(58)【調査した分野】(Int.Cl.,DB名)
【発明の概要】
【発明が解決しようとする課題】
【0004】
これに対して、本発明の目的は、できるだけ広い加工域(processing window)で製造でき、また、広い範囲の用途に使用できる安定なパーツを形成するために、例えば減衰特性および低重量を有するパーツの製造のために、さらに加工できる、膨張したポリマーペレットを提供することである。さらなる目的は、膨張したポリマーペレットから、成型されたコンポーネントまたは物品の製造のための改善された方法を提供することである。
【課題を解決するための手段】
【0005】
第1の態様によれば、この目的は、
a.ポリアミドを含むポリマーを溶融させるステップ;
b.少なくとも1種の発泡剤を加えるステップ;
c.膨張したポリマーを製造するために、溶融物を少なくとも1つのダイを通して膨張させるステップ;および
d.膨張したポリマーをペレットにするステップ;
を含む、膨張したポリマーペレットを製造するための方法によって解決される。
【0006】
本発明は、さらに、この方法により製造されるポリマーペレット、加えて、例えば、スポーツアパレルのためのクッション要素の製造のための、特に、運動靴の靴底または靴底のパーツを製造するための、それらの使用に関する。さらに、本発明は、このような靴底を有する靴、特に運動靴に関する。
【0007】
ポリアミドは、ベースとして、例えば、ポリアミド、コポリアミドおよび/またはポリエーテルブロックアミドを含み得る。さらに、ポリエーテルブロックアミドは、次の特徴:
− 20から70ショアDの範囲のショアD硬度;
− 10から1100MPaの範囲の引張モジュラス;
− それぞれの場合に100重量%のポリエーテルブロックアミドに対して、1から90重量%、好ましくは1から75重量%、より好ましくは1から50重量%のポリエーテルブロック含有量、および10から99重量%、好ましくは25から99重量%、より好ましくは50から99重量%のポリアミドブロック含有量;
− 1000から1030g/m
3の範囲の密度;および
− 110から200℃の融点/溶融範囲;
のうちの少なくとも1つを備え得る。
【0008】
発泡剤は、窒素、二酸化炭素、エタノール、イソプロパノール、またはこれらの混合物から選択され得る。さらに、核剤、鎖延長剤、または両方が、ステップbにおいて添加され得る。
【0009】
ダイは、円形ダイであることが可能である。ダイでの圧力は、70から250バールの範囲にあり得る。ダイでの材料温度(mass temperature)は、150℃から170℃の範囲にあり得る。
【0010】
膨張したポリマーは、水中ペレット化装置でペレットにされ得る。
【0011】
本発明のさらなる態様は、上で記載された方法によって得ることができる、膨張したポリマーペレットに関する。ペレットは、ISO 9276に従って測定して、2から10mmの範囲の大きさを備え得る。さらに、ペレットは、20から400kg/m
3の範囲の粒子密度を備え得る。さらに、ペレットは、10から350μmの範囲の平均気泡直径(mean cell diameter)を備え得る。
【0012】
本発明のさらなる態様は、スポーツアパレルのためのクッション要素を製造するための、特に靴底を製造するための、膨張したポリマーペレットの使用に関する。
【0013】
本発明のさらなる態様は、上で記載された膨張したポリマーペレットを使用して製造される、スポーツアパレルのためのクッション要素、特に靴底またはそのパーツに関する。
【0014】
本発明のさらなる態様は、上で記載された靴底を有する靴、特に、運動靴に関する。
【0015】
本発明のさらなる態様は、ポリアミドをベースとし、−40℃から+40℃の温度範囲においてその貯蔵弾性率が50%未満の変化を示す、膨張したポリマーペレットに関する。
【0016】
本発明の第2の態様は、
a.膨張したポリマー材料のペレットを型に充填すること;および
b.熱エネルギーを供給することによってペレットを連結させること;
を含み、
c.ペレットの膨張したポリマー材料が、鎖延長剤を含む;
成型されたコンポーネントの製造のための方法に関する。
【0017】
例示的実施形態において、鎖延長剤は、ポリマー材料の重合後に供給された。
【0018】
別の例示的実施形態において、膨張したポリマー材料は、半結晶性ポリマーを含む。
【0019】
ステップb.において、熱エネルギーは、加圧水蒸気、電磁放射、高周波放射、マイクロ波放射、赤外放射、紫外放射、電磁誘導のうちの少なくとも1つによって供給できる。
【0020】
一実施形態において、ステップb.の間に、ペレットは、膨張したポリマー材料のガラス転移温度と溶融開始温度未満との間の温度に加熱される。例示的実施形態において、ペレットは、膨張したポリマー材料の融点より100℃から5℃低い範囲に加熱される。それらは、膨張したポリマー材料の融点より60℃から5℃低い、例えば、膨張したポリマー材料の融点より40℃から5℃低い、範囲に加熱され得る。
【0021】
鎖延長剤は、エポキシ基を含むポリマー材料、ピロメリット酸二無水物、およびスチレン無水マレイン酸(styrene maleic anhydride)、またはこれらの1つもしくは複数の組合せから選択される少なくとも1つを含み得る。一実施形態において、鎖延長剤は、反応性エポキシ基を含むスチレン−アクリレートコポリマー、例えば、次の式:
【0022】
【化1】
(式中、R
1からR
5は、H、CH
3、高級アルキル基、またはそれらの組合せであり;R
6は、アルキル基であり、x、y、およびzは、それぞれ、1から20の間である)の化合物である。
【0023】
別の実施形態において、鎖延長剤は、トリエポキシドまたはテトラエポキシドの1つまたは複数から選択される。鎖延長剤は、例えば、トリグリシジルイソシアヌレートおよび/またはテトラグリシジルジアミノジフェニルメタンであり得る。別の実施形態において、鎖延長剤は、スチレン無水マレイン酸の1つまたは複数から選択される。さらなる実施形態において、鎖延長剤は、ピロメリット酸二無水物である。
【0024】
一実施形態において、ポリマーは、ポリアミド、ポリエステル、ポリエーテルケトン、およびポリオレフィンのうちの少なくとも1つから選択される。ポリアミドは、ホモポリアミド、コポリアミド、ポリエーテルブロックアミド、およびポリフタルアミドのうちの少なくとも1つであり得る。ポリエステルは、ポリブチレンテレフタレート(PBT)、熱可塑性ポリエステルエーテルエラストマー(TPEE)、およびポリエチレンテレフタレート(PET)のうちの少なくとも1つであり得る。ポリエーテルケトンは、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、およびポリエーテルケトンケトン(PEKK)のうちの少なくとも1つであり得る。ポリオレフィンは、ポリプロピレン(PP)、ポリエチレン(PE)、オレフィンコ−ブロックポリマー(OBC)、ポリオレフィンエラストマー(POE)、ポリエチレンコ−酢酸ビニル(EVA)、ポリブテン(PB)、およびポリイソブチレン(PIB)のうちの少なくとも1つであり得る。
【0025】
別の実施形態において、ポリマーは、ポリオキシメチレン(POM)、ポリ塩化ビニリデン(PVCD)、ポリビニルアルコール(PVAL)、ポリ乳酸(PLA)、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、テトラフルオロエチレン(TFE)、エチレン−テトラフルオロエチレン(ETFE)、ポリフッ化ビニル(PVF)、パーフルオロアルコキシ(PFA)、および熱可塑性ポリウレタン(TPU)のうちの少なくとも1つから選択される。
【0026】
例示的実施形態において、ポリマーは、ポリブチレンテレフタレート(PBT)を含み、鎖延長剤は、エポキシ基を含むポリマー材料、ピロメリット酸二無水物、スチレン無水マレイン酸、またはこれらの1つもしくは複数の組合せから選択される少なくとも1つ、特に反応性エポキシ基を含むスチレン−アクリレートコポリマーを含む。別の例示的実施形態において、ポリマーは、ポリアミド(PA)またはポリエーテルブロックアミド(PEBA)を含み、鎖延長剤は、エポキシ基を含むポリマー材料、ピロメリット酸二無水物、スチレン無水マレイン酸、またはこれらの1つもしくは複数の組合せから選択される少なくとも1つ、特に反応性エポキシ基を含むスチレン−アクリレートコポリマーを含む。さらなる例示的実施形態において、ポリマーは、熱可塑性ポリエステルエーテルエラストマー(TPEE)を含み、鎖延長剤は、エポキシ基を含むポリマー材料、ピロメリット酸二無水物、スチレン無水マレイン酸、またはこれらの1つもしくは複数の組合せから選択される少なくとも1つ、特に反応性エポキシ基を含むスチレン−アクリレートコポリマーを含む。
【0027】
本発明のさらなる態様は、
a.膨張したポリマー材料のペレットを型に充填することであって、ペレットの膨張したポリマー材料は、ポリマー材料のアモルファス含有量を増加させる添加剤を含むこと;および
b.ペレットを、膨張したポリマー材料のガラス転移温度と溶融開始温度未満との間の温度に加熱することによって、ペレットを連結させること;
を含む、成型されたコンポーネントの製造のための方法に関する。
【0028】
第2のまたはさらなる態様の製造方法の一実施形態において、ペレットは、
a.ポリマー材料を溶融させるステップであって、溶融物は、少なくとも1種のポリマーと、少なくとも1種の発泡剤と、鎖延長剤、またはポリマー材料のアモルファス含有量を増加させる添加剤のうちの少なくとも1つとを含む、ステップ;
b.膨張したポリマー材料を製造するために、溶融物を少なくとも1つのダイを通して膨張させるステップ;および
c.膨張したポリマー材料を、特に水中ペレタイザーにおいて、ペレットにするステップ;
を含む方法によって、製造される。
【0029】
一部の実施形態において、ペレットは、本発明の第1の態様による方法によって製造される。
【0030】
鎖延長剤は、膨張したポリマー材料にアモルファス領域をもたせ、ペレット境界の界面を横切るポリマー鎖の相互拡散を可能にする量で、特に、100重量%のベースポリマー材料に対して、0.1から20重量%、とりわけ1重量%から10重量%、例えば、1重量%から5重量%の量で、添加され得る。
【0031】
ベースポリマー材料は、ポリアミド、例えば、ホモポリアミド、コポリアミド、ポリエーテルブロックアミド、およびポリフタルアミドのうちの少なくとも1つ、例として、ポリアミド12であってもよい。
【0032】
鎖延長剤は、エポキシ基を含むポリマー材料、例えば、反応性エポキシ基を含むスチレン−アクリレートコポリマーであってもよい。
【0033】
膨張した材料のペレットは、少なくとも部分的に破裂した発泡体構造を内部に有することができる。
【0034】
本発明のさらなる態様は、本発明の第2のまたはさらなる態様に関して上で記載された方法によって得ることができる物品に関する。
【0035】
例示的実施形態において、物品は、少なくとも部分的に破裂した発泡体構造を内部に有し得る、膨張した材料のペレットを用いて製造される。このような物品は、例えば防音のために使用することができる。
【0036】
別の態様は、包装材料、再使用可能な包装材料、パレット、医療搬送のための物品、化学品輸送のための物品、壊れやすい物の輸送のための物品、内断熱のための物品、外断熱のための物品、パイプ断熱のための物品、ジオフォーム(geofoam)、仮設住宅、道路クラッシュ防止材、機器の断熱のための物品、産業機器の断熱のための物品、サンバイザ、ダッシュボード、車のシート、センターコンソール、車のドア、チャイルド/ベビーシート、バッテリーカバー/断熱のための物品、エンジン断熱のための物品、バンパー、クラッシュ構造体、保護ヘルメット、防護服の物品、ボートフェンダー、医療用ストレッチャー、サーフ/レスキューボード、ブイ、ボート船体、スノーモービルシート、スキー/スノーボード/水上スキー/ウェイクボードのためのコア、ジェットスキーシート、人工芝、会場(venue)または運動場のフローリング材、スポーツホール保護フローリング材/壁材、コンディショニングローラー、エアロビクスのためのレジスタンスウェイト(resistance weight)、水泳補助具、家具の物品、ビーンバッグ(bean bag)、牛床マット、ドローン、旅行用カバンの物品、飛行機のシート、飛行機/グライダーの翼、飛行機キャビン断熱のための物品、飛行機のフードトレイ、航空路線便フードワゴン断熱のための物品、床下材、加熱防止のための物品、先進防護具のための物品、医療用ギブス包帯、タービン/回転翼のコア、ランフラットタイヤ、ハンドグリップ、飲料断熱材、ランプカバー、マットレスのうちの少なくとも1つとして提供される、上で記載された物品に関する。
【0037】
別の態様は、スポーツアパレルのためのクッション要素の製造における、特に靴底、好ましくは中底の製造のための、本発明の第2のまたはさらなる態様による方法で製造された物品の使用に関する。
【0038】
別の態様は、包装用途、再使用可能な包装、パレット、医療搬送、化学品輸送、壊れやすい物の輸送、内断熱、外断熱、パイプ断熱、ジオフォーム、仮設住宅、道路クラッシュ防止、機器の断熱、産業機器の断熱、サンバイザ、ダッシュボード、車のシート、センターコンソール、車のドア、チャイルド/ベビーシート、バッテリーカバー/断熱、エンジン断熱、バンパー、クラッシュ構造体、保護ヘルメット、防護服、ボートフェンダー、医療用ストレッチャー、サーフ/レスキューボード、ブイ、ボート船体、スノーモービルシート、スキー/スノーボード/水上スキー/ウェイクボードのためのコア、ジェットスキーシート、人工芝、会場または運動場のフローリング、スポーツホール保護フローリング/壁、コンディショニングローラー、エアロビクスのためのレジスタンスウェイト、水泳補助具、家具、ビーンバッグ、牛床マット、ドローン、旅行用カバン、飛行機のシート、飛行機/グライダーの翼、飛行機キャビン断熱、飛行機のフードトレイ、航空路線便フードワゴン断熱、床下、加熱防止、先進防護具、医療用ギブス包帯、タービン/回転翼のコア、ランフラットタイヤ、ハンドグリップ、飲料断熱、ランプカバー、マットレスのための、本発明の第2のまたはさらなる態様による方法で製造された物品の使用に関する。
【0039】
本発明のさらなる態様は、本発明の第2のまたはさらなる態様に関して上で記載された方法によって得ることができる要素、特に靴底を含む靴に関する。本発明の別の態様は、本発明の第2のまたはさらなる態様に関して上で記載された方法を用いることによって成型された発泡体要素を含む靴に関する。
【0040】
本発明の好ましい実施形態は、以下の記述、図および特許請求の範囲において記載される。
【発明を実施するための形態】
【0042】
以下の詳細な記述において、本発明の好ましい例および実施形態が記載される。
【0043】
本発明の第1の態様
膨張したポリマーペレットの製造に使用されるポリマーは、少なくとも1種のポリアミドを含む。ポリマーは、ポリアミドベースであり得る。特に、ポリマーは、それぞれの場合に100重量%のポリマーに対して、少なくとも10重量%、特に少なくとも30重量%、好ましくは少なくとも50重量%のポリアミドを含み得る。好ましい範囲は、それぞれの場合に100重量%のポリマーに対して、10から99重量%、好ましくは25から99重量%、より好ましくは50から99重量%のポリアミドである。ポリマーが100重量%のポリアミドを含む、または100重量%のポリアミドからなることもまた可能である。
【0044】
ポリマーは、ポリアミドベースであり得る。特に、ポリマーは、それぞれの場合に100重量%のポリマーに対して、少なくとも10重量%、特に少なくとも30重量%、好ましくは少なくとも50重量%のポリアミドを含み得る。好ましい範囲は、それぞれの場合に100重量%のポリマーに対して、10から99重量%、好ましくは25から99重量%、より好ましくは50から99重量%のポリアミドである。ポリマーが100重量%のポリアミドを含む、または100重量%のポリアミドからなることもまた可能である。
【0045】
適切なポリマーは、膨張可能であるポリアミド、またはポリアミド含有ポリマーである。特に適切であるのは、10MPaを超える引張モジュラスを有する、および/または、低い温度依存性を有するものである。適切であるのは、例えば、ポリアミド−6(PA6)、ポリアミド−6.6(PA6.6)、ポリアミド−6.10(PA6.10)、ポリアミド−11(PA11)、ポリアミド−12(PA12)、ポリアミド−10.12、またはポリアミド−10.10である。また、これらの組合せも使用できる。特によく適しているのは、PA11もしくはPA12、またはこれらの混合物である。好ましくは、PA12が使用される。適切なポリアミド、またはポリアミド含有ポリマーは市販されている。
【0046】
特によく適しているのは、ポリエーテルブロックアミド(PEBA)である。ポリエーテルブロックアミドは、ポリアミド−セグメントとポリエーテル−セグメントを有するブロックコポリマーである。例えば、適切なポリエーテルブロックアミドは、それぞれの場合に100重量%のポリエーテルブロックアミドに対して、1から90重量%、特に1から50重量%のポリエーテル−ブロック含有量と、10から99重量%、特に50から99重量%のポリアミド−ブロック含有量とを備える。2つ以上のブレンドまたは混合物、特に2つの異なるポリエーテルブロックアミドを使用することもまた可能である。さらに、ポリマーが100重量%のポリエーテルブロックアミドを含む、または100重量%のポリエーテルブロックアミドからなることも可能である。さらに、ポリマーが100重量%のポリアミドおよびポリエーテルブロックアミドを含む、または100重量%のポリアミドおよびポリエーテルブロックアミドからなることも可能である。
【0047】
特によく適しているのは、さらに、次の特性:
− 20から70ショアD、特に35から70ショアDの範囲のショアD硬度;
− 10から1100MPa、特に80から1000MPaの範囲の引張モジュラス;
− 1000から1030g/m
3の範囲の密度;
− 110から200℃、特に130から175℃の範囲の融点/溶融範囲
のうちの少なくとも1つを備えるポリエーテルブロックアミドである。
【0048】
本明細書において、ショアD硬度は、ISO 868に従って測定される。引張モジュラスは、ISO 527−1に従って測定される。密度は、ISO 1183に従って測定される。本発明において、融点または溶融範囲は、それぞれ、ISO 11357に従う測定に関連する。本明細書において、ポリマーの融点または溶融範囲は、それぞれ、半結晶性ポリマーの結晶領域が溶融する温度、または温度範囲を示す。
【0049】
適切なポリエーテルブロックアミドは、市販されている。それらは、知られている方法によって、例えば、国際公開第2006/045513号パンフレットに記載されているように、反応性末端を含むポリアミド−ブロックと反応性末端を含むポリエーテルブロックとの共重縮合によって、製造され得る。
【0050】
挙げられたポリアミドおよびポリエーテルブロックアミドの中から、これらの混合物またはブレンドもまた使用され得る。膨張したポリマーペレットを製造するためのポリマーは、ポリアミドに加えて、別のポリマー、例えば、熱可塑性ポリウレタン(TPU)、ポリフェニレンエーテル(PPE)、スチレン−アクリロニトリル(SAN)、および/またはゴムを、特にTPUを、含む、またはそれとブレンドされていてもよい。別のポリマーの含有量は、100重量%のポリマーに対して、50重量%未満、特に10重量%未満、好ましくは5重量%未満であり得る。一実施形態において、膨張したペレットを製造するために使用されるポリマーは、熱可塑性ポリウレタンを含まない(すなわち、0%)。一実施形態において、膨張したペレットを製造するために使用されるポリマーは、ポリアミド以外のポリマーを含まない(すなわち、0%)。
【0051】
膨張したペレットを製造するために使用されるポリマーは、どのような形態でも、例えば、顆粒または粉末として、特に顆粒として、使用され得る。適切な形態のポリマーは、市販されている。ベースまたは出発ポリマーが、付着した水分または水を含む場合、当業者に知られた手順に従って、ポリマーは、溶融の前に、好ましくは乾燥され、乾燥は、発泡の前に終えられる。
【0052】
本発明による方法の第1のステップにおいて、ポリマーは溶融される。溶融または融解するための適切な方法は、当業者に知られている。溶融は、例えば、押出機で行われ得る。適切な押出装置または押出機は、如何なる限定も受けない。一般的な押出機または市販の押出機、例えば、1軸または2軸押出機が使用され得る。押出機は、また、ポリマーを均一に分散させる役目を果たす。
【0053】
押出機の主な特色(例えば、形式、長さおよび押出機スクリューの回転数、温度プロフィール、圧力)は、加えられた材料が均一に分散され、混合されて、溶融したポリマーとなるように、当業者によって選択され得る。押出機は、通常、ポリマー材料が完全に溶融される温度で運転される。適切な温度は、使用されるポリマーに依存し、当業者によって平常通りに決定され得るが、例えば、ポリアミド12では、適切な温度は、180℃から320℃、特に220から290℃の範囲にある。
【0054】
直列に配置された2つの押出機を用いることもまた可能である。良好な結果は、例えば、第1の押出機が2軸押出機であり、第2の押出機が1軸押出機である場合に、得られる。第1の押出機は、材料を可塑化し、添加された材料、例えば発泡剤を、均一に分散させるために使用される。発泡剤を含めるせいで、材料の粘度は、相当に低下し、第2の押出機は、溶融物特性を改善し、発泡膨張に必要な圧力を増加させるために、材料の温度を下げるために使用され得る。これは、また、材料を加熱し、次いで、制御された仕方で冷却することを可能にするだけ十分に長い1軸押出機を用いることによっても達成できる。さらに、第1と第2の押出機の間にスタティックミキサーを挿入することが可能である。第1の押出機の適切な温度は、170℃から320℃、特に、170から220℃、または220から290℃の範囲にある。第2の押出機の適切な温度は、使用されるポリマーに、より強く依存し、例えば、ポリアミド12では、150から190℃、特に165から180℃の範囲の材料温度が適切であり、ポリエーテルブロックアミドでは、130から180℃、特に155から165℃の範囲の材料温度が適切である。
【0055】
2軸押出機2および1軸押出機9を有する、例示的な配置構成1が、
図1に示されている。
図1によれば、ポリマーは、ホッパー4で導入され、発泡剤5は、注入装置6によって供給される。さらなる材料を、例えば、鎖延長剤を、ポリマーと一緒にホッパー4で、および/または、注入装置6の位置で、あるいはこれらの近傍で、導入することが可能である。押出機2は、ギア3を通じて動かされる。押出機2において、ポリマーは溶融され、注入される発泡剤5と、また任意選択で添加されるさらなる材料と混合される。
図1によれば、アダプター7が、押出機2と押出機9の間に備えられ、押出機9は、ギア8を通じて動かされる。押出機9は、例えば、冷却用押出機であり得る。押出機9において、ポリマー溶融物は、発泡剤とさらに混合され、冷却され、次に、ダイ11、好ましくは円形ダイを通して押し出され、その結果、発泡または膨張した押出物12が得られる。ダイ11は、アダプター10を通じて押出機9に連結されている。
【0056】
一実施形態において、少なくとも1種の発泡剤が、溶融したポリマーに添加される。通常、揮発性の液体、ガス、および、押出機内に存在する条件下にポリマー溶融物に関して不活性であり、また、ガスを生成する分解性化合物が、発泡剤として適している。適切な発泡剤は、窒素、二酸化炭素、エタノール、イソプロパノール、またはこれらの混合物である。特によく適しているのは、超臨界二酸化炭素、または、超臨界二酸化炭素とエタノールの混合物である。発泡剤は、ベースポリマーと共に、予め混合されて、または混合されないで、押出機に供給され得る。代わりに、発泡剤は、ポリマー溶融物に、押出機の適切な位置で添加され、押出機内で混合されてもよい。適切には、発泡剤は、ポリマーまたは溶融したポリマーに均一に分散される。添加される発泡剤の量は、それぞれの場合に100重量%のポリマー溶融物に対して、1から20重量%、特に1から10重量%の範囲にある。発泡剤の特定の量は、100重量%のポリマー溶融物に対して、1、2、3、4、5、7.5、10または15重量%である。特に適切であるのは、100重量%のポリマー溶融物に対して、例えば、2から6重量%の二酸化炭素と2から4重量%のエタノールを有する、二酸化炭素−エタノール混合物である。
【0057】
発泡剤に加えて、通常のさらなる添加剤または加工を容易にする材料、例えば、核剤、鎖延長剤、火炎防止剤、可塑剤、強化剤、顔料、染料、熱−または光−安定剤、静電防止剤、フィラー、またはこれらの混合物が、押出機内のポリマー溶融物に添加さてもよい。適切な核剤は、発泡体の気泡核生成を促進するための、ポリマー溶融物に可溶性でも不溶性でもあり得る添加剤である。不溶性の核剤の例には、タルク、またはシリカが含まれる。ポリマー溶融物に架橋剤を添加することもまた可能である。架橋剤は、例えば、国際公開第2006/045513号パンフレットおよび欧州特許出願公開第1650255号明細書に記載されている。一実施形態において、架橋剤は使用されない、または、ポリマーペレットは架橋されていない。
【0058】
一実施形態において、少なくとも1種の鎖延長剤が、ポリマー溶融物に添加される。少なくとも1種の鎖延長剤を、ポリマーと一緒に、押出装置に供給することもまた可能である。適切な鎖延長剤は、ポリマー溶融物の溶融強度を増加させる化合物である。特に適切な鎖延長剤は、反応性基、例えばエポキシ基を有するオリゴマーまたはポリマー化合物であり、これらは、溶融したポリマーと反応して、分子量および分岐度を増加させ、こうして、使用されるポリマーのレオロジー特性、例えば、溶融粘度および溶融強度を向上させる。適切な鎖延長剤は、スチレン−アクリレートコポリマーがベースであることができ、市販されており、例えば、BASFのJoncryl(登録商標)ADR−4368Cである。鎖延長剤の適切な量は、100重量%のポリマーに対して、0.05から10重量%、特に0.1から5重量%、または0.1から3重量%である。鎖延長剤の使用は、膨張したペレットの製造のためのポリマーとしてポリエーテルブロックアミドを用いる時に、特に有益である。別の例示的実施形態において、過酸化物が、例えば有機過酸化物、例えばジクミルパーオキサイドが、鎖の延長を開始するための鎖延長剤として使用される。過酸化物の使用は、S. Bouhelal et al.の "Structure Modification of Isotactic Polypropylene through Chemical Crosslinking: Toughening Mechanism", Journal of Applied Polymer Science DOI 10.1002/app (Vol. 103, 2968-2976 (2007))の論文に記載されている。
【0059】
一実施形態において、膨張したペレットを製造するためのポリマーは、ポリエーテルブロックアミドを含む、またはポリエーテルブロックアミドからなり、鎖延長剤が、さらなる材料として、ポリマー溶融物に添加される。
【0060】
さらに、ポリマーを、使用済みタイヤ(ゴム)からなる顆粒および生ゴム(caoutchouc)粉末と一緒に溶融させることもまた可能である。押出機での化合物の熱分解は、分解ガス(窒素および二酸化炭素)(これらは、発泡剤としての役目を果たすことができる)、ならびにカーボン(これは、強化および核剤としての役目を果たすことができる)の生成に導く。
【0061】
押出の後、溶融物は、ダイを通して膨張させられる。ダイは、例えば、円形ダイまたはスリットダイ、特に円形ダイであり得る。ダイの直径は、押出機の大きさ、望まれる粒子の大きさおよび密度に依存し、例えば、1から5mmの範囲にあり得る。都合よくは、ダイは押出機に取り付けられる。ダイでの圧力は、使用されるポリマー材料および密度の詳細に応じて決まり、40から400バールの範囲、特に、60から250バールの範囲にあり得る。好ましくは、ポリアミドでは、圧力は、80バールから220バールの範囲にあり得る、また、ポリエーテルブロックアミドでは、圧力は、45バールから200バールの範囲にあり得る。ダイでの材料温度は、ポリマー溶融物に依存し、140から180℃、特に150から170℃の範囲にあり得る。
【0062】
ダイ内部で、また特に、ダイを出た後、溶融物には、急激な圧力低下があり、ポリマーは膨張する、または発泡する。ダイの形状に応じて、膨張または発泡したポリマーは、ストランドまたは箔として得られる。好ましくは、ストランドを得るために、円形ダイが使用される。膨張したポリマーまたは発泡体は、冷却によって安定化される。冷却は、水中ペレット化装置、水浴、コンベヤベルト、または、発泡体ストランドの形状を調節できる場合、較正ユニットで行うことができる。
【0063】
次に、膨張したポリマーは、ペレットにされる。適切なペレット化装置は、当業者に知られており、例えば、水中ペレット化装置または水中造粒機である。ペレット化は、例えば、膨張したポリマーの制御された冷却とペレット化の両方を可能にする水中ペレット化装置で行われ得る。このような装置は市販されている。それらの働きは、ダイを出て行くポリマーストランドが、完全に水で満たされた切断チャンバにおいて、別々の粒子へと切断されるという原理に基づいている。切断粒子の寸法は、切断速度、および押出機/ダイの処理量に、またダイの寸法に応じて決まる。切断チャンバにおける水の適切な温度は、20から100℃、特に、50から100℃、好ましくは70から90℃の範囲にある。切断チャンバにおける、ダイを通して膨張させられた押出物と水との間の温度差のせいで、ポリマーは、粒子、好ましくは球状粒子の形で直ちに固化する。ペレット化装置は、都合よくは、ダイの直後に置かれる。適切な水中ペレット化装置は、例えば、
図2に示されている。別の適切な水中ペレタイザーが、米国特許第5629028号明細書に記載されている。
【0064】
本明細書において、さらなる例として、膨張したポリマーのペレット化は、液体を用いるペレット化チャンバまたは造粒チャンバで行うことができる。適切な液体は、温度制御でき、温度および圧力の調節が可能な液体である。適切な液体は、例えば水である。
【0065】
図2は、ダイ正面プレート101、切断刃アセンブリ102、および水循環ハウジング103を有する、水中ペレット化のための装置100の例示的配置構成を示す。示されているように、膨張したポリマー12(
図1参照)が、押出機ダイ104を経て、ダイ正面プレート101を通り、次に、ハウジング103で循環する水によって囲まれているカッター刃アセンブリ102によって、粒子105へと切断される。押出機ダイ104は、押出機と水中ペレット化装置100の間に配置されており、膨張したポリマー12を、押出機から水中ペレット化装置100へ運ぶ。粒子105は、水循環ハウジング103を出て行っており、次に、乾燥される(示されていない)。水中ペレット化装置100は、ギア106によって駆動される。
【0066】
図3は、水中ペレット化装置のダイ正面プレート101の概略図である。ダイ正面プレート101は、孔107を含む。孔の数は、押出装置の寸法または大きさに依存する。例示的実施形態において、孔の直径は、2.3mmから2.6mmの間であり、孔の数は1から4個の間で、例えば、2.3mmの直径を用いる場合には2個の孔があり得る。
【0067】
膨張したポリマーペレットの形状および大きさは、例えば、押出機の処理量、ダイの形状、ダイでの温度および圧力、水中ペレタイザーにおける水の温度および水の圧力、ペレタイザーの刃の切断速度によって、調節できる。適切な条件の選択は、当業者の通常の技術および知識の範囲内にある。
【0068】
膨張したポリマーペレットは、球形状、楕円形状、または三角形状を有し得る。好ましくは、ペレットは、実質的に球状の形を有する。ペレットの形が本質的に球状である場合、それらは、ISO 9276に従って測定して、例えば、2から10mmの大きさ、および、20から400kg/m
3、例えば50から300kg/m
3の範囲の粒子密度を備え得る。適切な平均気泡直径は、10から350μmの範囲内にある。一実施形態において、膨張したポリマーペレットの最少直径(寸法)は、10mmである。
【0069】
本発明はまた、ポリアミドをベースとし、−40℃から+40℃の温度範囲においてその貯蔵弾性率が40%未満の変化、好ましくは30から40%の範囲の変化を示す、膨張したポリマーペレットにも関する。好ましくは、それらは、70から100kg/m
3の範囲の密度を有する。
【0070】
本発明は、さらに、ポリエーテルブロックアミドベースであり、また、試験プレートに形作られた時、10から90%、好ましくは10から35%の範囲の、(10回以上のサイクル後の)全ヒステリシスサイクルの間の相対エネルギー損失を示す、膨張したポリマーペレットに関する。好ましくは、それらは、50から90kg/m
3の範囲の密度を有する。本明細書において、全ヒステリシスサイクルの間の相対エネルギー損失は、ヒステリシスループ内の面積(積分)を、圧縮の間に加えられた全エネルギー、すなわち、力対圧縮歪み(変位)図におけるヒステリシスループの圧縮分岐の下の面積(積分)で割った値を表す。これは、それぞれ、
図5bおよび5aに、示されており、下の実施例2において、さらに記載される。
【0071】
膨張したポリマーペレットは、広い範囲の用途に使用できる。膨張したポリマーペレットは、非常に軽量であり、また、良好な温度性能および温度依存性を示すコンポーネントを形成するために、加工され得る。それらは、軽量で、広い温度範囲において良好な弾性および良好なエネルギー復元力(resilience)を示すコンポーネントを製造するために加工され得る。
【0072】
したがって、膨張したポリマーペレットは、例えばスポーツアパレルのための、クッション性のあるクッション要素またはコンポーネントを製造するのに、例えば、靴、特に運動靴のための靴底を製造するのに、非常によく適している。この目的に向けて、都合よくは、膨張したポリマーペレットは、製造されるコンポーネントに対応した形状を有するキャビティを備える型に充填される。その中で、膨張したポリマーペレットは、特に、それらに熱を作用させることによって、例えば型に加圧水蒸気を供給することによって、互いに連結される。
【0073】
本発明はまた、膨張したポリマーペレットを用いて製造される、スポーツアパレルおよび靴、特に運動靴にも関する。
【0074】
膨張したポリマーペレットが使用される他の用途は、クッション性または減衰特性および広い温度範囲内での高い安定性が望まれる分野、例えば、自動車部門または航空機産業の分野である。それらは、また、良好なエネルギー吸収特性を有するコンポーネントを形成するためにも使用できる。それらは、例えば、自動車クラッシュ防止のためのコンポーネントに適している。
【0075】
本発明の第2の態様
第2の態様において、本発明は、膨張したポリマー材料のペレットまたはビーズを型に充填すること、および、ペレットまたはビーズを、熱エネルギーを供給することによって連結させることを含む、成型されたコンポーネントの製造のための方法に関し、ここで、ペレットまたはビーズの膨張したポリマー材料は鎖延長剤を含む。用語「ペレット」および「ビーズ」は、本明細書において、交換可能であるように用いられている。
【0076】
例として、鎖延長剤は、ポリマー材料の重合後に、供給され得る。例えば、鎖延長剤は、別個のコンパウンディングステップにおいて、および/または、ポリマー材料を膨張させる直前に、添加され得る。鎖延長剤は、膨張したポリマー材料のペレットの製造のために使用されるベースポリマー材料に組み入れられ得る。鎖延長剤は、コンパウンディング段階に、ベースポリマーに添加され得る。代わりに、ベースポリマーが、最初に、ポリマー加工装置、例えば押出機に、供給器、例えばホッパーを通じて供給され、次いで、鎖延長剤が添加されてもよい。
【0077】
ペレットを連結させるために、熱エネルギーが、様々な異なる方法で供給され得る。熱エネルギーは、例えば、成型用具に供給される加圧水蒸気の形で供給され得る。代わりに、または追加で、熱エネルギーは、また、電磁場によって供給されてもよい。熱エネルギーは、例えば、成型用具および/またはペレットを、電磁放射で照射することによって供給され得る。電磁放射は、例えば、次の周波数範囲:高周波放射(30kHz〜300MHz)、マイクロ波放射(300MHz〜300GHz)、赤外放射(300GHz〜400THz)、紫外放射(789THz〜3PHz)、または別の周波数範囲の1つまたは複数から選択され得る。熱エネルギーは、また、電磁誘導によっても供給され得る。例えば、電磁放射で照射される、または、電磁誘導によって加熱される場合、ペレットによって吸収される熱エネルギーの量を増加させるために、エネルギー吸収性材料が、ペレットに添加されてもよい。上に挙げた可能性の全ては、互いに組み合わせられてもよい。
【0078】
ステップb.の間、ペレットは、膨張したポリマー材料のガラス転移温度と溶融開始温度未満との間の温度に加熱され得る。この加熱は、アモルファス鎖の動き易さの増加、および、膨張したポリマーペレットのビーズ−ビーズの融着に導く。例として、加熱は、好ましくは、膨張したポリマー材料のガラス転移温度を超えて行われる。例示的な実施形態において、ペレットは、膨張したポリマー材料の融点より100℃から5℃低い範囲に加熱される。それらは、膨張したポリマー材料の融点より60℃から5℃低い、例えば、膨張したポリマー材料の融点より50℃から5℃低い、または40℃から5℃低い範囲に加熱され得る。
【0079】
本明細書で用いられる場合、用語「溶融開始温度」は、ポリマー材料が溶融し始める温度を意味する。これは、例えばDSC(示差走査熱量測定)により、熱流対温度の図において、熱流が増加する温度が溶融開始温度を示すとして、求められ得る。本明細書で用いられる場合、用語「融点」は、例えば、DSCによって得られる溶融ピークを意味する。DSCでの適切な条件は、例えば、25℃から250℃の温度範囲で、10K/分の加熱速度である。膨張したポリマー材料のガラス転移温度もまた、例えばDSCによって求めることができる。
【0080】
鎖延長剤は、エポキシ基を含むポリマー材料、ピロメリット酸二無水物、およびスチレン無水マレイン酸、またはこれらの2つ以上の組合せから選択される少なくとも1種の化合物を含み得る。適切な鎖延長剤は、反応性エポキシ基を含むスチレン−アクリレートコポリマー、例えば、次の式:
【0081】
【化2】
(式中、R
1からR
5は、H、CH
3、高級アルキル基、またはそれらの組合せであり;R
6は、アルキル基であり、x、y、およびzは、それぞれ、1から20の間である)の化合物である。このような鎖延長剤は、Joncryl(登録商標)ADR−4368C(BASF)として市販されている。
【0082】
鎖延長剤は、また、トリエポキシド、テトラエポキシド、またはこれらの組合せでもあり得る。適切な鎖延長剤は、例えば、トリグリシジルイソシアヌレートおよび/またはテトラグリシジルジアミノジフェニルメタンである。別の適切な鎖延長剤は、スチレン無水マレイン酸である。さらなる適切な鎖延長剤は、ピロメリット酸二無水物である。
【0083】
鎖延長剤は、また、過酸化物、例えば有機過酸化物、例えばジクミルパーオキサイドでもあり得る。過酸化物の使用は、S. Bouhelal et al.の"Structure Modification of Isotactic Polypropylene through Chemical Crosslinking: Toughening Mechanism", Journal of Applied Polymer Science DOI 10.1002/app (Vol. 103, 2968-2976 (2007))の論文に記載されている。
【0084】
膨張したポリマー材料は、半結晶性ポリマー、または少なくとも1種の半結晶性ポリマーを含むポリマーブレンドを含み得る。
【0085】
膨張したポリマー材料のポリマーは、ポリアミド、ポリエステル、ポリエーテルケトン、ポリオレフィン、またはこれらの組合せであり得る。ポリアミドは、ホモポリアミド、コポリアミド、ポリエーテルブロックアミド、ポリフタルアミド、またはこれらの組合せであり得る。非常に適切な材料は、ポリエーテルブロックアミド(PEBA)である。通常、ポリアミドは、本発明の第1の態様に関連して、上で規定されたものと同じポリアミドであり得る。ポリエステルは、ポリブチレンテレフタレート(PBT)、熱可塑性ポリエステルエーテルエラストマー(TPEE)、ポリエチレンテレフタレート(PET)、またはこれらの組合せであり得る。ポリエーテルケトンは、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、およびポリエーテルケトンケトン(PEKK)、またはこれらの組合せであり得る。ポリオレフィンは、ポリプロピレン、ポリエチレン(PE)、オレフィンコ−ブロックポリマー(OBC)、ポリオレフィンエラストマー(POE)、ポリエチレンコ−酢酸ビニル(EVA)、ポリブテン(PB)、およびポリイソブチレン(PIB)、またはこれらの組合せであり得る。
【0086】
他の適切なポリマーは、ポリオキシメチレン(POM)、ポリ塩化ビニリデン(PVCD)、ポリビニルアルコール(PVAL)、ポリ乳酸(PLA)、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、テトラフルオロエチレン(FEP)、エチレン−テトラフルオロエチレン(ETFE)、ポリフッ化ビニル(PVF)、パーフルオロアルコキシ(PFA)、熱可塑性ポリウレタン(TPU)、またはこれらの組合せである。
【0087】
例として、ポリマーは、ポリブチレンテレフタレート(PBT)を含み、鎖延長剤は、エポキシ基を含むポリマー材料を含む。さらなる例として、ポリマーはPBTを含み、鎖延長剤は、ピロメリット酸二無水物を含む。さらなる例として、ポリマーはPBTを含み、鎖延長剤はスチレン無水マレイン酸を含む。さらなる例として、ポリマーはPBTを含み、鎖延長剤は、反応性エポキシ基を含むスチレン−アクリレートコポリマー、または、例えば、Joncryl(登録商標)ADR−4368Cを含む。
【0088】
別の例として、ポリマーは、ポリアミド、例えば、ポリアミド12、またはポリエーテルブロックアミド(PEBA)を含み、鎖延長剤は、エポキシ基を含むポリマー材料を含む。さらなる例として、ポリマーは、ポリアミド、例えば、ポリアミド12、またはポリエーテルブロックアミド(PEBA)を含み、鎖延長剤はピロメリット酸二無水物を含む。さらなる例として、ポリマーは、ポリアミド、例えば、ポリアミド12、またはポリエーテルブロックアミド(PEBA)を含み、鎖延長剤はスチレン無水マレイン酸を含む。さらなる例として、ポリマーは、ポリアミド、例えば、ポリアミド12、またはポリエーテルブロックアミド(PEBA)を含み、鎖延長剤は、反応性エポキシ基を含むスチレン−アクリレートコポリマー、または、例えば、Joncryl(登録商標)ADR−4368Cを含む。
【0089】
さらなる例示的実施形態において、ポリマーは、熱可塑性ポリエステルエーテルエラストマー(TPEE)を含み、鎖延長剤は、エポキシ基を含むポリマー材料を含む。さらなる例として、ポリマーは、TPEEを含み、鎖延長剤は、ピロメリット酸二無水物を含む。さらなる例として、ポリマーは、TPEEを含み、鎖延長剤は、スチレン無水マレイン酸を含む。さらなる例として、ポリマーは、TPEEを含み、鎖延長剤は、反応性エポキシ基を含むスチレン−アクリレートコポリマー、または、例えば、Joncryl(登録商標)ADR−4368Cを含む。
【0090】
さらなる例示的実施形態において、ポリマーは、ポリ乳酸(PLA)を含み、鎖延長剤は、エポキシ基を含むポリマー材料を含む。さらなる例として、ポリマーは、PLAを含み、鎖延長剤は、ピロメリット酸二無水物を含む。さらなる例として、ポリマーは、PLAを含み、鎖延長剤は、スチレン無水マレイン酸を含む。さらなる例として、ポリマーは、PLAを含み、鎖延長剤は、反応性エポキシ基を含むスチレン−アクリレートコポリマー、または、例えば、Joncryl(登録商標)ADR−4368Cを含む。
【0091】
さらなる例示的実施形態において、ポリマーは、ポリエチレンテレフタレート(PET)を含み、鎖延長剤は、エポキシ基を含むポリマー材料を含む。さらなる例として、ポリマーは、PETを含み、鎖延長剤は、ピロメリット酸二無水物を含む。さらなる例として、ポリマーは、PETを含み、鎖延長剤は、スチレン無水マレイン酸を含む。さらなる例として、ポリマーは、PETを含み、鎖延長剤は、反応性エポキシ基を含むスチレン−アクリレートコポリマー、または、例えば、Joncryl(登録商標)ADR−4368Cを含む。
【0092】
さらなる例示的実施形態において、ポリマーは、ポリオキシメチレン(POM)を含み、鎖延長剤は、エポキシ基を含むポリマー材料を含む。さらなる例として、ポリマーは、POMを含み、鎖延長剤は、ピロメリット酸二無水物を含む。さらなる例として、ポリマーは、POMを含み、鎖延長剤は、スチレン無水マレイン酸を含む。さらなる例として、ポリマーは、POMを含み、鎖延長剤は、反応性エポキシ基を含むスチレン−アクリレートコポリマー、または、例えば、Joncryl(登録商標)ADR−4368Cを含む。
【0093】
さらなる態様において、本発明は、膨張したポリマー材料のペレットを型に充填することであって、ペレットの膨張したポリマー材料は、ポリマー材料のアモルファス含有量を増加させる添加剤を含むこと;および、ペレットを、膨張したポリマー材料のガラス転移温度と溶融開始温度未満との間の温度に加熱することによって、ペレットを連結させること;を含む、成型されたコンポーネントの製造のための方法に関する。加熱は、上で記載されたように行うことができる。ポリマー材料のアモルファス含有量を増加させる添加剤は、型の中のペレットの、より良好な連結が達成されるように、ポリマーを変性する。このような添加剤は、これには限定されないが、鎖延長剤であり得る。さらなる適切な添加剤は、過酸化物、例えば有機過酸化物、例えばジクミルパーオキサイドである。過酸化物の使用は、S. Bouhelal et al.の"Structure Modification of Isotactic Polypropylene through Chemical Crosslinking: Toughening Mechanism", Journal of Applied Polymer Science DOI 10.1002/app (Vol. 103, 2968-2976 (2007))の論文に記載されている。
【0094】
成型されたコンポーネントを製造するために使用されるペレットは、鎖延長剤、もしくはポリマー材料のアモルファス含有量を増加させる添加剤のいずれか、またはこれらの組合せを用いる、上で記載された方法を用いることによって製造され得る。膨張の前に、2つ以上の溶融段階をもつこともまた可能である。発泡剤、および鎖延長剤または添加剤を、膨張の前の2つ以上の溶融段階において添加すること、例えば、ポリマーを溶融させ、鎖延長剤または添加剤を加え、次いで、冷却し、ポリマーを溶融させ、そして発泡剤を加えること、もまた可能である。さらに可能であるのは、ポリマーを溶融させ、鎖延長剤を加え、次いで、冷却し、そして、この過程を、発泡剤を加えて繰り返すことである。
【0095】
鎖延長剤は、100重量%のベースポリマー材料に対して、0.1から20重量%、特に0.1から15重量%、好ましくは0.1から10重量%、例えば、0.1から5重量%、または1から5重量%の量で添加され得る。同じ量が、ポリマー材料のアモルファス含有量を増加させる添加剤でも用いられ得る。
【0096】
特に適切なベースポリマー材料は、ポリアミドから選択され、例えば、ホモポリアミド、コポリアミド、ポリエーテルブロックアミド、およびポリフタルアミドである。非常に適しているのは、一例として、ポリアミド12である。
【0097】
鎖延長剤は、エポキシ基を含むポリマー材料、例えば、反応性エポキシ基を含むスチレン−アクリレートコポリマーであり得る。
【0098】
図8a、8bおよび8cは、本発明の第2の態様による、成型されたコンポーネントの製造のための方法を実施するために使用できる型を示す。
図8aは、参照数字200により全体として示され、2つのパーツ201および202を備える型を示す。型200は、供給管210を通して、ペレット220で満たされるキャビティ205を備える。
図8bは、キャビティ205がペレット220で完全に満たされた時を示す。
図8cは、ペレットを連結させるために、ペレット220に熱エネルギー230を加えることを示す。ペレットを連結させた後、型200を、パーツ201および202によって開いて、成型されたコンポーネントを外すことができる(図示せず)。
【0099】
成型によるコンポーネントは、スチーム−チェスト(steam-chest)成型を用いて、膨張したポリマー材料のペレットから成型で製造できる。この技術、さらにはスチーム−チェスト成型機は、当技術分野において知られている。このようなスチーム−チェスト成型機は、例えば、Kurtz GmbH社(ドイツ)から市販されている。この方法では、最初に、ペレットが型に供給される。型を閉じた後、ペレットは、水蒸気の圧力下に置かれる。水蒸気の圧力および温度として使用される条件は、使用されるペレットの材料(ポリマー材料、鎖延長剤、添加剤)に依存する。これらの条件は、通常の実験を用いて、当業者が決定できる。温度は、一方では、ポリマーにおけるアモルファス領域がさらに動き易くなるように、ポリマー材料のガラス転移温度を超えており、他方では、発泡したペレットが溶融し始め、終にはつぶれることのないように、ポリマー材料の溶融開始温度未満であるように選択され得る。例として、成型は、予め決められた継続時間で、温度/圧力を上げ下げする、水蒸気操作プロフィールを用いて、行うことができる。当業者は、適切な圧力、温度、および時間/サイクルの条件を、例えば圧力と時間のバランスをとることによって、決定できる。圧力が高すぎると、ペレットはつぶれ、溶融し得る。時間が短すぎると、ペレットは十分なエネルギーを受けられず、正しく融着しないこともあり得る。融着を生じるために、ポリマー材料の溶融物を用いることもまた可能であり、例えば、2つの溶融ピークを有する、膨張したポリプロピレンでは、融着は、これらの溶融ピークの間で起こる。
【0100】
膨張した材料のペレットが、少なくとも部分的に破裂した発泡体構造を内部に有することは可能である。
【0101】
物品が、少なくとも部分的に破裂した発泡体構造を内部に有し得る、膨張した材料のペレットを用いて製造される場合、製造される成型によるコンポーネントは、例えば、防音に適している。
【0102】
製造された成型によるコンポーネントは、包装材料、再使用可能な包装材料、パレット、医療搬送のための物品、化学品輸送のための物品、壊れやすい物の輸送のための物品、内断熱のための物品、外断熱のための物品、パイプ断熱のための物品、ジオフォーム、仮設住宅、道路クラッシュ防止材、機器の断熱のための物品、産業機器の断熱のための物品、サンバイザ、ダッシュボード、車のシート、センターコンソール、車のドア、チャイルド/ベビーシート、バッテリーカバー/断熱のための物品、エンジン断熱のための物品、バンパー、クラッシュ構造体、保護ヘルメット、防護服の物品、ボートフェンダー、医療用ストレッチャー、サーフ/レスキューボード、ブイ、ボート船体、スノーモービルシート、スキー/スノーボード/水上スキー/ウェイクボードのためのコア、ジェットスキーシート、人工芝、会場または運動場のフローリング材、スポーツホール保護フローリング材/壁材、コンディショニングローラー、エアロビクスのためのレジスタンスウェイト、水泳補助具、家具の物品、ビーンバッグ、牛床マット、ドローン、旅行用カバンの物品、飛行機のシート、飛行機/グライダーの翼、飛行機キャビン断熱のための物品、飛行機のフードトレイ、航空路線便フードワゴン断熱のための物品、床下材、加熱防止のための物品、先進防護具のための物品、医療用ギブス包帯、タービン/回転翼のコア、ランフラットタイヤ、ハンドグリップ、飲料断熱材、ランプカバー、マットレスのうちの少なくとも1つとして、使用され得る、または適切であり得る。
【0103】
製造された成型によるコンポーネントは、スポーツアパレルのためのクッション要素の製造における、特に、靴底、好ましくは中底の製造のための、物品として、使用され得る、または適切であり得る。
【0104】
本発明の態様は、靴、特に、クッション要素を含む靴に関する。クッション要素は、靴底、特に中底であり得る。適切な中底は、例えば、鎖延長剤を含む、膨張したポリエーテルブロックアミドペレットを融着させることによって製造され得る。このような中底は、
図10および
図12に示されており、下の実施例3および4においてさらに記載される。
【0105】
本発明の別の態様は、発泡体を含む物品に関する。発泡体は、上で記載された方法を用い、膨張したポリマーペレットを融着または連結させることによって製造できる。物品は、スポーツアパレル、例えば靴、例えば運動靴であり得る。靴は、クッション要素の形で、例えば靴底または中底として、発泡体を含み得る。
【0106】
成型されたコンポーネントは、また、防音のためにも使用され得る。適切な成型されたコンポーネントは、特に、連続気泡形態を有する発泡体である。例として、膨張したペレット、従ってまた、融着した発泡体は、少なくとも部分的に破裂した構造を有し得る。防音物品を製造するのに適したペレットまたは融着した発泡体は、例えば、ポリアミド、例えばポリアミド12から製造され得る。ポリアミドは鎖延長剤を含み得る。このような膨張したペレットは、
図16および17に示されている。
図16は、鎖延長剤なし(すなわち、0%)の、膨張したポリアミド(PA12)ペレットの走査電子顕微鏡(SEM)画像を示す。
図17は、1.5%の鎖延長剤を含む、膨張したポリアミド(PA12)ペレットの走査電子顕微鏡(SEM)画像を示す。これらの図における拡大スケールは、示されている100μmの距離の200倍である。これらの図は、鎖延長剤のパーセンテージを増加させると、気泡が破裂することを示す。
【実施例】
【0107】
本発明が、実施形態を示すが、本発明を限定しない以下の実施例により例示される。
【実施例1】
【0108】
ベースポリマーとして、ポリアミド12材料が使用された。使用されたポリアミド12は、Evonik Industries AG(Marl)から入手できる、Vestamid LX 9012であった。発泡剤として、100重量%のベースポリマーに対して、4重量%の(超臨界)二酸化炭素と3重量%のエタノールの組合せが、使用された。
【0109】
ベースポリマーおよび発泡剤が、
図1に示された装置一式による2軸押出機2(参照記号は、上での
図1の議論におけるものと同じである)に供給された。押出機2において、ホッパー4を通じて導入されたポリマーは、溶融され、注入された発泡剤5と混合された。押出機2における温度プロフィールは、170から220℃の範囲にあった。冷却用押出機9において、ポリマー溶融物は、発泡剤とさらに混合され、冷却された。押出機9における材料温度は170℃であった。次に、溶融したポリマーが、220バールの圧力の円形ダイ11を通して膨張させられ、ストランド状の膨張した押出物12が得られた。その後、膨張した押出物12は、
図2に示される水中ペレット化装置に供給された。水中ペレタイザーの水循環システムにおける温度は、70℃であった。得られたペレットは、水中ペレット化の後で、密度測定の前に、乾燥された。それらは、89kg/m
3の密度を有していた。
【0110】
ペレットは、DMA(動的機械分析)によって、様々な温度での貯蔵弾性率を評価するために、さらに走査電子顕微鏡(SEM)によって、調べられた。
【0111】
DMAでは、知られた試験装置が使用され、貯蔵弾性率分析が、−40℃から+40℃の温度掃引により、次の試験条件下に行われた:5℃毎の一定の増加;各温度での5分の浸漬時間;25%の初期圧縮歪み;初期歪みの回りの5%の正弦波振動;および1Hzの振動。試験されたペレットは、実質的に球状の形を有し、約5mmの直径を有していた。得られた結果は、EPA12について、貯蔵弾性率(kPa)vs.温度(℃)を示す
図4に示されている。比較のために、直径約4〜5mmの球状の形および類似の剛性(stiffness)特性を有する、発泡ポリプロピレン(BASFのNeopolen P9230K;EPP)についての測定が、
図4にさらに示されている。
【0112】
その図から明らかなように、−40℃から+40℃まで温度を変化させた時、貯蔵弾性率が約288%減少する、膨張したポリプロピレン粒子EPPに比べて、ポリアミドペレットEPA12の貯蔵弾性率は、約35%の変化、より正確には、約35%の減少を示す。
【0113】
図6には、膨張したポリアミドペレットの走査電子顕微鏡(SEM)画像が示されている。拡大スケールは、示された1mmの距離の20倍である。画像は、ペレットが、閉じた粒子スキンおよび均一な気泡の大きさを有し、こうして、粒子の状態で優れた発泡体構造を備えることを示す。
【実施例2】
【0114】
ベースポリマーとして、PEBA材料が使用された。使用されたPEBA材料は、Evonik Industries AG(Marl)から入手できるVestamid E62−S3であった。製造業者の情報によれば、文字Eの後の数は、ISO 868によるショアD硬度を示し、Vestamid E62−S3は、62のショアD硬度を備えることを意味する。発泡剤として、100重量%のベースポリマーに対して、4重量%の(超臨界)二酸化炭素と2重量%のエタノールの組合せが使用された。さらに、スチレン−アクリレートコポリマーベースの鎖延長剤が使用された。鎖延長剤は、BASFのJoncryl(登録商標)ADR−4368Cであり、100重量%のベースポリマーに対して、2重量%の量で使用された。
【0115】
ベースポリマー、発泡剤および鎖延長剤が、
図1に示された装置一式による2軸押出機2(参照記号は、上での
図1の議論におけるものと同じである)に供給された。押出機2において、ホッパー4を通じて導入されたポリマーは、溶融され、注入された発泡剤5、および鎖延長剤と混合された。鎖延長剤は、ホッパーで、ドライブレンドとして、ポリマーと共に導入された。押出機2における温度プロフィールは、170から220℃の範囲にあった。冷却用押出機9において、ポリマー溶融物は、発泡剤および鎖延長剤とさらに混合され、冷却された。押出機9における材料温度は158℃であった。次に、溶融したポリマーが、200バールの圧力の円形ダイ11を通して膨張させられ、ストランド状の膨張した押出物12が得られた。その後、膨張した押出物12は、
図2に示される水中ペレット化装置に供給された。水中ペレタイザーの水循環システムにおける温度は、70℃であった。得られたペレットは、水中ペレット化の後で、密度測定の前に、乾燥された。それらは、70kg/m
3の密度を有し、走査電子顕微鏡(SEM)によって調べられた。
【0116】
さらに、機械的特性を評価するために、ペレットは、水蒸気により互いに接合されて、試験プレートが作られた。試験プレートは、約84kg/m
3の密度を有し、その圧縮挙動に関して試験された。
【0117】
圧縮試験は、知られた試験装置を用いて、23℃で、次の試験条件下に行われた:20mmの厚さの試料;50%の圧縮;ヒールスタンプ(50mmの直径);50mm/分の速度;および5Nの予荷重。得られた結果は、
図5a、5bおよび5cに示されている。比較のために、類似の剛性特性を有する発泡ポリプロピレン(BASFのNeopolen P9230K;EPP)から作られた、同じような試験プレートについての測定が、
図5cに示されている。
【0118】
図5aのグラフは、膨張したポリエーテルブロックアミドから作られた試験プレートについての1回目のサイクルでのヒステリシスループを示し、ここで、試験プレートの圧縮の間に加えられた全エネルギーに線影が付けられている。
図5bのグラフは、
図5aと同じグラフを示すが、ヒステリシスループ内の部分に線影が付けられている。
図5bおよび
図5aにおける線影を付けられた部分から、1回の全ヒステリシスサイクルの間の相対的エネルギー損失(%)が、
図5bの線影を付けられた部分の面積を、
図5aの線影を付けられた部分の面積で割ることによって、計算できる。この例の膨張したペレットから作られた試験プレートでの1回目のヒステリシスサイクルの間の相対的エネルギー損失は、約57%であった。さらなる試験サイクルが行われ、10回目のサイクルでは、相対的エネルギー損失は、約31%であった。
【0119】
図5cのグラフは、膨張したポリエーテルブロックアミドペレット(ePEBA)から作られた試験プレートのヒステリシスループを、膨張したポリプロピレンペレット(ePP)から作られた試験プレートと比較して示す。数値は、ePEBA試験プレートが、50%の圧縮歪み(変位)までの圧縮の間、良好な機械的特性を、良好な回復(少ない可塑変形)および低ヒステリシスと共に例示し、こうして、ePPプレートと比べた場合、圧縮特性が改善されていることを示す。
【0120】
図7には、膨張したポリエーテルブロックアミドペレットの走査電子顕微鏡(SEM)画像が示されている。拡大スケールは、示された1mmの距離の20倍である。画像は、ペレットが、閉じた粒子スキンおよび均一な気泡の大きさを有し、こうして、粒子の状態で優れた発泡体構造を備えることを示す。
【実施例3】
【0121】
ベースポリマーとして、PEBA材料が使用された。使用されたPEBA材料は、Evonik Industries AG(Marl)から入手できるVestamid E62−S3であった。さらに、スチレン−アクリレートコポリマーベースの鎖延長剤、すなわち、Joncryl(登録商標)ADR−4368C(BASF)が、100重量%のベースポリマーに対して、1重量%、2重量%、および2.5重量%の量で使用された。比較のために、ベースポリマーはまた、鎖延長剤なしでも試験された。ポリマーは、実施例2に記載されたものと同じ発泡剤、および示された量の鎖延長剤と一緒に、実施例2と同様に、押出機において溶融された。次に、実施例2と同様に、溶融物は、円形ダイを通して膨張させられ、膨張したペレットを得るために、水中ペレット化装置に供給された。
【0122】
ペレット(成型の前)は、それらの熱流−温度挙動について、25℃から250℃の温度範囲で、10K/分の加熱速度を用いるDSC測定により試験された。得られた試験結果は、
図9に示されており、図では、DSC測定の1回目の加熱によるデータが用いられた。
図9において、曲線についての指示は、鎖延長剤の量、および、ある場合、ゼロに対する曲線のオフセットを示す。曲線は、それぞれ、より良い比較のために、示された0.5、1、および1.5のオフセットを有する。見られるように、曲線のピークも幅も、鎖延長剤によって影響を受けない。しかし、ピークの高さは、高さが鎖延長剤の量を増やすにつれて低下しているという点で、影響を受けている。それは、ポリマーの結晶化度が、鎖延長剤の量を増やすと共に低下することを意味する。
【0123】
2.5重量%の鎖延長剤を含むペレットが、型に充填され、型に水蒸気を供給することによって融着させられた。型は、靴の中底を成型するための金型であった。
図10は、成型後に得られた中底の画像を示す。
【実施例4】
【0124】
ベースポリマーとして、PEBA材料が使用された。使用されたPEBA材料は、Evonik Industries AG(Marl)から入手できるVestamid E55であった。スチレン−アクリレートコポリマーベースの鎖延長剤、すなわち、Joncryl(登録商標)ADR−4368C(BASF)が、100重量%のベースポリマーに対して、3重量%、4.5重量%、および5重量%の量で使用された。比較のために、ベースポリマーはまた、鎖延長剤なしでも試験された。ポリマーは、実施例2に記載されたものと同じ発泡剤、および示された量の鎖延長剤と一緒に、実施例2と同様に、押出機において溶融された。次に、実施例2と同様に、溶融物は、円形ダイを通して膨張させられ、膨張したペレットを得るために、水中ペレット化装置に供給された。
【0125】
ペレット(成型の前)は、それらの熱流−温度挙動について、25℃から250℃の温度範囲で、10K/分の加熱速度を用いるDSC測定により試験された。得られた試験結果は、
図11に示されており、図では、DSC測定の1回目の加熱によるデータが用いられた。
図11において、曲線についての指示は、鎖延長剤の量、および、ある場合、ゼロに対する曲線のオフセットを示す。曲線は、それぞれ、より良い比較のために、示された0.5、1、および1.2のオフセットを有する。見られるように、ピークの高さは、高さが鎖延長剤の量を増やすにつれて低下しているという点で、影響を受けている。それは、ポリマーの結晶化度が、鎖延長剤の量を増やすと共に低下することを意味する。
【0126】
図18は、溶融エネルギー(正規化された)が、鎖延長剤を5重量%の量で添加した時、24%だけかなり減少することを示す。これは、鎖延長剤の添加に起因する結晶化度の変化を例示する。
【0127】
5重量%の鎖延長剤を含むペレットが、型に充填され、型に水蒸気を供給することによって融着させられた。型は、靴の中底を成型するための金型であった。
図12は、成型後に得られた中底の画像を示す。
【実施例5】
【0128】
ベースポリマーとして、ポリブチレンテレフタレート(PBT)材料が使用された。使用されたPBT材料は、BASFから入手できるUltradur B4520であった。スチレン−アクリレートコポリマーベースの鎖延長剤、すなわち、Joncryl(登録商標)ADR−4368C(BASF)が、100重量%のベースポリマーに対して、1重量%、および1.5重量%の量で使用された。比較のために、ベースポリマーはまた、鎖延長剤なしでも試験された。密な(compact)材料が生成され、その方法は、ポリマーの溶融、鎖延長剤を添加すること、および得られた材料の押出を含んでいた。次に、密な材料は、冷却され、材料の熱流−温度挙動が、25℃から250℃の温度範囲で、10K/分の加熱速度を用いるDSCを用いて測定された。得られた試験結果は、
図13に示されており、図では、DSC測定の1回目の加熱によるデータが用いられた。
図13において、曲線についての指示は、鎖延長剤の量、および、ある場合、ゼロに対する曲線のオフセットを示す。曲線は、それぞれ、より良い比較のために、示された1、および2のオフセットを有する。見られるように、曲線のピークは、その高さが、鎖延長剤によって影響を受けている。ピークの高さは、鎖延長剤の量を増やすにつれて低下している。それは、ポリマーの結晶化度が、鎖延長剤の量を増やすと共に低下することを意味する。
【0129】
図19は、溶融エネルギー(正規化された)が、鎖延長剤を1.5重量%の量で添加した時、19%だけかなり減少することを示す。これは、鎖延長剤の添加に起因する結晶化度の変化を例示する。
【実施例6】
【0130】
ベースポリマーとして、TPEE材料が使用された。使用されたTPEE材料は、DSMから入手できるArnitel EM400であった。スチレン−アクリレートコポリマーベースの鎖延長剤、すなわち、Joncryl(登録商標)ADR−4368C(BASF)が、100重量%のベースポリマーに対して、2重量%の量で使用された。比較のために、ベースポリマーはまた、鎖延長剤なしでも試験された。密な材料が生成され、その方法は、ポリマーの溶融、鎖延長剤を添加すること、および得られた材料の押出を含んでいた。次に、密な材料は、冷却され、材料の熱流−温度挙動が、25℃から250℃の温度範囲で、10K/分の加熱速度を用いるDSCを用いて測定された。得られた試験結果は、
図14および
図15に示されており、図では、DSC測定の1回目の加熱によるデータが用いられた。
図14において、曲線についての指示は、鎖延長剤の量、および、ある場合、ゼロに対する曲線のオフセットを示す。1つの曲線は、より良い比較のために、示された0.2のオフセットを有する。見られるように、曲線のピークは、その高さが、鎖延長剤によって影響を受けている。ピークの高さは、鎖延長剤の存在により低下している。それは、ポリマーの結晶化度が、鎖延長剤の添加により低下することを意味する。さらに、曲線は、鎖延長剤が添加された時、より滑らかである。
【0131】
図15は、溶融エネルギー(正規化された)が、鎖延長剤を2重量%の量で添加した時、29%だけかなり減少することを示す。これは、鎖延長剤の添加に起因する結晶化度の変化を例示する。同じ傾向は、
図15(溶融エネルギーを正規化し、鎖延長剤含有量に対してプロットする)におけると同じ様に、上の実施例4の膨張したPEBA(
図11)および上の実施例5の膨張したPBT(
図13)の結果をプロットした時にも、見られる。これは、また、
図18および19からも引用できる。
【実施例7】
【0132】
ベースポリマーとして、ポリアミド12(PA12)材料が使用された。使用されたポリアミド12は、Vestamid LX 9012(Evonik Industries AG(Marl)から入手可能)であった。発泡剤として、100重量%のベースポリマーに対して、4重量%の(超臨界)二酸化炭素と3重量%のエタノールの組合せが使用された。スチレン−アクリレートコポリマーベースの鎖延長剤、すなわち、Joncryl(登録商標)ADR−4368C(BASF)が、100重量%のベースポリマーに対して、0、および1.5重量%の量で使用された。
【0133】
ポリマーは、実施例1と同様に、同じ発泡剤、および示された量の鎖延長剤と一緒に、押出機において溶融された。次に、実施例1と同様に、溶融物は、円形ダイを通して膨張させられ、膨張したペレットを得るために、水中ペレット化装置に供給された。
【0134】
図16および17に、膨張したポリアミドペレットの走査電子顕微鏡(SEM)画像が示されている。
図16は、鎖延長剤のない(0%)ペレットを、
図17は、1.5%の鎖延長剤を含むペレットを示す。これらの図における拡大スケールは、示された100μmの距離の200倍である。画像は、ペレットが、鎖延長剤の量と共に増加する、気泡壁の破裂によって示される、部分的に破裂した発泡体構造を有し、このため、防音にとって優れた発泡体構造を備えることを示す。
【実施例8】
【0135】
ベースポリマーとして、PLA材料が使用された。使用されたPLA材料は、Nature Worksから入手されたIngeo 3251Dであった。スチレン−アクリレートコポリマーベースの鎖延長剤、すなわち、Joncryl(登録商標)ADR−4368C(BASF)が、100重量%のベースポリマーに対して、1重量%および2重量%の量で使用された。比較のために、ベースポリマーはまた、鎖延長剤なしでも試験された。密な材料が、2軸マイクロ−コンパウンダーを用いて生成され、その方法は、ポリマーの溶融、鎖延長剤を添加すること、および得られた材料の押出を含んでいた。次に、密な材料は、冷却され、材料の熱流−温度挙動が、25℃から250℃の温度範囲で、10K/分の加熱速度を用いるDSCを用いて測定された。得られた試験結果は、
図20および
図21に示されており、図では、DSC測定の2回目の昇温評価によるデータが用いられた。
図20において、曲線についての指示は、鎖延長剤の量を示す。見られるように、曲線のピークは、その高さが、鎖延長剤によって影響を受けている。ピークの高さは、鎖延長剤の量を増やすにつれて低下している。それは、ポリマーの結晶化度が、鎖延長剤の添加により低下することを意味する。さらに、曲線は、鎖延長剤が添加された時、より滑らかである。
【0136】
図21は、溶融エネルギー(正規化された)が、鎖延長剤を2重量%の量で添加した時、28%だけかなり減少することを示す。これは、鎖延長剤の添加に起因する結晶化度の変化を例示する。
【実施例9】
【0137】
ベースポリマーとして、PET材料が使用された。使用されたPET材料は、Hoechst Celaneseから入手されたPET−Type 40(射出成型グレード)であった。スチレン−アクリレートコポリマーベースの鎖延長剤、すなわち、Joncryl(登録商標)ADR−4368C(BASF)が、100重量%のベースポリマーに対して、1重量%、2重量%、および3重量%の量で使用された。比較のために、ベースポリマーはまた、鎖延長剤なしでも試験された。密な材料が、2軸マイクロ−コンパウンダーを用いて生成され、その方法は、ポリマーの溶融、鎖延長剤を添加すること、および得られた材料の押出を含んでいた。次に、密な材料は、冷却され、材料の熱流−温度挙動が、25℃から250℃の温度範囲で、10K/分の加熱速度を用いるDSCを用いて測定された。得られた試験結果は、
図22および
図23に示されており、図では、DSC測定の2回目の昇温評価によるデータが用いられた。
図22において、曲線についての指示は、鎖延長剤の量を示す。見られるように、曲線のピークは、その高さが、鎖延長剤によって影響を受けている。ピークの高さは、鎖延長剤の量を増やすにつれて低下している。それは、ポリマーの結晶化度が、鎖延長剤の添加により低下することを意味する。さらに、曲線は、鎖延長剤が添加された時、より滑らかである。
【0138】
図23は、溶融エネルギー(正規化された)が、鎖延長剤を3重量%の量で添加した時、20%だけかなり減少することを示す。これは、鎖延長剤の添加に起因する結晶化度の変化を例示する。
【実施例10】
【0139】
ベースポリマーとして、POM材料が使用された。使用されたPOM材料は、DuPontから入手されたDelrin(登録商標)100P NC010であった。スチレン−アクリレートコポリマーベースの鎖延長剤、すなわち、Joncryl(登録商標)ADR−4368C(BASF)が、100重量%のベースポリマーに対して、1重量%および2重量%の量で使用された。比較のために、ベースポリマーはまた、鎖延長剤なしでも試験された。密な材料が、2軸マイクロ−コンパウンダーを用いて生成され、その方法は、ポリマーの溶融、鎖延長剤を添加すること、および得られた材料の押出を含んでいた。次に、密な材料は、冷却され、材料の熱流−温度挙動が、25℃から250℃の温度範囲で、10K/分の加熱速度を用いるDSCを用いて測定された。得られた試験結果は、
図24および
図25に示されており、図では、DSC測定の2回目の昇温評価によるデータが用いられた。
図24において、曲線についての指示は、鎖延長剤の量を示す。見られるように、曲線のピークは、鎖延長剤によって影響を受けている。
図25は、溶融エネルギー(正規化された)が、鎖延長剤を2重量%の量で添加した時、9%だけ減少することを示す。これは、鎖延長剤の添加に起因する結晶化度の変化を例示する。
【0140】
以下において、さらなる実施形態が、本発明の理解を容易にするために記載される。
1.
a.ポリアミドを含むポリマーを溶融させるステップ;
b.少なくとも1種の発泡剤を加えるステップ;
c.膨張したポリマーを製造するために、溶融物を少なくとも1つのダイを通して膨張させるステップ;および
d.膨張したポリマーをペレットにするステップ;
を含む、膨張したポリマーペレットを製造するための方法。
2.ポリアミドが、ベースとして、ポリアミド、コポリアミド、および/またはポリエーテルブロックアミドを含む、実施形態1による方法。
3.ポリエーテルブロックアミドが、次の特性:
− 20から70ショアDの範囲のショアD硬度;
− 10から1100MPaの範囲の引張モジュラス;
− それぞれの場合に100重量%のポリエーテルブロックアミドに対して、1から90重量%のポリエーテルブロック含有量、および10から99重量%のポリアミドブロック含有量;
− 1000から1030g/m
3の範囲の密度;および
− 110から200℃の融点/溶融範囲;
のうちの少なくとも1つを備える、実施形態2による方法。
4.発泡剤が、窒素、二酸化炭素、イソプロパノール、エタノール、またはこれらの混合物から選択され、特に、発泡剤が、二酸化炭素とエタノールの混合物である、実施形態1から3の1つによる方法。
5.ステップb.において、核剤、鎖延長剤、または両方が、特に鎖延長剤がさらに添加される、実施形態1から4の1つによる方法。
6.ダイが円形ダイである、実施形態1から5の1つによる方法。
7.ダイでの圧力が、70から250バールの範囲にある、実施形態1から6の1つによる方法。
8.ダイでの材料温度が、150℃から170℃の範囲にある、実施形態1から7の1つによる方法。
9.膨張したポリマーが、水中ペレット化装置においてペレットにされる、実施形態1から8の1つによる方法。
10.実施形態1から9の1つによる方法によって得ることができる膨張したポリマーペレット。
11.ISO 9276に従って測定して、2から10mmの範囲の大きさを有する、実施形態10による膨張したポリマーペレット。
12.20から400kg/m
3の範囲の粒子密度を備える、実施形態10または11による膨張したポリマーペレット。
13.10から350μmの範囲の平均気泡直径を備える、実施形態10から12の1つによる膨張したポリマーペレット。
14.スポーツアパレルのためのクッション要素を製造するための、特に靴底を製造するための、実施形態10から13の1つによる膨張したポリマーペレットの使用。
15.実施形態10から13の1つによる膨張したポリマーペレットを使用して製造される、スポーツアパレルのためのクッション要素、特に靴底。
16.実施形態15による靴底を備える靴、特に運動靴。
17.ポリアミドをベースとし、−40℃から+40℃の温度範囲においてその貯蔵弾性率が50%未満の変化を示す、膨張したポリマーペレット。
18.
a.膨張したポリマー材料のペレットを型に充填すること;および
b.熱エネルギーを供給することによってペレットを連結させること;
を含み、
c.ペレットの膨張したポリマー材料が、鎖延長剤を含む;
成型されたコンポーネントの製造のための方法。
19.鎖延長剤が、ポリマー材料の重合後に供給された、実施形態18による方法。
20.膨張したポリマー材料が、半結晶性ポリマーを含む、実施形態18または19による方法。
21.熱エネルギーが、加圧水蒸気、電磁放射、高周波放射、マイクロ波放射、赤外放射、紫外放射、電磁誘導のうちの少なくとも1つによって供給される、実施形態18〜20のいずれか1つによる方法。
22.ステップb.の間に、ペレットが、膨張したポリマー材料のガラス転移温度と溶融開始温度未満との間の温度に加熱される、実施形態18〜21のいずれか1つによる方法。
23.ステップb.の間に、ペレットが、膨張したポリマー材料の融点より100℃から5℃低い、特に、膨張したポリマー材料の融点より60℃から5℃低い、好ましくは、膨張したポリマー材料の融点より40℃から5℃低い範囲に加熱される、実施形態22による方法。
24.鎖延長剤が、エポキシ基を含むポリマー材料、ピロメリット酸二無水物、およびスチレン無水マレイン酸、またはこれらの1つもしくは複数の組合せから選択される少なくとも1つを含む、実施形態18〜23のいずれか1つによる方法。
25.鎖延長剤が、反応性エポキシ基を含むスチレン−アクリレートコポリマーであり、特に、次の式:
【0141】
【化3】
(式中、R
1からR
5は、H、CH
3、高級アルキル基、またはそれらの組合せであり;R
6は、アルキル基であり、x、y、およびzは、それぞれ、1から20の間である)
を有する、実施形態24による方法。
26.鎖延長剤が、トリエポキシドまたはテトラエポキシドの1つまたは複数、特に、トリグリシジルイソシアヌレートおよび/またはテトラグリシジルジアミノジフェニルメタンから選択される、実施形態18〜24のいずれか1つによる方法。
27.鎖延長剤が、スチレン無水マレイン酸の1つまたは複数から選択される、実施形態18から24のいずれか1つによる方法。
28.鎖延長剤がピロメリット酸二無水物である、実施形態18から24のいずれか1つによる方法。
29.ポリマーが、ポリアミド、ポリエステル、ポリエーテルケトン、およびポリオレフィンのうちの少なくとも1つから選択される、実施形態18から24のいずれか1つによる方法。
30.ポリアミドが、ホモポリアミド、コポリアミド、ポリエーテルブロックアミド、およびポリフタルアミドのうちの少なくとも1つである、実施形態29による方法。
31.ポリエステルが、ポリブチレンテレフタレート(PBT)、熱可塑性ポリエステルエーテルエラストマー(TPEE)、およびポリエチレンテレフタレート(PET)のうちの少なくとも1つである、実施形態29による方法。
32.ポリエーテルケトンが、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、およびポリエーテルケトンケトン(PEKK)のうちの少なくとも1つである、実施形態29による方法。
33.ポリオレフィンが、ポリプロピレン(PP)、ポリエチレン(PE)、オレフィンコ−ブロックポリマー(OBC)、ポリオレフィンエラストマー(POE)、ポリエチレンコ−酢酸ビニル(EVA)、ポリブテン(PB)、およびポリイソブチレン(PIB)のうちの少なくとも1つである、実施形態29による方法。
34.ポリマーが、ポリオキシメチレン(POM)、ポリ塩化ビニリデン(PVCD)、ポリビニルアルコール(PVAL)、ポリ乳酸(PLA)、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、テトラフルオロエチレン(FEP)、エチレン−テトラフルオロエチレン(ETFE)、ポリフッ化ビニル(PVF)、パーフルオロアルコキシ(PFA)、および熱可塑性ポリウレタン(TPU)のうちの少なくとも1つから選択される、実施形態18から24のいずれか1つによる方法。
35.ポリマーが、ポリブチレンテレフタレート(PBT)を含み、鎖延長剤が、エポキシ基を含むポリマー材料、ピロメリット酸二無水物、スチレン無水マレイン酸、またはこれらの1つもしくは複数の組合せから選択される少なくとも1つ、特に反応性エポキシ基を含むスチレン−アクリレートコポリマーを含む、実施形態18から24のいずれか1つによる方法。
36.ポリマーが、ポリアミド(PA)またはポリエーテルブロックアミド(PEBA)を含み、鎖延長剤が、エポキシ基を含むポリマー材料、ピロメリット酸二無水物、スチレン無水マレイン酸、またはこれらの1つもしくは複数の組合せから選択される少なくとも1つ、特に反応性エポキシ基を含むスチレン−アクリレートコポリマーを含む、実施形態18〜24のいずれか1つによる方法。
37.ポリマーが熱可塑性ポリエステルエーテルエラストマー(TPEE)を含み、鎖延長剤が、エポキシ基を含むポリマー材料、ピロメリット酸二無水物、スチレン無水マレイン酸、またはこれらの1つもしくは複数の組合せから選択される少なくとも1つ、特に反応性エポキシ基を含むスチレン−アクリレートコポリマーを含む、実施形態18〜24のいずれか1つによる方法。
38.
a.膨張したポリマー材料のペレットを型に充填することであって、ペレットの膨張したポリマー材料は、ポリマー材料のアモルファス含有量を増加させる添加剤を含むこと;および
b.ペレットを、膨張したポリマー材料のガラス転移温度と、溶融開始温度未満との間の温度に加熱することによって、ペレットを連結させること;
を含む、成型されたコンポーネントの製造のための方法。
39.ペレットが、
a.ポリマー材料を溶融させるステップであって、溶融物は、少なくとも1種のポリマーと、少なくとも1種の発泡剤と、鎖延長剤、およびポリマー材料のアモルファス含有量を増加させる添加剤から選択される少なくとも1つとを含む、ステップ;
b.膨張したポリマー材料を製造するために、溶融物を少なくとも1つのダイを通して膨張させるステップ;および
c.膨張したポリマー材料を、特に水中ペレタイザーにおいて、ペレットにするステップ;
を含む方法によって製造される、実施形態18〜38のいずれか1つによる方法。
40.ペレットが、実施形態1〜9のいずれか1つによる方法によって製造される、実施形態18〜38のいずれか1つによる方法。
41.鎖延長剤が、膨張したポリマー材料にアモルファス領域をもたせ、ペレット境界の界面を横切るポリマー鎖の相互拡散を可能にする量で、特に、100重量%のベースポリマー材料に対して、0.1から20重量%、特に1から10重量%、とりわけ1重量%から5重量%の量で添加される、実施形態18〜37のいずれか1つによる方法。
42.ベースポリマー材料が、ポリアミド、特に、ホモポリアミド、コポリアミド、ポリエーテルブロックアミド、およびポリフタルアミドのうちの少なくとも1つ、好ましくはポリアミド12である、実施形態30および実施形態39〜41のいずれか1つによる方法。
43.鎖延長剤が、エポキシ基を含むポリマー材料、特に反応性エポキシ基を含むスチレン−アクリレートコポリマーである、実施形態42による方法。
44.膨張した材料のペレットが、少なくとも部分的に破裂した発泡体構造を内部に有する、実施形態42または43による方法。
45.実施形態18〜44のいずれか1つによる方法によって得ることができる物品。
46.実施形態44の方法により製造される、実施形態45の物品。
47.包装材料、再使用可能な包装材料、パレット、医療搬送のための物品、化学品輸送のための物品、壊れやすい物の輸送のための物品、内断熱のための物品、外断熱のための物品、パイプ断熱のための物品、ジオフォーム、仮設住宅、道路クラッシュ防止材、機器の断熱のための物品、産業機器の断熱のための物品、サンバイザ、ダッシュボード、車のシート、センターコンソール、車のドア、チャイルド/ベビーシート、バッテリーカバー/断熱のための物品、エンジン断熱のための物品、バンパー、クラッシュ構造体、保護ヘルメット、防護服の物品、ボートフェンダー、医療用ストレッチャー、サーフ/レスキューボード、ブイ、ボート船体、スノーモービルシート、スキー/スノーボード/水上スキー/ウェイクボードのためのコア、ジェットスキーシート、人工芝、会場または運動場のフローリング材、スポーツホール保護フローリング材/壁材、コンディショニングローラー、エアロビクスのためのレジスタンスウェイト、水泳補助具、家具の物品、ビーンバッグ、牛床マット、ドローン、旅行用カバンの物品、飛行機のシート、飛行機/グライダーの翼、飛行機キャビン断熱のための物品、飛行機のフードトレイ、航空路線便フードワゴン断熱のための物品、床下材、加熱防止のための物品、先進防護具のための物品、医療用ギブス包帯、タービン/回転翼のコア、ランフラットタイヤ、ハンドグリップ、飲料断熱材、ランプカバー、マットレスのうちの少なくとも1つとして提供される、実施形態45または46の物品。
48.スポーツアパレルのためのクッション要素の製造における、特に靴底、好ましくは中底の製造のための、実施形態45の物品の使用。
49.包装用途、再使用可能な包装、パレット、医療搬送、化学品輸送、壊れやすい物の輸送、内断熱、外断熱、パイプ断熱、ジオフォーム、仮設住宅、道路クラッシュ防止、機器の断熱、産業機器の断熱、サンバイザ、ダッシュボード、車のシート、センターコンソール、車のドア、チャイルド/ベビーシート、バッテリーカバー/断熱、エンジン断熱、バンパー、クラッシュ構造体、保護ヘルメット、防護服、ボートフェンダー、医療用ストレッチャー、サーフ/レスキューボード、ブイ、ボート船体、スノーモービルシート、スキー/スノーボード/水上スキー/ウェイクボードのためのコア、ジェットスキーシート、人工芝、会場または運動場のフローリング、スポーツホール保護フローリング/壁、コンディショニングローラー、エアロビクスのためのレジスタンスウェイト、水泳補助具、家具、ビーンバッグ、牛床マット、ドローン、旅行用カバン、飛行機のシート、飛行機/グライダーの翼、飛行機キャビン断熱、飛行機のフードトレイ、航空路線便フードワゴン断熱、床下、加熱防止、先進防護具、医療用ギブス包帯、タービン/回転翼のコア、ランフラットタイヤ、ハンドグリップ、飲料断熱、ランプカバー、マットレスのための実施形態45の物品の使用。
50.防音のための、実施形態46の物品の使用。
51.実施形態18から44のいずれか1つによる方法を用いることによって得ることができる要素、特に靴底を備える靴。
52.実施形態18から44のいずれか1つによる方法を用いることによって成型された発泡体要素を備える靴。