【0016】
本発明の触媒は、細孔径10
5Å以下の範囲の細孔容積分布において、全細孔容積に対する細孔径500Å以上3000Å以下の範囲の細孔容積の割合が、好ましくは15%以上40%以下、より好ましくは19%以上39%以下である。
また、全細孔容積に対する細孔径500Å以上の範囲の細孔容積の割合が、好ましくは25%以上50%以下、より好ましくは26%以上49%以下、さらに好ましくは23%以上45%以下である。
さらに、全細孔容積に対する細孔径1000Å以上の範囲の細孔容積の割合が、好ましくは10%以上45%以下、より好ましくは11%以上42%以下、さらに好ましくは7.5%以上28%以下である。
このような新規な細孔容積分布を有する触媒は、触媒の表面に、シリカが堆積し難く、シリカが付着堆積しても脱硝性能がほとんど低下しない。
なお、本発明における細孔容積分布は水銀圧入法によって測定して得られたものである。
【0018】
触媒の調製において、チタンの酸化物の原料として、酸化チタン粉末または酸化チタン前駆物質を用いることができる。酸化チタン前駆物質としては、酸化チタンスラリ、酸化チタンゾル;硫酸チタン、四塩化チタン、チタン酸塩などを挙げることができる。
本発明においては、チタンの酸化物の原料として、アナターゼ型酸化チタンを形成するものが好ましく用いられる。
バナジウムの酸化物の原料として、五酸化バナジウム、メタバナジン酸アンモニウム、硫酸バナジル等のバナジウム化合物を用いることができる。
タングステンの酸化物の原料として、パラタングステン酸アンモニウム、メタタングステン酸アンモニウム、三酸化タングステン、塩化タングステン等を用いることができる。
モリブデンの酸化物の原料として、モリブデン酸アンモニウム、三酸化モリブデンなどを用いることができる。
【実施例】
【0024】
以下、実施例及び比較例に基づき本発明を更に具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。
【0025】
実施例1
二酸化チタン820kgをニーダーに投入し、その後、メタバナジン酸アンモニウム8.9kgとパラタングステン酸アンモニウム69.6kgを溶解したモノエタノール水溶液を添加し、グラスファイバー46.7kg、活性白土46.7kgおよびポリエチレンオキシド9.3kgを添加し、ニーダーにてこれらを混練した。その後、微結晶セルロースを触媒乾燥重量基準で15重量%となるように添加し、水分調整を行いながら混練した。その後、混練物をハニカム押出ノズルを備えたスクリュー付き真空押出機によって押出成形してハニカム成形体を得た。ハニカム成形体を自然乾燥させ、次いで100℃通風下で5時間乾燥させた。その後、軸方向の両端を切り揃え、電気炉内にて600℃で焼成して、外径150mm×150mm、軸方向長さ800mm、セルピッチ7.4mm、内壁厚さ1.15mm、および
図1に示す細孔容積分布を有するハニカム成形体Aを得た。全細孔容積に対する細孔径40Å以上3000Å以下の範囲の細孔容積の割合が80%以上、全細孔容積に対する細孔径500Å以上の範囲の細孔容積の割合が33%、全細孔容積に対する細孔径500Å以上3000Å以下の範囲の細孔容積の割合が24%、全細孔容積に対する細孔径1000Å以上の範囲の細孔容積の割合が19%であった。
【0026】
ハニカム成形体Aを低NOx燃焼ボイラの脱硝装置に設置して、燃焼排ガス(NOx濃度200ppm)からのNOxの除去を5.6万時間行った。触媒表面に堆積したシリカ量および脱硝率を測定した。触媒表面に堆積したシリカ量と反応速度定数比k/koとの関係(×)を
図4に示す。
【0027】
実施例2
微結晶セルロースの量を触媒乾燥重量基準で10重量%に変更した以外は、実施例1と同じ方法で、外径150mm×150mm、軸方向長さ800mm、セルピッチ7.4mm、内壁厚さ1.15mm、および
図2に示す細孔容積分布を有するハニカム成形体Bを得た。全細孔容積に対する細孔径40Å以上3000Å以下の範囲の細孔容積の割合が80%以上、全細孔容積に対する細孔径500Å以上3000Å以下の範囲の細孔容積の割合が26%、全細孔容積に対する細孔径500Å以上3000Å以下の範囲の細孔容積の割合が18%、全細孔容積に対する細孔径1000Å以上の範囲の細孔容積の割合が11%であった。
【0028】
ハニカム成形体Bを低NOx燃焼ボイラの脱硝装置に設置して、燃焼排ガス(NOx濃度350ppm)からのNOxの除去を1.5万時間行った。触媒表面に堆積したシリカ量および脱硝率を測定した。触媒表面に堆積したシリカ量と反応速度定数比k/koとの関係(◆)を
図4に示す。
【0029】
比較例1
微結晶セルロースの量を触媒乾燥重量基準で0重量%にした以外は、実施例1と同じ方法で、外径150mm×150mm、軸方向長さ800mm、セルピッチ7.4mm、内壁厚さ1.15mm、および
図3に示す細孔容積分布を有するハニカム成形体Cを得た。全細孔容積に対する細孔径500Å以上の範囲の細孔容積の割合が9%、全細孔容積に対する細孔径500Å以上3000Å以下の範囲の細孔容積の割合が4%、全細孔容積に対する細孔径1000Å以上の範囲の細孔容積の割合が7%であった。
【0030】
ハニカム成形体Cを低NOx燃焼ボイラの脱硝装置に設置して、燃焼排ガス(NOx濃度270ppm)からのNOxの除去を3万時間行った。触媒表面に堆積したシリカ量および脱硝率を測定した。触媒表面に堆積したシリカ量と反応速度定数比k/koとの関係(■)を
図4に示す。
【0031】
以上のことから、本発明の触媒を用いると、触媒の表面にシリカの堆積量が増えても脱硝性能の低下がほとんどなく、燃焼排ガス、好ましくは低NOx燃焼排ガス、からNOxを除去することができる。
【0032】
さらに、ラボ試験で一定時間シリカ処理し、反応速度定数比k/koを測定した。
【0033】
実施例3
ハニカム成形体Aをラボでシロキサンを含む模擬排ガスに曝露させた。その後、脱硝率を測定した。全細孔容積に対する細孔径500Å以上3000Å以下の範囲の細孔容積の割合と反応速度定数比k/koとの関係(×)を
図5に示す。また、全細孔容積に対する細孔径500Å以上の範囲の細孔容積の割合と反応速度定数比k/koとの関係(×)を
図6に示す。
【0034】
実施例4
微結晶セルロースの量を触媒乾燥重量基準で18重量%に変更した以外は、実施例1と同じ方法で、外径150mm×150mm、軸方向長さ800mm、セルピッチ7.4mm、内壁厚さ1.15mm、および
図7に示す細孔容積分布を有するハニカム成形体Dを得た。全細孔容積に対する細孔径40Å以上3000Å以下の範囲の細孔容積の割合が80%以上、全細孔容積に対する細孔径500Å以上の範囲の細孔容積の割合が42%、全細孔容積に対する細孔径500Å以上3000Å以下の範囲の細孔容積の割合が38%、全細孔容積に対する細孔径1000Å以上の範囲の細孔容積の割合が27%であった。
【0035】
ハニカム成形体Dをラボでシロキサンを含む模擬排ガスに曝露させた。その後、脱硝率を測定した。全細孔容積に対する細孔径500Å以上3000Å以下の範囲の細孔容積の割合と反応速度定数比k/koとの関係(●)を
図5に示す。また、全細孔容積に対する細孔径500Å以上の範囲の細孔容積の割合と反応速度定数比k/koとの関係(●)を
図6に示す。
【0036】
実施例5
微結晶セルロースの量を触媒乾燥重量基準で16重量%に変更した以外は、実施例1と同じ方法で、外径150mm×150mm、軸方向長さ800mm、セルピッチ7.4mm、内壁厚さ1.15mm、および
図8に示す細孔容積分布を有するハニカム成形体Eを得た。全細孔容積に対する細孔径40Å以上3000Å以下の範囲の細孔容積の割合が80%以上、全細孔容積に対する細孔径500Å以上の範囲の細孔容積の割合が33%、全細孔容積に対する細孔径500Å以上3000Å以下の範囲の細孔容積の割合が30%、全細孔容積に対する細孔径1000Å以上の範囲の細孔容積の割合が23%であった。
【0037】
ハニカム成形体Eをラボでシロキサンを含む模擬排ガスに曝露させた。その後、脱硝率を測定した。全細孔容積に対する細孔径500Å以上3000Å以下の範囲の細孔容積の割合と反応速度定数比k/koとの関係(〇)を
図5に示す。また、全細孔容積に対する細孔径500Å以上の範囲の細孔容積の割合と反応速度定数比k/koとの関係(〇)を
図6に示す。
【0038】
実施例6
微結晶セルロースの量を触媒乾燥重量基準で20重量%に変更した以外は、実施例1と同じ方法で、外径150mm×150mm、軸方向長さ800mm、セルピッチ7.4mm、内壁厚さ1.15mm、および
図9に示す細孔容積分布を有するハニカム成形体Fを得た。全細孔容積に対する細孔径40Å以上3000Å以下の範囲の細孔容積の割合が80%以上、全細孔容積に対する細孔径500Å以上の範囲の細孔容積の割合が49%、全細孔容積に対する細孔径500Å以上3000Å以下の範囲の細孔容積の割合が39%、全細孔容積に対する細孔径1000Å以上の範囲の細孔容積の割が42%であった。
【0039】
ハニカム成形体Fをラボでシロキサンを含む模擬排ガスに曝露させた。その後、脱硝率を測定した。全細孔容積に対する細孔径500Å以上3000Å以下の範囲の細孔容積の割合と反応速度定数比k/koとの関係(◇)を
図5に示す。また、全細孔容積に対する細孔径500Å以上の範囲の細孔容積の割合と反応速度定数比k/koとの関係(◇)を
図6に示す。
【0040】
比較例2
ハニカム成形体Cをラボでシロキサンを含む模擬排ガスに曝露させた。その後、触媒表面に堆積したシリカ量及び脱硝率を測定した。全細孔容積に対する細孔径500Å以上3000Å以下の範囲の細孔容積の割合と反応速度定数比k/koとの関係(■)を
図5に示す。また、全細孔容積に対する細孔径500Å以上の範囲の細孔容積の割合と反応速度定数比k/koとの関係(■)を
図6に示す。