
ini、I
max、U
max、U
min、及び、関数OCV(SOC
k)は、セルに関して既知のパラメーターである。例えば、それらはセルのメーカーから与えられるか、あるいはセルに対して行われた測定から実験的に決定される。
【0030】
バッテリ10は、同様に、各セルに関して以下のものを含んでいる。
− 当該セルのターミナル間の電圧を測定する電圧計。
− 当該セルの充電電流若しくは放電電流の値を測定する電流計。
【0031】
図1では、単純化のために、セル18の1つの電圧計34と、1つの電流計36だけを示してある。
【0032】
上記したセル18の種々のパラメーターとは異なり、セル18の充電状態SOC
kは測定可能ではない。従って、それを推定する必要がある。この目的のために、自動車2は、バッテリ10の管理用のシステム40、あるいはBMS(バッテリ管理システム)を備えている。
このシステム40は、バッテリ10の健全性と同様にこのバッテリの充電状態も決定する機能を備えている。この充電状態及びこの健全性を決定するために、システム40は、バッテリ10の各セルの充電状態、及び、健全性を推定することができる。セルの健全性は、このセルの老化の進行の状態を表している。ここで、セルの健全性は、時刻kにおいて、SOH
kで表示される。以下では、健全性は、比率C
n,k/C
niniによって測定される。さらに、セルの健全性を計算するために、システム40は、現在の時刻kにおける、当該セルの容量C
n,kを推定することができる。
【0033】
これらの様々な推定を行なうために、システム40は、各セルのターミナル間の電圧及び電流の値を測定するために、バッテリ10の各電圧計及び各電流計に電気的に接続されている。
【0034】
ここで、システム40は、メモリ42、及び、メモリ42に記録された命令を実行することができるプログラム可能なコンピュータ44を含んでいる。この目的のために、メモリ42は、
図10〜
図12、及び/または、
図17の方法を実行するために必要な命令を含んでいる。このメモリ42は、さらに、これらの方法を実行するために必要とされる、異なるパラメーターの初期値を含んでいる。なお、システム40の構造は、既知のバッテリ管理用のシステムのそれと同一か、また類似しているので、以下、詳細な説明は省略する。
【0035】
図2は、セル18の電気的モデル50を表わす。このモデルは、「一次テブナンモデル」(“first−order Thevenin model”)、あるいは、「集中定数モデル」(“lumped parameter model”)として知られている。それは、ターミナル32からスタートし、ターミナル30で終了する、連続した下記の要素の直列接続を含んでいる。
− 無負荷電圧OCV(SOC
k)のジェネレーター52、
− 並列のRC回路54、及び、
− 以下では時刻kにおける「内部抵抗RO
k」と定義された内部抵抗56。
【0036】
回路54は、R
Dの抵抗器と並列接続されたコンデンサC
Dを含んでいる。以下では、モデル50のこれらの2つのパラメーターC
D及びR
Dは既知であり、時間の経過に対して一定である、とみなす。時刻kにおける回路54のターミナル上の電圧は、V
D,kとして示されている。時刻kにおけるセル18のターミナル30、32の間の電圧の値は、y
kとして示され、その時の、セル18の放電電流の値は、i
kとして示されている。
【0037】
図3は、セル18の充電状態及び健全性を推定するためにシステム40に実装された、エスティメータの構成の第1の実施例を示している。各エスティメータは、それぞれ、コンピューターによって実行される推定アルゴリズムの形で実装される。従って、以下では、「エスティメータの実行」及び「推定アルゴリズムの実行」について説明する。
この最初の実施例では、システム40は、充電状態SOC
K、及び、電圧の測定値y
Kに基づいた電圧V
D、K、及び測定電流値i
Kの状態のエスティメータ60を含んでいる。
エスティメータ60は、ここでカルマンフィルターの形で実装されている。そのため、状態のモデル62(
図4)、及び、観察のモデル64(
図5)を使用する。これら
図4及び
図5において、これらのモデルの方程式は以前に定義した表記を使用して表わされる。
表記
Cn,k3及びROK2は、それぞれ、時刻K2と時刻K3における、セル18の容量及び内部抵抗を表わす。これらの時刻K2、K3は後で定義されるものとする。さらに、モデル62では、x
Kは時刻Kにおける、状態のベクトル[SOC
K、V
D、K]
Tを示す。この記述で、符号“T”は、数学的転置操作を示している。乗算演算は、
演算子“
・”あるいは“*”として示されている。
【0038】
以下では、時間の開始点が時刻k=0の値に対応していると仮定する。
この条件下では、Teが、バッテリ10の電流計及び電圧計の測定用のサンプリング周期である場合、現在の時刻kは、kTeに等しい。従って、Teは、システム40による電圧及び電流の測定値の獲得のための、任意の2つの連続する時刻k、k−1を分離する期間である。この期間Teは、一般に、0.1sから10sまでの間の定数である。ここで、期間Teは、1s±20%に等しい。例えば、Teは1秒に等しい。
【0039】
モデル62では、w
kは状態ノイズベクトルである。ここで、ノイズw
kは、中心がガウス型白色ノイズである。このノイズは、使用されるモデル中の不確実性を表している。時刻kにおける、ノイズw
kの共分散マトリックスが、Q
kとして示されている。それは、次の関係によって定義される:Q
k=E(w
k*w
kT)。ここで、E(...)は数学的期待値関数である。
モデル62は、同様に、X
k+1=F
kx
k+B
ki
k+w
kの形式で記載されている。ここで、
− F
kは、時刻kにおける状態遷移マトリックスであり、
− B
kは、時刻kにおけるコントロール・ベクトルである。
【0040】
モデル62は、特に、前の充電状態SOC
kから、時刻k+1における充電状態SOC
k+1を予測することを可能にする。
【0041】
モデル64は、充電状態SOC
k、電圧V
D,k及び測定強度i
kから、時刻kにおける測定値y
kを予測することを可能にする。このモデルでは、v
kは、中心にあるガウスホワイト測定ノイズである。時刻kにおけるノイズv
kの共分散マトリックスは、下記のR
kで表される。ここで記述された特別の場合では、このマトリックスR
kは、単一の列と単一の行のマトリックスである。それは、R
k=E(v
k*v
kT)の関係によって定義される。このノイズv
kは、ノイズw
k、及び状態x
0の初期ベクトルと無関係である。
【0042】
関数OCV(SOC
k)は一般に非線形であるので、モデル64は非線形であることは注目すべきである。そのために、エスティメータ60は、EKF(拡張カルマンフィルター)としてよく知られているカルマンフィルターの拡張版を実装する。この拡張版では、ベクトルxkの近辺で、モデル64の線形化による式
y
k=H
kx
k+RO
k2.i
k+v
k
の線形観測モデルでそれは終了する。一般的には、モデル64は、ベクトルx
kの近辺でテーラー級数に展開される。その二次で始まる導関数の貢献は無視する。従って、ここで、マトリックスH
kは、充電状態SOC
kの付近にある関数OCVの一次導関数と等しい。モデル64のこの線形化は、一般に、充電状態SOC
kの個々の新しい値のために行われる。
【0043】
エスティメータ60は、充電状態SOC
K+1の推定を可能にするために、容量C
n、K3及び内部抵抗RO
K2を知る必要がある。セル18は、それが老化すると共に、その容量及び内部抵抗が変わる。この老化を考慮し、セル18の容量及び内部抵抗が、時刻K3、K2において、各々、推定される。ここで、エスティメータ66は、測定値y
K2や測定強度i
K2、及び、充電SOC
K2の状態から、内部抵抗RO
K2を推定する。他のエスティメータ68
は、測定強度i
K3及び充電状態SOC
K3から、容量C
n、K3を推定する。
【0044】
セル18の内部抵抗及び容量は、その充電状態よりもゆっくり変化する。そのために、推定の精度を低下させることなく、セルの充電状態を推定するために必要とされる計算能力を制限するために、エスティメータ66及び68は、エスティメータ60よりも少ない回数だけ実行される。
以下では、エスティメータ66及び68の実行の時刻は、それらの時刻と上記時刻kとを区別するために、k2とk3としてそれぞれ表示する。ここで、時刻k2のセット及び時刻k3のセットは、時刻kのセットの部分集合である。従って、2つの連続する時刻k2とk2−1の間で、及び、または2つの連続する時刻k3とk3−1の間で、幾つかの期間Te、あるいは幾つかの時刻kが経過する。
【0045】
これらのエスティメータ66及び68も、各々、カルマンフィルターの形で実装される。エスティメータ66は、状態のモデル70(
図6)及び観察のモデル72(
図7)を使用する。これらのモデルの中で、ノイズw
2,k2及びv
2,k2は、中心にガウス型白色ノイズがある。ノイズw
2,k2及びv
2,k2の共分散は、下記のように、Q
2,k2及びR
2,k2としてそれぞれ示される。観察のモデル72は、直接測定可能な物理量u
k2の値を予測させる。ここの物理量u
k2は、最後のN回の測定値y
kの合計である。それは次式の関係によって定義される。
【0047】
Nは、下記に述べるように、絶対に1より大きなカウントされた整数である。上記の関係、及びモデル72では、時刻kは時刻k2と等しい。
【0048】
モデル72は、充電状態SOC
k、電圧V
D,k、及び時刻k=k2で測定された測定強度i
kのみならず、エスティメータ60前のN回の推定や、時刻k2からk2−1の間のN回の測定強度も考慮に入れる。時刻k2からk2−1までの間の測定値や推定を考慮に入れることで、内部抵抗RO
k2の推定の正確を増加させるのを可能にしている。
【0049】
エスティメータ68は、状態のモデル74(
図8)及び観察のモデル76を使用する。モデル74及び76において、ノイズw
3,k3及びv
3,k3は、中心にガウス型白色ノイズがある。ノイズw
3,k3及びv
3,k3の共分散は、それぞれ、下記の通り、Q
3,k3、及び、R
3,k3として表示される。モデル76は線形モデルであり、エスティメータ68のために、拡張カルマンフィルターの代わりに単純なカルマンフィルターを使用できるようにしたことが注目されるべきである。
【0050】
観察のモデル76は、直接、測定可能な物理量z
k3を推定させる。ここの物理量z
k3は、最後のN回の測定強度i
kの合計である。それは次式の関係によって定義される。
【0052】
上記の関係、及びモデル76において、時刻kは、時刻k3と等しい。この物理量z
k3は、時刻k−1の前の時刻k3で測定された強度i
k−1だけでなく、時刻k3及びk3−1の間で測定された前のN回の強度も考慮に入れる。ここで、Nは、1よりも絶対に大きな整数であり、それはさらに以下に記述されように、カウントされる。それは、モデル72に導入されたNと必ずしも等しくなくてもよい。時刻k3からk3−1までの間の測定値や推定を考慮に入れることにより、容量C
n,k3の推定の正確さを高めることを可能にしている。
【0053】
図10の方法を参照して、エスティメータ60、66及び68の機能、特に、セル18の充電状態の推定の例について説明する。
【0054】
この方法は、エスティメータ60、66及び68を実行するために必要とされる異なる共分散マトリックスの調節のフェーズ100で始まる。より正確には、オペレーション102の間に、エスティメータ60の共分散マトリックスQ
k及びR
kが、次の関係に基づいて自動的に調節される。
Q
k=[N
0G
0,k(N
0)]
−1及び、R
k=I
ここで、
− N
0は、絶対に1よりも大きな前もって定義された整数、
− Iは、単位行列、
− G
0,k(N
0)は、次式によって定義される。
【0056】
N
0は、一般に、システム40の設計時に選択され、一度に、全て設定される。一般に、N
0は100未満である。例えば、N
0は5と15の間にある。ここで、N
0は、10が選択されている。
【0057】
以前の関係を使用することは、下記のマトリックスQ
k及びR
kの調節と同様に、マトリックスQ
0及びR
0の調節をかなり単純化できる。実際、選ぶべき唯一のパラメーターは、整数N
0の値である。
【0058】
オペレーション104の間に、共分散Q
2,0及びR
2,0も調節される。例えば、Q
2,0は、次式に等しいように選ばれる。
[(β*RO
ini)/(3*N
Ceol*N
S)]
2
ここで:
− βは、定数であり、0.3または0.5以上の値、好ましくは、0.8より大きく、通常、3未満である。
− N
ceolは、セル18の、寿命に達する前の、充・放電のサイクルの回数を予測する定数である。
− N
Sは、セル18の、充・放電サイクル毎に内部抵抗が推定される回数である。
【0059】
定数βは、100で割られたパーセンテージであり、内部抵抗RO
iniの初期値と、その寿命末期の内部抵抗の値の差を表わす。
一般的に、βは、ユーザによってセットされるか、あるいは実験で測定される。N
ceolは、実験的に測定することができるか、セル18のメーカーのデータから得ることができるサイクル数である。N
Sは、コンピューター44によって実行される充電状態の推定の方法によってセットされる。この実施例では、以下で明らかになるように、内部抵抗は、1サイクル当たり1回だけ推定される。従って、N
Sは、1と同じである。
【0060】
実例として、共分散R
2,0は、(2ε
mU
max/300)
2と等しいものが選ばれる。ここで、ε
mは、電圧計34の最大の誤差であり、パーセンテージで表現される。
【0061】
以降、共分散Q
2,k2とR
2,k2は一定であり、それぞれ、Q
2,0及びR
2,0に等しいとみなされる。
【0062】
オペレーション106の間、共分散Q
3,0及びR
3,0が調節される。例えば、共分散Q
3,0は、[γ*C
nini/(3*N
Ceol*N
S)]
2に等しいとされる。ここで、γは100で割られたパーセンテージであり、セル18の容量C
niniと寿命末期における容量の差を表わす。γは、ユーザによって0.05と0.8の間で選ばれる定数であり、0.05と0.3の間が望ましい。この例では、γ=0.2である。
【0063】
共分散R
3,0は、例えば、[2*ε
im*I
max/300]
2と等しい値に選定される。ここで、ε
imは、電流計36の最大の誤差であり、パーセンテージで表現される。
【0064】
以降、共分散Q
3,k3及びR
3,k3は、一定であり、それぞれ、Q
3,0及びR
3,0に等しいとみなされる。
【0065】
一旦共分散マトリックスが調節されると、セル18の充電状態の推定を開始できる。
【0066】
フェーズ110では、各時刻kにおいて、電圧計34及び電流計36がそれぞれ、値y
K及び強度i
kを測定し、これらの測定値は、システム40によって直ちに取得され、メモリ42に記録される。フェーズ110は、時刻k毎に繰り返される。
【0067】
これと並行して、エスティメータ60は、セル18の時刻kにおける、充電状態の推定のフェーズ114を実行する。
【0068】
このために、ステップ116で、エスティメータ60は、時刻kにおける、セル18の充電状態の予測値
、及び、回路54のターミナルの電圧V
Dの予測値V
D,k/k−1をそれぞれ計算する。
ここで使用する表記では、インデックスk/k−1は、予測が、もっぱら時刻0とk−1の間でなされた測定に基づいていることを示している。よって、これは、演繹的予測(priori prediction)ともいわれる。
インデックスk/kは、時刻kの予測が、時刻0とkの間で行われた全ての測定を考慮していることを示している。よって、これは、帰納的予測(posteriori prediction)とも呼ばれる。
予測値
及びV
D,k/k−1は、測定強度i
k−1及び容量C
n,k3に基づき、モデル62を活用して計算される。モデル62では、状態遷移マトリックスF
k−1がkの如何に拘わらす一定であり、各時刻kで再予測する必要はないことに注目すべきである。
【0069】
ステップ117で、エスティメータ60は、同様に、状態x
kのベクトル上の誤差推定のための共分散マトリックスの予測P
k/k−1を計算する。一般的には、これは次の関係を活用してなされる。
P
k/k−1=F
k−1P
k−1/k−1F
k−1T+Q
k−1
【0070】
これらの様々なマトリックスF
k−1、P
k−1/k−1及びQ
k−1は、既に前に定義されている。
【0071】
その後、ステップ118で、エスティメータ60は、モデル64を、予測
及びV
D,k/k−1のまわりに、線形化し、マトリックスH
kを構築する。
【0072】
ステップ120で、共分散マトリックスQ
k及びR
kは、自動的に更新される。そのために、ステップ120はオペレーション102と同一であり、このとき、ステップ118の間に構築されたマトリックスH
kを考慮にいれる。
【0073】
この後、ステップ122で、エスティメータ60は予測値
及びV
D,k/k−1を、測定値y
kとモデル64から予測された値
の間の差の関数として修正する。この違いは、“イノベーション”として知られている。このステップ122は、一般的には次のものを含んでいる。
− 予測値
を計算するためのオペレーション124。
− 予測値
、V
D,k/k−1、及び、マトリックスP
k/k−1を修正し、修正された予測値
、V
D,k/k及びP
k/kを得るためのオペレーション126。
【0074】
オペレーション124において、予測値
はモデル64を活用して計算される。このモデル64で、充電状態の値は、
に等しく、電圧の値V
D,k/kは、V
D,k/k−1に等しいものとする。測定値y
kとその予測値
との間の差は、以降、E
kとして示す。
【0075】
演繹的な予測
、及び、イノベーションE
kに基づいたV
D,k/k−1を修正する多くの方法がある。例えば、オペレーション126中に、これらの推定値は、カーマン利得K
kを用いて修正される。利得K
kは、次の関係式から与えられる。
K
k=P
k/k−1H
Tk(H
kP
k/k−1H
Tk+R
k)
−1
その後、演繹的な予測は、次の関係式を活用して修正される。
x
k/k=x
k/k−1+K
kE
k
【0076】
マトリックスP
k/k−1は、次の関係式を活用して修正される。
P
k/k=P
k/k−1−K
kH
kP
k/k−1
【0077】
セル18の充電状態の新しい推定を行う必要がある場合、ステップ116〜122は、各時刻kで反復される。個々の新しい反復中に、状態x
k−1のベクトルは、各セル18について、フェーズ114の反復の前に得られた値で初期化される。
【0078】
ステップ130の間、コンピューター44は、並行して、個々の新しい測定強度i
kの測定値を、前もって定義された電流の閾値SH
iと比較する。測定値がこの閾値SH
iを横切らない限り、エスティメータ66の実行が禁止される。
反対に、一旦測定強度i
kがこの閾値SH
iを横切れば、エスティメータ66は直ちに実行される。閾値SH
iは一般にI
max/2より大きく、望ましくは、0.8
*I
maxないし0.9
*I
maxがよい。
【0079】
エスティメータ66は、時刻k2で、内部抵抗RO
k2の推定のフェーズ140を実行する。ここで、測定強度i
kが閾値SH
iと交差する場合、時刻k2は時刻kと等しい。
【0080】
このため、ステップ142の間、エスティメータ66は、モデル70により内部抵抗の演繹的な予測RO
k/k−1を計算する。
【0081】
次に、ステップ144において、エスティメータ66は、内部抵抗用の推定誤差の共分散マトリックスの予測P
2,k2/k2−1を計算する。例えば、この予測は、次の関係式を使用して計算される。
P
2,k2/k2−1=P
2,k2−1/k2−1+Q
2,0
このモデル72は、状態変数の一次関数であることに注目すべきである。従って、マトリックスH
2,k2を得るために、予測
の付近で、それを線形化する必要はない。ここで、マトリックスH
2,k2は−Nと等しい。
【0082】
ステップ148において、エスティメータ66は、測定された物理量u
k2とこの同じ物理量の予測
の間の差の関数として、予測
を修正する。ここで、Nは、予め選択された定数であり、選ばれた完全に1つの、望ましくは10または30を超えた値である。量u
k2は、測定され得られた値y
kとして、エスティメータ66によって取得される。
【0083】
より正確には、オペレーション150中に、コンピューター44は測定された量u
k2を取得し、予測値
を計算する。量u
k2の獲得は、測定値y
kの最後のN回の測定値の合算により行われる。予測値
は、モデル72を活用して計算される。このモデル72では、値RO
k2は、以前に計算された値RO
k2/k2−1と同じものが得られる。
【0084】
次に、オペレーション152の間に、エスティメータ66は、イノベーションE
k2の関数として予測
を修正する。イノベーションE
k2は、測定された量u
k2と予測された量
の間の差と等しい。例えば、オペレーション152中に、オペレーション126中に実行された方法と同じ方法が使用される。従って、このオペレーション152については、ここでは詳細には記述しない。その後、エスティメータ60の次の実行において、新しい推定RO
k2/k2が、前の推定RO
k2−1/k2−1の代わりに使用される。
【0085】
測定強度i
kが上がる場合に限り、エスティメータ66の実行が引き起こされる。すなわち、内部抵抗の推定の精度が高まり、かつ、同時に、この方法を実行するために必要とされる計算能力を縮小する場合に限り、エスティメータ66が実行される。実際、測定強度i
kがより上げられる場合、電流計の測定の精度はより高くなる。
【0086】
さらに、本実施例の方法は、フェーズ110及び114と並行して、ステップ160として、各時刻kで、推定SOC
kを予め定義された上の閾値SH
socと比較する。もし、推定SOC
kがこの閾値SH
socより下である場合、この方法は、直ちに、ステップ162及び164へ移行する。そうでない場合、ステップ160は、次の時刻kまで反復される。一般的に、閾値SH
socは、90%と100%の間に位置する。
【0087】
ステップ162では、コンピューター44は、0でカウンターを初期化し、次に、このステップの開始以降、個々の測定強度i
kが新しく測定される毎に、1だけインクリメントする。さらに、各時刻kにおいて、同時に生成した測定強度i
k及び推定SOC
kが、この時刻kに関連して、データベースに記録される。
【0088】
ステップ162と並行して、ステップ164の間、コンピューター44は個々の新しい推定SOC
kを予め定義された閾値SLsocと比較する。閾値SLsocは、例えば0%と10%の間に位置する。推定SOC
kがこの閾値SLsocより高いままである限り、ステップ162は次の時刻kまで反復される。そうでなければ、セル18の推定SOC
kがこの閾値SLsocより下に落ちるとすぐに、コンピューター44は、エスティメータ68の実行を直ちにトリガーし、カウンターのインクリメントを停止する。従って、この閾値SLsocと交差しない限り、エスティメータ68の実行は禁止されている。
【0089】
フェーズ166では、エスティメータ68が、時刻k3における容量C
n,k3を推定する。従って、エスティメータ68の実行がトリガーされた場合、時刻k3は時刻kと等しい。
【0090】
フェーズ140と同様に、エスティメータ68が各時刻kで実行されないとすれば、時刻k3−1は、時刻k−1に相当しない。これに反して、Nがステップ162の間にカウントされた数である場合、時刻k3とk3−1は、NTe以上の時間間隔で分離されている。
【0091】
エスティメータ68のカルマンフィルターのパラメーターは、フェーズ166の時刻k3−1で、前の反復の終わりに得られたこれらのパラメーターの以前の値で初期化される。
【0092】
フェーズ166は、次のステップを含んでいる。
− ステップ170において、モデル74の支援による予測C
n,k3/k3−1の計算、
− ステップ172において、容量の推定誤差の共分散マトリックスの予測P
3,k3/k3−1の計算、及び
− ステップ174において、予測C
n,k3/k3−1及び予測P
3,k3/k3−1の修正。
【0093】
上記ステップ172及び174において、可観測性H
3,k3のマトリックスは、[(SOC
k−SOC
k−N)]*3600/(NT
e)と等しい。
ここで、値Nは、充電の推定された状態が閾値SH
socよりも低下した時と、充電の推定された状態が閾値SLsoc以下に落ちた時の間に経過した時間kの回数である。値Nは、ステップ162の間に数えられた値と等しい。
【0094】
ステップ174は、測定された物理量z
k3の獲得と、物理量z
k3の予測値
の計算のオペレーション176を含んでいる。物理量z
k3の獲得は、時刻k−1とk−Nの間で測定された最後のN個の測定値の合計である。予測値
は、モデル76から得られる。
【0095】
次に、オペレーション178の間に、エスティメータ68は、容量C
n,k3/k3の帰納的推定を得るために、測定された物理量z
k3と予測値
との差の関数として、予測された容量C
n,k3/k3−1を修正する。この修正は、例えば前記ステップのオペレーション126の間に行われる。
【0096】
次に、上記容量C
n,k3/k3は、エスティメータ60へ送られ、次の時刻でセル18の充電状態を推定するために使用される。
【0097】
エスティメータ68の実行をトリガーするのは、セル18の大部分が放電された後だけであり、これにより、推定の精度を高める一方、この方法を実行するために必要とされる計算能力を低減させる。
【0098】
フェーズ166の終わりのステップ180において、コンピューターは、次の式に基づいて、時刻k3における健全性SOH
k3の状態を計算する。
SOH
k3=C
n,k3/C
nini
【0099】
図11は、バッテリ10の充電状態の決定の方法を示している。時刻kでは、バッテリ10の充電状態は、このバッテリのセル群の各々の充電状態により決定される。例えば、これは、次のようにして行われる。
ステップ190において、コンピューター44は、このステージの各セルの充電状態を合算することにより、バッテリの各ステージの充電状態を決定する。
【0100】
次に、ステップ192において、バッテリの充電状態は、ステップ190の間に決定されたステージの充電状態の中で、最も小さいのに等しいとして得られる。
【0101】
図11について説明したように、各時刻kにおけるバッテリの充電状態の決定は、時刻kにおける各々のセルの充電状態の推定値だけを保持することを要求するのみである。従って、最初の解決策は、各々のセルに対して、各時刻kにおいて、
図10のフェーズ114を並行して実行し推定する方法にある。しかしながら、バッテリの充電状態の予測の精度を下げずに、必要な計算能力を制限するために、
図12の方法として示すような、セル群の充電状態の推定の実行をスケジュールすることが可能である。
【0102】
図12の方法は、高い優先レベル、ミディアム優先レベル、及び低い優先レベルとそれぞれ呼ばれるわずか3つの優先レベルしか使用しない、単純化された場合について記載されている。更に、仮に一つは、その優先レベルが高い1個のセルの充電状態を各時刻k、従って頻度feで推定する必要があると仮定する。優先レベルがミディアムである1個のセルの充電状態の推定は、この3分の1の頻度で、従って頻度fe/3で行う必要があるものとする。最後に、低い優先レベルのセル群の充電状態は、この10分の1の頻度、従って、頻度fe/10で推定する必要があるものとする。この例において、高度、及び中間の優先レベルのセル群は、前もって制限された数の場所にある。言いかえれば、高い優先レベルに割り当てられたセルの数は、前もって先決された最大数に制限されている。同じことは、ミディアムの優先レベルに割り当てられたセル群の数についても言える。
【0103】
各々のセルについて充電状態の推定をリフレッシュする時間をスケジュールするために、コンピューターは、ステップ198において、各セルへの優先レベルの割り当てを開始する。
【0104】
ステップ198は、システム40が、各々のセルのターミナル間の電圧の測定値y
kを得るオペレーション200からスタートする。
【0105】
次に、オペレーション202の間に、測定値y
kが上の閾値SH
yより上に、あるいは他方ではより低い閾値SLyの下にある場合、コンピューター44は、そのセルに、このレベルで十分な場所が残っている限り、高い優先レベルを割り当てる。閾値SH
yは、0.9
*U
max以上、できれば0.95
*U
max以上である。閾値SLyに関しては、これが、U
min以上、及び1.1*U
min、若しくは1.05*U
min未満である。
電圧がU
maxに近いセル群や、U
minに近いセル群の充電状態の推定は、頻繁にリフレッシュすることが重要である。実際、そのような状況下にあるセルの充電状態の推定の誤差は、そのセルの電気的性質及び機械的性質の低下に繋がりかねない。
【0106】
次に、オペレーション204において、コンピューター44は、他のセル群に関して、現在の測定値y
kと前回の測定値y
k−xの電圧の差を計算する。ここで、Xは、1以上、一般に5または10未満、の予め定義された整数である。ここでは、X=1である。
【0107】
オペレーション205において、コンピューター44は、双子のセル群を識別する。これらのセル群は、同時刻kで、同じ電圧差、及び同じ測定値y
kである場合、「双子」であるとみなされる。そのため、ステップ205において、コンピューター44は、これらの他のセル群が、1個のセルの双子のセルか、他のセルかを識別するために、1個のセルの電圧差や測定値y
kを、他のセル群の電圧差や測定値y
kと同時に比較する。その後、このセルとその双子であると確認されたセル(複数可)の識別子は、セットとしてグループ化され、メモリ42に記録される。上記比較は、例えばその識別子が、まだ、双子のセルのセットのうちの1つに組み入れられ記録されていないバッテリ10中の各々のセルに対して行われる。その後、優先レベルは、双子のセルの各セットのセルのうちの1つに対してのみ割り当てられる。従って、オペレーション206とその次のステップ208及び210は、双子のセルを持たないセル群、及び各双子のセル群のセットの中の1個のセルに対してのみ行なわれる。
【0108】
オペレーション206において、コンピューターは、オペレーション204中に計算された電圧差の絶対値が減少する順に、セル群を記録する。その後、記録された最初のセル群へ、高い優先レベルに関連した残りの場所を割り当てる。その後、記録された次のセル群へ、ミディアム優先レベルに関連した残りの場所を割り当てる。最後に、記録された残りのセル群へ、低い優先レベルを割り当てる。
【0109】
各セルに一旦優先レベルが割り当てられたら、ステップ208において、コンピューター44は、それらの優先レベルの関数として、セル群の充電状態の推定のためのリフレッシュ時間をスケジュールする。ステップ208は、各優先レベルに応じた、推定のためのリフレッシュ頻度に従うように、実行される。
これについては、例えば、コンピューター44は、第一に、高い優先レベルのセル群の推定をリフレッシュするのに必要な時間を保存する。次に、既に予約されたリフレッシュ時間を考慮に入れて、ミディアム優先レベルのセル群の充電状態の推定をリフレッシュするのに必要な時間を保存する。最後に、低い優先レベルを割り当てられたセル群で同じことを行う。
【0110】
これを説明するために、高い優先レベルがセル18に割り当てられ、ミディアム優先レベルがセル19、20に割り当てられ、低い優先レベルがセル21に割り当てられたと仮定する。更に、コンピューターが、期間Teの間に、
図10の方法のフェーズ114を、高々2回実行すると仮定する。
これらの仮定で得られた結果を、
図13に示す。この図では、kからk+11までの時間が、X軸に沿ってプロットされている。これらの時間k毎の各時刻の2つのボックスは、各時刻で、コンピューター44が
図10の方法のフェーズ114を2回実行するということを記号化している。これらのボックスの各々で、フェーズ114が実行されるセルの番号が記載されている。ボックスに番号が付されていない場合、それは、
図10の方法が実行されず、従って、計算能力を保存し、他の目的、例えば、エスティメータ66及び68の実行に使用することができることを意味する。
【0111】
最後に、ステップ210において、優先レベルの割り当てられた各セルについて、コンピューター44がスケジュールされたフェーズ114を実行する。これらのスケジュールされた時刻以外で、コンピューターは、このセルに対して、フェーズ114の全ての実行を禁止する。同様に、優先レベルが割り当てられていない双子のセル群に対するフェーズ114の実行も禁止される。
【0112】
ステップ212の間に、並行して、優先レベルを割り当てられていない個々の双子のセルに対して、そのセルの充電状態の推定値は、このセルの双子のセル用のステップ210で計算された最後の推定値と等しいものとされる。従って、フェーズ114は、双子のセルのうちのほんの1個のセルに対してだけ実行される。これは、この予測の精度を下げずに、バッテリの充電状態を決定するために必要とされる計算能力を低減することを可能にする。
【0113】
あるいは、ステップ210と並行して、コンピューター44はさらに、各時刻kで、ステップ210で処理されなかったセル群の各々の充電状態を予測するステップ214を実行してもよい。このステップ214では、同時に十分な推定フェーズ114が実行されなかった全てのセル群に対して、修正ステップ122を実行せず、予測ステップ116だけを実行する。実際、予測ステップ116は、ステップ122よりも計算能力を消費しないので、例えば、それを各時刻kにおいて実行してもよい。従って、ステップ214が実行される時、全ての時刻kで、バッテリのセル群の各々の充電状態の新しい推定値を得ることができる。
【0114】
ステップ198及び208は、これらのセル群の各々に割り当てられた優先レベル、及び従ってこれらのセル群の充電状態の推定のためのリフレッシュ周期を更新するために、等時間間隔で繰り返される。そして、セルの充電状態の推定のためにリフレッシュ時間をスケジュールするこの方法は、バッテリに対して、充電状態の予測の精度を落とすことなく、計算能力を制限することを可能にする。実際、
図12の方法は、その電圧差が低いセルは、わずかに放電若しくは充電されるセル群であり、従ってその充電状態は急速には変わらないという事を示している。よって、バッテリのために決定された充電状態の予測の精度を下げずに、これらのセル群の充電状態を、より低い頻度で推定することができる。
【0115】
図10及び
図11に記載の方法の実行中に、1個のセルの充電状態SOC
kの計算に使用さるべき所定の時刻に、このSOC
kの充電状態は、このセルに関して以前に推定若しくは推定された最後の状態と等しいものとされる。言いかえれば、充電状態が、それが推定されるか推定される2つの連続の時刻の間で、一定のままであるとみなされる。
【0116】
コンピューター44が1個のセルのための推定フェーズ114を実行する場合は、常に、この同じセルのために、前回のフェーズの実行の終わりで得られた値から、今回のフェーズの実行のための必要な情報を検索することは注目すべきである。特にこれは、例えば、特に状態の変数の場合である。しかしながら、前の実行の時刻は、必ずしも時刻k−1ではなく、このセルに割り当てられた優先レベルに依存し、時刻k−3やk−10もあり得ることは注目すべきである。
【0117】
セルの充電状態の推定の方法に関して、他の多くの実施例が可能である。
例えば、
図14は、エスティメータの他の構成例を示している。エスティメータ66及び68が、1個のエスティメータ230に置き換えられる点を除いて、これらのエスティメータの他の構成は、
図3のそれと同一である。エスティメータ230は、同時にセル18の容量及び内部抵抗を推定する。エスティメータ230は、エスティメータ60ほど頻繁に実行されない。ここで、k4としてエスティメータ230の実行の時刻をk4と指示すると、時刻k4における容量と内部抵抗C
n,k4及びRO
k4が推定される。時刻k4のセットは、時刻kの部分集合である。
【0118】
エスティメータ230は、容量C
n,k4及び内部抵抗RO
k4を、同時に推定する。
このエスティメータ230は、状態のモデル232(
図15)及び観察のモデル234(
図16)を使用する、カルマンフィルターを実行する。
【0119】
このエスティメータ230の機能について、
図17の方法により、特に、セル18のケースについて説明する。
図17の方法は、
図10の方法に比べると、ステップ130〜174が、ステップ240、242、244、及び容量と内部抵抗の推定のフェーズ246と置き換えられた以外は同一である。
【0120】
ステップ240では、各時刻kにおいて、コンピューター44が、測定値y
kと上の閾値SH
y2とを比較する。一般的には、この閾値SH
y2は、0.8*U
maxまたは0.9*U
max以上である。測定値y
kがこの閾値SH
y2よりも下に低下する場合にのみ、ステップ242及び244が実行される。
【0121】
ステップ242では、コンピューター44は、カウンターを0に初期化し、このカウンターを、個々の新しい時刻k毎に、1ずつインクリメントする。さらに、これらの時刻kの各々において、測定強度i
k、値y
k、充電状態SOC
k及び推定された電圧V
D,kが、この時刻kに関連して、データベースに記録される。
【0122】
ステップ242と並行して、コンピューター44は、ステップ244の間、各時刻kで、新しい測定値y
kを低電圧閾値SL
y2と比較する。この閾値SL
y2は、1.2*U
minあるいは1.1*U
min以下であり、かつU
min以上である。
【0123】
測定値y
kが一旦閾値SL
y2よりも低下すれば、ステップ242におけるカウンターのインクリメントは停止され、エスティメータ230の実行がトリガーされる。他方、測定値y
kがこの閾値SL
y2よりも上にある限り、エスティメータ230の実行は禁止される。
【0124】
エスティメータ230は、フェーズ246を実行する。以前述べたと同様に、Nが、ステップ242の間にインクリメントされたカウンターの値である場合、時刻k4とk4−1は、NTe以上の時間の間隔によって分離される。エスティメータ230の機能は、以前に述べたエスティメータ66及び68の機能から推論できる。従って、ここでは、その機能についての詳細な記載は省略する。
【0125】
セル18の充電状態を推定するために、他の電気的なモデルや他の状態のモデルを使用することができる。例えば、単純化された変形例では、回路54が省略される。他方では、より複雑な電気的なモデルは、互いに電気的に直列に接続された複数の、並列のRC回路を含んでいてもよい。結果として、セル18の状態のモデルは、セルのこの新しい電気的なモデルに対応するように修正されるべきである。しかしながら、上記したように、修正された状態のモデルとすることに困難はない。
修正済の状態のモデルの例については、国際特許出願WO2006057468を参照することができる。
【0126】
モデル50のパラメーターR
D及びC
Dは、予め定義された一定のパラメーターであるとみなす代わりに、推定することもできる。この目的のために、これらの2つのパラメーターR
D及びC
Dは、例えば状態x
kのベクトルへ導入され、この状態x
kはその後、[SOC
k,V
D,k,R
D,kandC
D,k]
Tとなる。例えば、状態のモデルは、次の2つの式を一体にするために修正される。
R
D,k+1=R
D,k及びC
D,k+1=C
D,k
【0127】
状態x
kのベクトルは、このセルの充電状態と同時に温度も推定するために、セルの温度で補正してもよい。
【0128】
セルは、温度センサーのような補足のセンサーを装備してもよい。この場合、観察のモデルは、これらの測定された補足の物理量を考慮するために修正される。このような、修正済の観察のモデルの例として、国際特許出願WO2006057468を参照することができる。
【0129】
電気セルをシミュレートする他の可能な電気的なモデルは、Plett 2004のpart 2, 第3.3章(非特許文献1)に記載されている。
【0130】
共分散マトリックスR
k及びQ
kの自動的かつ連続的な調節は、異なる方法で行うこともできる。例えば、次の文献に述べられているような、いわゆる「共分散マッチング」の方法を使用することができる。
Mehra, R.K: “On the identification of variances and adaptative kalman Filtering”, Automatic Control, IEEE Transaction on, Volume 15, No. 2, pages 175-184, April 1970.
この方法は、例えば、オペレーション102で記述されているような、マトリックスR
0及びQ
0の最初のセットアップの後に適用される。
【0131】
別の変形例では、オペレーション102及び120に関して記述されているように、マトリックスQ
0、R
0、Q
k及びR
kは調節されない。例えば、これらのマトリックスは、従来方式の実行により調節される。単純化された場合では、それらは一定である。その後、例えば、マトリックスR
0は、センサーのメーカーによって提供されるか、これらのセンサー上で行なわれたテストに基づくデータ、及び連続するテストによるマトリックスQ
0を使用して、セットアップされる。
【0132】
予測の修正用のステップ122やステップ178は、違ったやり方で行うこともできる。例えば、1つの好ましい方法として、充電状態及び電圧V
D,kの予測の修正は、2つの項からなる二次コスト関数Jの最小化により行われる。
− 1つの項目は、測定値の推定誤差にリンクし、かつ
− 他の項目は、状態ベクトルの推定誤差にリンクしている。
【0133】
この方法については、次の文献の10.5.2章に詳細に述べられている。
Y. Bar-Shalom, et al.: “Estimation With Applications to Tracking and Navigation, Theory Algorithms and Software”, Wiley inter-science, 2001.
【0134】
別の変形例では、エスティメータ60は、カルマンフィルターの形で実行されない。例えば、充電状態は、その係数がRLS(反復最小二乗法:Recursive Least Square)方法によって推定されるIIR(無限のインパルス応答:Infinite Impulse Response)フィルタ方式で、その進展をシミュレートすることにより推定される。
【0135】
状態のモデルの他の例として、セルの内部抵抗及び容量を推定するために使用することができる。例えば、モデル232は、
図18に示したモデル250と置き換えることができる。モデル250では、α、β及びγは、それらの値がセルの製造データや実験的に測定されて得られた定数である。一般的に、
− αは、1±30%又は10%と等しい。
− βもまた、1±30%又は10%と等しい。そして
− γは、一般的に0.1と0.5の間である。例えば、γは、0.2±30%、又は10%と等しい。
【0136】
モデル250では、N
ckは、時刻kに先立って行なわれたセルの充電/放電サイクルの回数と等しい。このサイクルの回数は、例えば、セルの充電状態が上の閾値SHsocより低下し、それから下の閾値SLsocよりも低下する回数の計測で得られる。w
ad,kは
、中心にあるガウス型白色ノイズである。γは、セルの初期の容量C
niniと、その寿命の終わりの間を、100で割ったパーセンテージで表現される差分である。このモデルには、次の事実を考慮に入れる。
− 内部抵抗は、セルの年齢に応じて増加し、かつ、
− セルの容量は、セルの年齢に応じて減少する。
【0137】
同様に、状態のモデル70は、次のモデル状態と置き換えることができる。
RO
k2+1=(α+βN
Ck2/N
CEOL)RO
k2+w
2,k2
ここで、このモデルの各シンボルは、既に定義されたものである。
【0138】
状態のモデル74は、次の状態のモデルと置き換えることができる。
C
n,k3+1=(1−γN
Ck3/N
CEOL)C
n,k3+v
3,k3
ここで、このモデルの異なるシンボルについては、既に定義したものである。
【0139】
エスティメータ68によって使用される観察のモデルによって、物理量z
k3は、前のものとは異なるように計算される。例えば、物理量z
k3は、時刻kとk−N+1の間で測定された最後のN回の測定値の合計と等しい。この場合、Nは1、z
k3=i
k3である。
【0140】
共分散マトリックスQ
k及びR
kの初期化のために上記したものは、エスティメータ68及び230の共分散マトリックスの初期化にも適用することができる。
【0141】
変形例として、エスティメータ68は、カルマンフィルターの形式では実行されない。例えば、容量は、その係数がRLS(Recursive Least Square)方法によって推定されるIIR(Infinite Impulse Response)フィルタの形式の時刻の間に、その展開をシミュレートすることにより推定される。
【0142】
図10及び
図17の方法は、Nを、予め定義された定数に等しいとすることにより単純化してもよい。この場合、Nはカウントされず、また、ステップ160、162、240及び242を省略してもよい。例えば、Nは、1に等しいものが選ばれるか、あるいは、絶対的に、1、5、または10より大きい。
【0143】
別の変形例として、時刻k3及びk3−1の間の各時刻kにおいて、予測C
n,kの計算のステップ170だけを実行し、この予測の修正のステップ174は実行しない。従って、これらの時刻kの各々で、セルの容量の新しい予測を獲得する一方で、必要な計算能力を制限することができる。同様の方法で、時刻k4及びk4−1の間の各時刻kで、容量と内部抵抗の予測の計算のステップだけを実行し、これらの予測の修正のステップは実行しない。従って、これらの変形例では、セルの容量は、各時刻kで予測されるが、この予測は、時刻k3かk4でのみ修正される。この容量の推定用のアルゴリズムは、このように、時刻k3、k3−1、k4、及び、k4−1の間で単に部分的に実行され、時刻k3やk4でのみ完全に実行される。
【0144】
時刻k3とk3−1の間、あるいは、時刻k4とk4−1の間の各時刻kでは、容量は第1のアルゴリズムの実行により推定することができる。次に、時刻k3やk4では、容量は第1のアルゴリズムと異なり、より実質的な計算能力が要求される別の第2のアルゴリズムの実行により推定される。このように、第1、第2のアルゴリズムは、1つのステップ170やカルマンフィルターのフェーズ166あるいは246に関して、必ずしも一致している必要はない。それらは、2つの完全に異なる推定アルゴリズムであってもよい。
【0145】
セルの容量の推定のためのステップ166あるいは246は、
図10に関して記述されるような、充電状態のための閾値の交差に応じてトリガーされても良く、あるいは
図17に関して記述されるように、電圧用の閾値の交差に応じて、トリガーされても良い。また、これらのステップ166及び246は、
電荷の出力値のための閾値の交差に応じてトリガーされても良い。
このために、コンピューター44は、電圧あるいはセルの充電状態が予め定義された上側の閾値よりも低下した時から開始して、各時刻Kで次の関係を活用して
電荷の量QC
Kを計算する。
QC
K=QC
K−1+i
KT
e
一旦、QC
Kが上側の閾
値SH
Qと交差すれば、フェーズ166あるいは246が実行される。他方では、
電荷の量QC
Kが閾値SH
Q以上である限り、フェーズ166や246の実行は禁止される。変形例として、Nが予め定義された定数である場合、
電荷の量QC
Kは、最後のN回のKを含んでいるスライディングウィンドウ上で計算されても良い。
【0146】
別の実施例では、閾値の交差に応じた容量、及び/または内部抵抗の推定のための、トリガーを省略してもよい。例えば、これらの推定は、一定の間隔でトリガーされる。一定間隔のトリガーは、利用可能な計算能力がこの容量とこの内部抵抗を各時刻kにおいて推定するのに十分な場合、この通常の間隔は、Teと等しい。
【0147】
図12の方法に関して、他の多くの実施例が可能である。例えば、オペレーション205は省略することができる。この場合、双子のセルは識別されない。また、ステップ212も省略される。
【0148】
オペレーション202は、違ったやり方で行うことができる。例えば、上部、下部の閾値のうちの1つだけが使用される。オペレーション202も省略してもよい。
【0149】
優先レベルの数は任意であり、少なくとも2や3より大きいのがよい。セルに優先レベルを与える他の方法も可能である。例えば、セルの優先レベルは、その優先レベルにその電圧差及びその電圧をリンクさせる定式を活用して計算してもよい。この後の場合には、比較オペレーションは省略される。
【0150】
優先レベルの関数として、セルにリフレッシュ時間を関連づけるために述べた方法は、単なる1つの例である。これらのタスクの優先レベルの機能としてタスクを順序付けるために、セルの充電状態の推定のためのリフレッシュ時間の順序付けに、他の既知の方法を適用してもよい。
【0151】
図12に関して記述したような、セルの各々の充電状態の推定のためのリフレッシュ時間の計画は省略してもよい。例えば、各時刻kにおいて、セル群の各々の充電状態の推定に必要な計算能力が利用可能な場合が、これに該当する。
【0152】
変形例として、コンピューター44は、並行して各セルのために、
図10あるいは
図17の推定の方法を各々実行することのできる、幾つかのプログラム可能なサブコンピューターを含んでいてもよい。
【0153】
セルの健全性も、次の関係式を活用して計算してもよい。
SOH
K=RO
K/RO
ini
【0154】
バッテリ10は、任意のタイプのバッテリ、例えば、鉛蓄電池、スーパー容量(Super Capacitance)、燃料電池と交換してもよい。この場合、エスティメータ60についての状態のモデル、及び/または観察のモデルは、バッテリ技術を考慮に入れてもよい。
【0155】
上記したものは、さらに、ハイブリッド車、すなわち、自動車の車輪の駆動力が、電動機や内燃機関によって、同時にあるいは交互に提供されるものにも当てはまる。自動車2はさらに、トラック、モーターバイクあるいは三輪車であってもよく、概して言えば、バッテリによってエネルギーを与えられた電動機の力で車輪が駆動され移動することができるどんな運搬具でもよい。例えば、ホイストでもよい。
【0156】
バッテリ10は、それが商用電源に電気的に接続されることを可能にする電気のコンセントの助けによって充電することができる。バッテリ10も、内燃機関によって充電することができる。