(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0011】
以下、本発明の実施形態を、図面を参照して詳細に説明する。なお、説明の便宜上、「垂直」という語は、「略垂直」の意味を含む。「直交」という語は、「略直交」の意味を含む。「直線上」という語は、「略直線上」の意味を含む。「平行」という語は、「略平行」の意味を含む。
【0012】
<比較例>
まず、本発明の比較例となる光モジュールについて説明する。
図10(a),(b)に示す比較例の光モジュール200は、従来の光受信用TO−CAN型パッケージを用いる光モジュールである。
図10(a),(b)に示すように、光モジュール200は、ステム1と、5本のリードピン2a〜2eと、ガラス3a〜3dと、フォトダイオード4と、増幅器5と、溶接部6と、FPC(Flexible Printed Circuit:フレキシブル基板)7と、を備える。
【0013】
ステム1は、フォトダイオード4、増幅器5などの素子を支持する円板状体である。ステム1は、表主面1a(第1の主面)および裏主面1b(第2の主面)を有する。また、ステム1は、板厚方向に延在する貫通孔20a〜20dを備える。
【0014】
第1のリードピン2aは、信号出力用のピン(信号用ピン)である。第2のリードピン2bは、反転信号出力用のピン(信号用ピン)である。第3のリードピン2cは、増幅器5のバイアス用のピンである。第4のリードピン2dは、フォトダイオード4のバイアス用のピンである。リードピン2a〜2dはそれぞれ、ステム1の貫通孔20a〜20dの各々を貫通しており、ガラス3a〜3dによって固定されている。
【0015】
第5のリードピン2eは、接地用のグランドピンである。第5のリードピン2eは、溶接によりステム1の裏主面1bに直接固定され、ステム1(の筐体)と同電位となっている。
溶接部6は、第5のリードピン2eをステム1の裏主面1bに溶接されるビードである。溶接部6の径は、第5のリードピン2eの径よりも一回り大きい。
【0016】
ガラス3a〜3dは、貫通孔20a〜20dの各々に充填されている。ガラス3a〜3dは、ステム1とリードピン2a〜2dの各々との間を埋める絶縁材であり、ステム1(の筐体)とリードピン2a〜2dの各々とを電気的に絶縁する。
【0017】
フォトダイオード4は、光信号を受信して電気信号に変換する光素子である。フォトダイオード4は、ステム1の表主面1aに、かつ、ステム1の中心に配置されている。
増幅器5は、光信号から変換された電気信号を増幅する電気素子である。増幅器5は、ステム1の表主面1aに、かつ、ステム1の中心付近に配置されている。
【0018】
フォトダイオード4の出力端子は、増幅器5の入力端子とワイヤ接続されている。フォトダイオード4のバイアス端子は、第4のリードピン2dにワイヤ接続されている。増幅器5のバイアス端子は、第3のリードピン2cにワイヤ接続されている。増幅器5の信号出力端子は、第1のリードピン2aにワイヤ接続されている。増幅器5の反転信号出力端子は、第2のリードピン2bにワイヤ接続されている。
上記のように構成することで、フォトダイオード4が受信した光信号が第1のリードピン2aと第2のリードピン2bとの差動電気信号として出力される。この出力された差動電気信号は、光受信用TO−CAN型パッケージに取り付けられたFPC7を介して外部に取り出される。
【0019】
FPC7は、折り曲げ可能な高速配線板であり、ステム1の裏主面1bに密着している。FPC7は、信号用の伝送線路と、伝送線路に沿って形成されるグランドとで構成される高速信号用の差動配線を備える。また、FPC7は、フォトダイオード4および増幅器5のバイアス供給用電源線も備える。
図10(b)に示すように、FPC7は、例えば、厚さ50μm程度の誘電体10(例:ポリイミド)を上層配線12と下層グランド11とで挟んだ構成とすることができる。このような構成のFPC7によれば、信号用の伝送線路としてマイクロストリップ線路を形成することができ、柔軟で取り回しが容易な高速配線板とすることができる。
【0020】
図10(b)に示すように、FPC7は、保護層19を有する。保護層19は、リードピン2a〜2eが通る領域を除いて下層グランド11を、ステム1が設けられている側から保護する。また、FPC7は、保護層19と同等の機能を具備した保護層(図示略)を、ステム1が設けられる面の対向面に有する。当該保護層は、ランド(
図11のランド40a〜40eを参照)の領域を除いて上層配線12を、ステム1が設けられている側の反対側から保護する。また、FPC7は、ステム1に接する保護層19の部分に対し、曲がりや反りを抑制してはんだ実装を容易にするための補強板(図示略)を有する。この補強板は、FPC7を屈曲したい箇所を除き、曲がり反りの抑制が効く任意の箇所に適宜設けることができ、保護層19と下層グランド11との間に設けてもよいし、ステム1と保護層19との間に設けてもよい。
図10(b)に示す符号40b,40c,40eはそれぞれ、リードピン2b,2c,2eの各々との電気的な接続手段となるはんだ8b,8c,8eの各々のランドである。
【0021】
図11に示すように、FPC7は、リードピン2a〜2eに対応する5つのスルーホール13a〜13eを備える。また、FPC7は、スルーホール13a〜13eの各々の周囲にランド40a〜40eを備える。リードピン2a〜2eの各々をスルーホール13a〜13eの各々に差しこみ、リードピン2a〜2eの各々をランド40a〜40eの各々とはんだ付けすることで電気的な接続を行う。
【0022】
図12に示すように、光モジュール200のステム1には、光入射用の窓またはレンズを備えるキャップ14を装着する。よって、光ファイバ15からの光信号は、光ファイバ15の光軸16が通過するフォトダイオード4で受信される。FPC7は、マザーボード17との接続用のパッド(図示略)を備えており、マザーボード17との間で電気信号を送受信することができる。また、
図12に示すように、光モジュール200は、光ファイバ15の光軸16がマザーボード17と平行になるように、FPC7をステム1の端部で折り曲げてマザーボード17に装着することができる。このようにしてマザーボード17への搭載スペースの最小化(低背実装)を図ることが一般的である。
【0023】
比較例の光モジュール200において、ステム1の円板の面積は、所要ピン数と搭載する素子のサイズとで概ね決定されてしまう。このため、比較例の光モジュール200では、ステム1の径を所定のサイズ(例えば、4mm)よりも小さくすることが困難である。
【0024】
また、グランドピンとなる第5のリードピン2eをステム1に溶接した際に第5のリードピン2eの根元に幅広い溶接部6が形成される。この溶接部6が、ステム1とFPC7との密着を妨げてしまい、溶接部6の厚さ分FPC7をステム1から離さざるを得なくなる。その結果、反射減衰量の劣化や信号用ピンとしての第1のリードピン2aおよび第2のリードピン2bのインダクタンスの増大が生じ、高周波特性が劣化したり、伝送速度の高速化が阻害されたりしてしまう問題がある。この問題を解消するために、溶接部6を収容するための穴をステム1に設けて高周波特性を改善する手法もあるが、結果としてステム1の加工コストの増大を招いてしまう。
【0025】
また、光モジュール200の放熱は、ステム1に溶接されたグランドピンが大半を担うことになる。ここで、光モジュールの小型化を進展させると、発熱密度が必然的に増加するため、Φ0.4程度の細径のグランドピンに放熱が大きく依存する比較例の構造では十分な放熱性能を実現できない。その結果、光モジュール自体の信頼性の低下などを招き、光モジュールの小型化が阻害されてしまうという問題もある。
【0026】
上記の問題を解決する本発明の光モジュールについて、複数の実施形態を参照して説明する。説明の際、比較例で説明したり、他の実施形態で説明した部材と同一の部材に対しては同一の符号を用いる。また、比較例や他の実施形態の説明(発明特定事項の説明や効果の説明を含む)と重複する説明は適宜省略し、相違点を主に説明する。
【0027】
<第1の実施形態>
図1(a)〜(c)に示す光モジュール100Aは、本実施形態の光受信用TO−CAN型パッケージを用いる光モジュールである。
図1(a)〜(c)に示すように、光モジュール100Aは、ステム1と、4本のリードピン2a〜2dと、ガラス3a〜3dと、フォトダイオード4(素子:光素子)と、増幅器5(素子:電気素子)と、FPC7(基板:フレキシブル基板)と、を備える。フォトダイオード4および増幅器5は、互いに近傍に配置されている。
【0028】
本実施形態の光モジュール100Aと、比較例の光モジュール200との間の相違点は、主に、(1)光モジュール200が備えるグランドピンとしてのリードピン2eを備えないこと、(2)ステム1が突起部9を備えたこと、(3)FPC7にグランド接続用ランド18を備え、グランド接続用ランド18に対してはんだ付けを行いグランド接続をしていること、の3点である。
【0029】
FPC7は、比較例の光モジュール200と同様、一方向に延在した帯状を呈している。
図1(a)〜(c)に示すように、FPC7の表面の一部領域に、ステム1の裏主面1bが接している(例えば、密着している)。また、FPC7は、ステム1の突起部9に対向する部分を有している。
【0030】
グランド接続用ランド18は、グランドを構成するランドである。グランド接続用ランド18は、FPC7のうち、突起部9に対向する位置に形成されている。グランド接続用ランド18は、例えば、グランド接続用ランド18の形成箇所において保護層19や補強板(図示略)を切り欠き、下層グランド11を露出させることで実現することができる。また、グランド接続用ランド18は、例えば、保護層19や補強板(図示略)にスルーホールを設けることで実現することもできる。はんだ8は、グランド接続用ランド18の形成箇所にてステム1とのグランド接続を実現させる。
【0031】
突起部9は、ステム1の側面に配置される。突起部9は、例えば、プレス加工によって、ステム1の円板と一体に形成することができる。
図1(a)〜(c)に示すように、グランド接続用ランド18との電気的な接続手段となるはんだ8は、突起部9に付着している。
なお、本実施形態の突起部9は、ステム1の板厚と同様の厚みを有しているが、これに限定されない。
【0032】
突起部9はさまざまな形状にすることができる。例えば、
図1に示すように、突起部9は、矩形状(四角柱状)に成形することができる。また、
図2(a)に示すように、突起部9を三角状(三角柱状)に成形してもよいし、
図2(b)に示すように、突起部9とステム1の本体部との境界部に曲面を設けてもよい。
【0033】
図1(a)に示すように、グランド接続用ランド18は、
図1の紙面上、ステム1の右側に配置されている。グランド接続用ランド18は、ステム1の周方向位置のいずれかに、かつ、ステム1よりも外側(例えば、外縁)に配置してもよい。外縁などステム1よりも外側に配置することで、ステム1とのはんだ付けが容易になる利点が生じる。このようなグランド接続用ランド18は、グランドピンとしての第5のリードピン2eを不要にすることができる。よって、ステム1の裏主面1bにグランドピンを配置する領域が不要になり、ステム1の径を小さく設計することができる。その結果、光モジュール100A全体を小型化することができる。
【0034】
また、本実施形態の光モジュール100Aについて、グランドピンを不要にすることに伴い、グランドピンの根元に存在していた溶接部6(
図10)も不要となる。よって、溶接部6が存在していた領域においても、FPC7をステム1の裏主面1bに密着させることができる。その結果、信号用ピンとしての第1のリードピン2aおよび第2のリードピン2bのインダクタンスの減少等を通じて高周波特性を改善させることができ、伝送速度の高速化を図ることができる。
【0035】
また、
図1(a)に示すように、ステム1の中心とグランド接続用ランド18の中心とを結ぶ線分(
図1の紙面上左右方向の線分)は、FPC7がステム1から引き出されている方向(
図1中の矢印参照。以下、「縦方向」と呼ぶ場合がある)と直交する。これにより、FPC7を屈曲させてマザーボード17に実装させたときに(
図12参照)、グランド接続用ランド18が、
図12の上下方向(ステム1の本体部よりマザーボード17側等)に突出することがないので、光モジュール100Aの縦方向の寸法を小さくすることができる(マザーボード17への低背実装)。
なお、
図1に示すように、縦方向に直交する方向を「横方向」と呼ぶ場合がある。
図1に示す縦方向および横方向の矢印は、他の図にも適宜描かれている。
【0036】
また、本実施形態の光モジュール100Aは、ステム1の放熱性を向上させることができる。これは、グランドピンとして細径の第5のリードピン2eを用いる比較例と比べて、ステム1とFPC7とのグランド接続面積を大幅に増やすことができるためである。よって、小型化に伴う発熱密度の増加への対応も容易になり、結果として小型化した光モジュールの信頼性を向上させることができる。
【0037】
<第2の実施形態>
図3(a)、(b)に示す光モジュール100Bは、本実施形態の光受信用TO−CAN型パッケージを用いる光モジュールである。本実施形態の光モジュール100Bと、第1の実施形態の光モジュール100Aとの相違点は、主に、(1)フォトダイオード4を増幅器5上に配置したこと、(2)リードピン2a〜2dを増幅器5を囲うような位置に変更していること、の2点である。ステム1の中心とグランド接続用ランド18(または突起部9)の中心とを結ぶ直線の方向は、横方向である。
【0038】
フォトダイオード4が増幅器5上に配置されることで、ステム1の表主面1aにフォトダイオード4を配置する領域が事実上不要になる。その結果、部品搭載のための所要スペースを極小化することができ、ステム1の径を小さく設計することができる。なお、
図3(a)に示すように、フォトダイオード4および増幅器5は、ステム1の表主面1aの中心に配置されている。
【0039】
また、
図3(a)に示すように、信号用の第1のリードピン2aおよび第2のリードピン2bは、増幅器5を搭載できる程度に横方向に離間して配置されている。また、バイアス用の第3のリードピン2cおよび第4のリードピン2dは、増幅器5を搭載できる程度に縦方向に離間して配置されている。なお、リードピン2a〜2dは、ステム1の周方向の位置にかかわらず増幅器5の周囲に配置することができる。リードピン2a〜2dをこのように配置することで、ステム1の径を極小化することができる。
【0040】
また、ステム1の径を小さくするほど、FPC7を屈曲させるときの屈曲位置を、ステム1の中心に近付けることができる。よって、
図4に示すように、第3のリードピン2cの径方向外側近傍となる位置を、FPC7の屈曲位置とすることができる(
図4中符号B1参照)。その結果、光モジュール100B全体を小型化、具体的には、縦方向に関して低背化することができる。
また、突起部9は、ステム1の側面に配置されているので、FPC7を組み付ける際の目印となる。よって、光モジュール100Aの製造者は、突起部9を参照することで、ピン配置が
図3のように中心対称になっている場合においても、ステム1とFPC7の端子を間違えなく接続することが容易になる。
【0041】
<第3の実施形態>
図5(a)、(b)に示す光モジュール100Cは、本実施形態の光受信用TO−CAN型パッケージを用いる光モジュールである。本実施形態の光モジュール100Cと、第2の実施形態の光モジュール100Bとの相違点は、主に、ステム1の外周部に平坦部を設けたことである。また、光モジュール100Cは、ステム1の中心を挟んで2つのグランド接続用ランド18と、2つの突起部9とを備え、グランド接続用ランド18の各々にはんだ8が設けられている点においても光モジュール100A,100Bとは相違している。なお、光モジュール100Cにおけるグランド接続用ランド18の個数、突起部9の個数、ステム1の周方向におけるグランド接続用ランド18の位置、突起部9の位置は、本実施形態に限らず、他の実施形態にも適用することができる。また、
図5(a)に示すように、FPC7の横方向の幅は、グランド接続用ランド18が存在する部分を除いて、ステム1の横方向の幅と同じにすることができる。このような形状も本実施形態に限らず、他の実施の形態にも適用することができる。
【0042】
第2の実施形態で説明したように、バイアス用の第3のリードピン2cおよび第4のリードピン2dは、増幅器5を搭載できる程度に縦方向に離間して配置されている。よって、ステム1の縦方向の両端は、相当程度の空きスペースが形成されている。この空きスペースに他の素子やリードピンなどを配置しないのであれば、ステム1の縦方向の両端を平坦に成形することで、ステム1をさらに小型化することができる。換言すれば、ステム1の形状を、増幅器5を挟んで横方向に配置されている信号用の第1のリードピン2aおよび第2のリードピン2bを結ぶ直線に平行に切り欠かれた形状とし、グランド接続用ランド18,18と突起部9,9とを概ねこの直線上に配置する。このような配置により、光モジュールをより一層小型化することができる。
【0043】
信号用ピンとしての第1のリードピン2aおよび第2のリードピン2bの特性インピーダンスは、増幅器5の出力インピーダンスに整合するようなインピーダンス(例:50Ω)に設定することが好ましい。一方、バイアス用の第3のリードピン2c及び第4のリードピン2dは外部電源などに接続されることから低インピーダンス化することが好適である。このため、バイアス用の第3のリードピン2cおよび第4のリードピン2dを絶縁するガラス3c,3dは、信号用の第1のリードピン2aおよび第2のリードピン2bを絶縁するガラス3a,3bよりも径方向の寸法を小さくすることができる。
【0044】
上記の事情に鑑みて、
図5(a)に示すように、信号用の第1のリードピン2aおよび第2のリードピン2bを増幅器5を挟んで横方向に配置し、バイアス用の第3のリードピン2cおよび第4のリードピン2dを増幅器5を挟んで縦方向に配置する。このように配置することで、ステム1の縦方向の端部にて大きな空きスペースを設けることができ、ステム1の縦方向の両端の切り欠き領域を大きくすることができる。つまり、信号用の第1のリードピン2aおよび第2のリードピン2bを結ぶ直線に平行にステム1を切り欠いた形状とすることで、ステム1の縦方向の寸法を大幅に小さくすることができる。加えてFPC7の形状もステム1の形状に合うように
図5(a)の上側の部分を切り欠いた形状とすることにより光モジュール100Cを大幅に低背化することができる。
【0045】
また、ステム1の縦方向両端の切り欠き領域が大きいほど、FPC7を屈曲させるときの屈曲位置を、ステム1の中心に近付けることができる。よって、
図6に示すように、第3のリードピン2cの径方向外側近傍となる位置を、FPC7の屈曲位置とすることができる(
図6中符号C1参照)。符号C1で示す屈曲位置は、第2の実施形態で示した屈曲位置(
図4中符号B1参照)よりもステム1の中心に近い。その結果、光モジュール100C全体をさらに低背化、具体的には
図12に示した従来例(比較例)に対して2/3の低背化を図ることができる。
【0046】
また、光モジュール100Cが2つのグランド接続用ランド18を有していると、ステム1とFPC7とのグランド接続面積を大きくできるので、ステム1の放熱性をさらに向上させることができる。これにより、光モジュールの小型化に伴う発熱密度の増加への対応も容易になり、結果として小型光モジュールの信頼性をさらに向上させることができる。なお、グランド接続用ランド18(及びそれを支持する円状ステム本体よりも外側に存在するFPC部)の形状は、ステム1の突起部9とはんだ接続できればいかなる形状であっても構わない。矩形状(四角形状)に限らず、
図2に例示した突起部9の形状の三角状(三角形状)などさまざまな形状にすることができる。
【0047】
<第4の実施形態>
図7(a)、(b)に示す光モジュール100Dは、本実施形態の光送信用TO−CAN型パッケージを用いる光モジュールである。本実施形態の光モジュール100Dと、第1の実施形態の光モジュール100Aとの相違点は、主に、(1)フォトダイオード4の代わりにレーザダイオードであるVCSEL(Vertical Cavity Surface Emitting LASER)30(レーザダイオード:素子:光素子)を備えたこと、(2)増幅器5の代わりにドライバ50(駆動回路:素子:電気素子)を備えたこと、(3)バイアス用のリードピンを1本のリードピン2cにし、信号入力用のリードピン2aと、反転信号入力用のリードピン2bの計3本のリードピンを備えたこと、の3点である。
【0048】
VCSEL30は、ステム1の主面に対して垂直方向に光を共振させ、垂直方向に光信号を出射させる。
ドライバ50は、VCSEL30が光信号を出射するための駆動信号を出力する。
【0049】
光モジュール100Dでは、外部からの差動信号が入力されるように、ドライバ50の信号入力端子がリードピン2aにワイヤ接続されており、ドライバ50の反転信号入力端子がリードピン2bにワイヤ接続されている。また、ドライバ50の出力端子とVCSEL30の端子(アノード/カソード)がワイヤ接続されている。これにより、駆動信号が伝達され、光信号を出射する。また、光出射用の窓またはレンズを具備するキャップ(図示せず)を光モジュール100Dに装着することで、光信号の伝送が実現される。
【0050】
第1の実施形態で示した、光受信系として機能する光モジュール100Aが奏する効果は、本実施形態で示す、光送信系として機能する光モジュール100Dにも適用される。つまり、光送信系であっても光モジュール全体を小型化することができる。
【0051】
<第5の実施形態>
図8(a)、(b)に示す光モジュール100Eは、本実施形態の光送信用TO−CAN型パッケージを用いる光モジュールである。本実施形態の光モジュール100Eと、第4の実施形態の光モジュール100Dとの相違点は、主に、(1)VCSEL30をドライバ50の上に配置したこと、(2)リードピン2a〜2cをドライバ50を囲うような位置に変更していること、(3)ステム1の外周部に平坦部を設けたこと、の3点である。
図8(a)に示すように、VCSEL30およびドライバ50は、ステム1の表主面1aの中心に配置されている。
【0052】
信号用の第1のリードピン2aおよび第2のリードピン2bは、ドライバ50を搭載できる程度に横方向に離間して配置されている。また、バイアス用の1本の第3のリードピン2cは、
図8(a)の紙面上、ドライバ50の下側に配置されている。換言すれば、リードピン2a〜2cは、ドライバに近接配置されている。リードピン2a〜2cをこのように配置することで、ステム1の径を極小化することができる。
【0053】
図8(a)に示すように、信号用の第1のリードピン2aおよび第2のリードピン2bはドライバ50を挟んで横方向に配置されている。また、バイアス用の第3のリードピン2cは、
図8(a)の紙面上、ドライバ50の下側に配置されている。つまり、信号用の第1のリードピン2aおよび第2のリードピン2bを結ぶ直線に平行にステム1を切り欠いた形状とすることで、ステム1の縦方向の寸法を大幅に小さくすることができる。加えてFPC7の形状もステム1の形状に合うように
図8(a)の上側の部分を切り欠いた形状とすることにより光モジュール100Eを大幅に低背化することができる。
【0054】
第5の実施形態の光モジュール100Eは、光送信系を説明する第4の実施形態の光モジュール100Dに、光受信系を説明する第1〜第3の実施形態の特徴を導入したものに概ね等しい。よって、光送信系としての光モジュール100Eは、第1〜第3の実施形態の効果を一通り奏し、光モジュール100Eの小型化、特に、縦方向の低背化を実現することができる。
【0055】
<第6の実施形態>
図9(a)、(b)に示す光モジュール100Fは、本実施形態の光送信用TO−CAN型パッケージを用いる光モジュールである。本実施形態の光モジュール100Fと、第5の実施形態の光モジュール100Eとの相違点は、主に、ドライバ50の代わりにモニタ用フォトダイオード21(素子:光素子)を備えることである。
図8(a)に示すように、VCSEL30およびモニタ用フォトダイオード21は、ステム1の表主面1aの中心に配置されている。また、VCSEL30は、モニタ用フォトダイオード21の上に配置されている。なお、ドライバはFPC7が接続されるマザーボードに搭載される(図示せず)。
【0056】
モニタ用フォトダイオード21は、光モジュール100Fに装着されるキャップ(図示せず)からの光反射信号を受信し、VCSEL30からの光送信パワーに応じた電流を発生する。この電流は、FPC7を介してマザーボードに送信され、VCSEL30のAPC(Auto Power Control)などに使用され、光送信信号の安定化を図ることができる。
【0057】
第6の実施形態の光モジュール100Fは、第5の実施形態の光モジュール100Eとは異なる光送信系を構成するものであり、バイアス用の第3のリードピン2cおよび第4のリードピン2dを備え、計4本のリードピン2a〜2dを備える。第1のリードピン2aおよび第2のリードピン2bの各々は、VCSEL30のための信号入力用および反転信号入力用であり、VCSEL30のアノードとカソードとにそれぞれワイヤ接続されている。また、第3のリードピン2cおよび第4のリードピン2dは、それぞれ、モニタ用フォトダイオード21のアノードとカソードとにワイヤ接続されている。外部からの駆動信号が伝達されると、VCSEL30は光信号を垂直方向に出射する。また、バイアス用の第3のリードピン2cおよび第4のリードピン2dは、モニタ用フォトダイオード21を搭載できる程度に縦方向に離間して配置されている。
【0058】
第6の実施形態の光モジュール100Fは、第5の実施形態の光モジュール100Eとは異なる光送信系を構成するが、第5の実施形態の効果を一通り奏することができる。つまり、光送信系としての第6の実施形態の光モジュール100Fは、第1〜第3の実施形態の効果を一通り奏し、光モジュール100Eの小型化、特に、縦方向の低背化を実現することができる。
【0059】
≪変形例≫
本発明は、上記実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲で、変更実施が可能であり、例えば、以下の(a)〜(h)がある。
(a)本実施形態では、ステム1に突起部9が備えられた場合について説明したが、突起部9を備えていない形態のステムとし、FPC7のグランド接続用ランド18とステム本体部の側面とをはんだ付け(グランド接続)しても構わない。
(b)本実施形態で用いるレーザダイオードは、VCSEL30に限定されず、DFB(Distributed FeedBack)レーザやその他のレーザダイオードであってもよい。また、発光ダイオードであっても構わない。
(c)本実施形態では、基板としてFPC7を適用した場合について説明したが、FPC7に限らず、リジッドな基板であっても本発明を適用することができる。
【0060】
(d)ステム1は、円板状体に限定されず、矩形状体、楕円状体などでもよい。また、ステム1は、孤の部分を有する形状を呈していてもよい。また、この孤の部分が、第1のリードピン2a、第2のリードピン2bを結ぶ直線に平行に切り欠かれた形状を呈していてもよい。
(e)グランド接続用ランド18とステム1の突起部9との電気的な接続手段は、はんだに限定されず、導電性樹脂などでもよい。
【0061】
(f)第5の実施形態にて、第3のリードピン2cを、
図8(a)の紙面上、ドライバ50の下側に近接配置したが、これにより、
図8(a)の紙面上、ドライバ50の上側に相当大きな空きスペースが形成されている。よって、ステム1の形状を、この空きスペースの大部分を切り欠いた形状とすることで、ステム1の縦方向の寸法を大幅に小さくすることができる。
(g)第5の実施形態にて、第3のリードピン2cを、ドライバ50の下側に配置したが、第3のリードピン2cを、ドライバ50の上側に配置してもよい。これにより、ドライバ50の下側に相当大きな空きスペースが形成される。よって、ステム1の形状を、この空きスペースの大部分を切り欠いた形状とすることで、ステム1の縦方向の寸法を大幅に小さくすることができる。さらに、ステム1を密着させたFPC7を屈曲させてマザーボード17に実装させる際、FPC7の屈曲位置をステム1の中心により近付けることができる。その結果、光モジュール100E全体を小型化、具体的には、縦方向に関して低背化することができる。
【0062】
(h)本実施形態では、ステム1の中心とグランド接続用ランド18の中心とを結ぶ線分の方向が、FPC7がステム1から引き出されている方向と直交するように、グランド接続用ランド18を配置した。しかし、グランド接続用ランド18の位置はこれに限らず、例えば、ステム1の縦方向の両端を超えない範囲内において任意の位置に配置してもよい。このような配置でも、グランド接続用ランド18が、ステム1の本体部よりマザーボード17側に突出することがないので、マザーボード17への低背実装が可能となる。
【0063】
なお、上記実施形態において、ステム1とグランド接続用ランド18とを接続する接続部として突起部9を備える構成としたが、上記変形例(a)のように、接続部としてステム1とグランド接続用ランド18とを直接接続する構成としてもよい。
また、グランド接続用ランド18は、接続部の周辺に設けられればよく、ステム1の外縁や外側に限定されない。
【0064】
また、本実施形態で説明した種々の技術を適宜組み合わせた技術を実現することもできる。
その他、本発明の構成要素の形状、材質、機能などについて、本発明の趣旨を逸脱しない範囲で適宜変更が可能である。