【実施例】
【0042】
以下、実施例により本発明をさらに説明するが、本発明はこれらの実施例に限定されるものではない。
【0043】
<実施例1>
[負極活物質の作製]
不活性雰囲気中で、Si(3N、10μm粉砕品)及びLi
2SiO
3(10μm粉砕品)を、50:50の質量比で混合し、遊星ボールミル(フリッチュ製、P−5)のポット(SUS製、容積:500mL)に充填した。当該ポットにSUS製ボール(直径20mm)を24個入れてフタを閉め、200rpmで50時間粉砕処理した。その後、不活性雰囲気中で粉末を取り出し、不活性雰囲気・800℃×4時間の条件で熱処理を行った。熱処理した粉末(以下、母粒子という)を粉砕し、40μmのメッシュに通した後、石炭ピッチ(JFEケミカル製、MCP250)と混合して、不活性雰囲気・800℃で熱処理することにより、母粒子の表面を炭素で被覆して導電層を形成した。炭素の被覆量は、母粒子、導電層を含む粒子の総質量に対して5質量%である。その後、篩を用いて平均粒径を5μmに調整することにより負極活物質A1を得た。
【0044】
[負極活物質の分析]
負極活物質A1の断面をTEMで観察した結果、Si粒子の平均粒径は50nm未満であった。また、負極活物質A1の断面をSEMで観察した結果、Li
2SiO
3からなるマトリックス中にSi粒子が略均一に分散していることが確認された。負極活物質A1のXRDパターン(
図2参照)には、主にSiとLi
2SiO
3に由来するピークが確認された。それぞれのピーク強度は、Si>Li
2SiO
3であった。また、2θ=25°にSiO
2のピークは観察されなかった。負極活物質A1をSi−NMRで測定した結果、SiO
2の含有量は7質量%未満(検出下限値以下)であった。
【0045】
[負極の作製]
次に、上記負極活物質及びポリアクリロニトリル(PAN)を、95:5の質量比で混合し、N−メチル−2−ピロリドン(NMP)を添加した後、混合機(シンキー製、あわとり練太郎)を用いて攪拌して、負極合材スラリーを調製した。そして、銅箔の片面に負極合材層の1m
2当りの質量が25gとなるように当該スラリーを塗布し、大気中、105℃で塗膜を乾燥した後、圧延することにより負極を作製した。負極合材層の充填密度は、1.50g/cm
3とした。
【0046】
[非水電解液の調製]
エチレンカーボネート(EC)と、ジエチルカーボネート(DEC)とを、3:7の体積比で混合した混合溶媒に、LiPF
6を濃度が1.0mol/Lとなるように添加して
非水電解液を調製した。
【0047】
[非水電解質二次電池の作製]
不活性雰囲気中で、Niタブを取り付けた上記負極及びリチウム金属箔を、ポリエチレン製セパレータを介して対向配置させることにより電極体とした。当該電極体をアルミニウムラミネートフィルムで構成される電池外装体内に入れ、非水電解液を電池外装体内に注入し、電池外装体を封止して、電池T1を作製した。
【0048】
<実施例2>
ボールミルの処理時間を200時間に変更したこと以外は、実施例1と同様の方法で負極活物質A2及び電池T2を作製した。Si粒子の平均粒径は10nm未満であった。
【0049】
<実施例3>
ボールミルの処理時間を10時間に変更したこと以外は、実施例1と同様の方法で負極活物質A3及び電池T3を作製した。Si粒子の平均粒径は200nm未満であった。
【0050】
<実施例4>
ボールミルの処理時間を2時間に変更したこと以外は、実施例1と同様の方法で負極活物質A4及び電池T4を作製した。Si粒子の平均粒径は500nm未満であった。
【0051】
<実施例5>
Li
2SiO
3に代えて、Li
2Si
2O
5を用いたこと以外は、実施例1と同様の方法で負極活物質A5及び電池T5を作製した。負極活物質A5のXRDパターンには、SiとLi
2Si
2O
5に由来するピークが確認された。また、Li
2SiO
3に由来するピークも確認された。それぞれのピーク強度は、Si>Li
2Si
2O
5>Li
2SiO
3であった。
【0052】
<比較例1>
上記ボールミルを用いて、Si(3N、10μm粉砕品)及びLi
2SiO
3(10μm粉砕品)を、それぞれ不活性雰囲気で50時間粉砕した後、50:50の質量比で混合し、熱処理をせず、混合状態のまま負極活物質B1として用いた。また、実施例1と同様の方法で電池R1を作製した。負極活物質B1では、Si粒子の表面にLi
2SiO
3粒子が付着しているものの、Li
2SiO
3のマトリックス(連続相)が形成されていない。即ち、Li
2SiO
3相中にSi粒子が分散した単一粒子構造を有さない。
【0053】
<比較例2>
SiO
x(x=0.97、平均粒径5μm)に上記石炭ピッチを混合して、不活性雰囲気・800℃で熱処理することにより、炭素被覆層を設けたSiO
xを作製し、これを負極活物質B2として用いたこと以外は、実施例1と同様の方法で電池R2を作製した。
【0054】
実施例1〜5及び比較例1,2の各電池について、以下の方法で初回充放電効率の評価を行った。評価結果は、表1に示した。
【0055】
[初回充放電効率]
・充電
0.2Itの電流で電圧が0Vになるまで定電流充電を行い、その後0.05Itの電流で電圧が0Vになるまで定電流充電を行った。
・放電
0.2Itの電流で電圧が1.0Vになるまで定電流放電を行った。
・休止
上記充電と上記放電との間の休止期間は10分とした。
1サイクル目の充電容量に対する放電容量の割合を、初回充放電効率とした。
初回充放電効率(%)=1サイクル目の放電容量/1サイクル目の充電容量×100
【0056】
【表1】
【0057】
表1に示すように、実施例の電池T1〜T5はいずれも、比較例の電池R1,R2に比べて良好な初回充放電効率を有する。即ち、Li
2SiO
3又はLi
2Si
2O
5のマトリックス中にSi粒子が分散した単一粒子を負極活物質に用いることで、Si粒子とLi
2SiO
3粒子を単に混合したもの又はSiO
xを用いた場合よりも初回充放電効率が向上する。また、実施例の各電池において、Si粒子の平均粒径が小さいほど初回充放電効率が良好であった。この結果は、Si粒子の微細化に伴い充放電時の体積変化が小さくなったことが主な要因であると考えられる。
【0058】
<実施例6>
[正極の作製]
コバルト酸リチウムと、アセチレンブラック(電気化学工業社製、HS100)と、ポリフッ化ビニリデン(PVdF)とを、95:2.5:2.5の質量比で混合した。当該混合物に分散媒としてN−メチル−2−ピロリドン(NMP)を添加した後、混合機(プライミクス社製、T.K.ハイビスミックス)を用いて攪拌し、正極合材スラリーを調製した。次に、アルミニウム箔上に正極合材スラリーを塗布し、乾燥させた後、圧延ローラにより圧延して、アルミニウム箔の両面に密度が3.6g/cm
3の正極合材層が形成され
た正極を作製した。
【0059】
[負極の作製]
実施例1で用いた負極活物質A1と、黒鉛とを、5:95の質量比で混合したものを負極活物質A6(負極活物質A1:5質量%)として用いた。負極活物質A6と、カルボキシメチルセルロースナトリウム(CMC−Na)と、スチレン−ブタジエンゴム(SBR)とを、97.5:1.0:1.5の質量比で混合し、水を添加した。これを混合機(プライミクス製、T.K.ハイビスミックス)を用いて攪拌し、負極合材スラリーを調製した。次に、銅箔上に負極合材層の1m
2当りの質量が190gとなるように当該スラリー
を塗布し、大気中、105℃で塗膜を乾燥し、圧延して、銅箔の両面に密度が1.5g/cm
3の負極合材層が形成された負極を作製した。
【0060】
[非水電解質二次電池の作製]
上記各電極にタブをそれぞれ取り付け、タブが最外周部に位置するように、セパレータを介してタブが取り付けられた正極及び負極を渦巻き状に巻回することにより巻回電極体を作製した。当該電極体をアルミニウムラミネートシートで構成される外装体に挿入して、105℃で2時間真空乾燥した後、上記非水電解液を注入し、外装体の開口部を封止して電池T6を作製した。この電池の設計容量は800mAhである。
【0061】
<実施例7>
負極活物質A1の添加量を10質量%に変更したこと以外は、実施例6と同様の方法で負極活物質A7及び電池T7を作製した。
【0062】
<実施例8>
負極活物質A1の添加量を30質量%に変更したこと以外は、実施例6と同様の方法で負極活物質A8及び電池T8を作製した。
【0063】
<比較例3>
負極活物質A1の代わりに比較例2で用いた負極活物質B2を用いたこと以外は、実施例6と同様の方法で負極活物質B3及び電池R3を作製した。
【0064】
<比較例4>
負極活物質A1の代わりに負極活物質B2を用いたこと以外は、実施例6と同様の方法で負極活物質B4及び電池R4を作製した。
【0065】
<比較例5>
負極活物質A1の代わりに負極活物質B2を用いたこと以外は、実施例6と同様の方法で負極活物質B5及び電池R5を作製した。
【0066】
実施例6〜8及び比較例3〜5の各電池について、以下の方法で初回充放電効率及び充放電サイクル特性の評価を行った。評価結果は、表2に示した。
【0067】
[初回充放電効率]
・充電
1It(800mA)の電流で電圧が4.2Vになるまで定電流充電を行い、その後4.2Vの定電圧で電流が1/20It(40mA)になるまで定電圧充電した。
・放電
1It(800mA)の電流で電圧が2.75Vになるまで定電流放電を行った。
・休止
上記充電と上記放電との間の休止期間は10分とした。
上記充放電条件で各電池について初回充放電効率を測定した。
【0068】
[サイクル試験]
上記充放電条件で各電池についてサイクル試験を行った。1サイクル目の放電容量の80%に達するまでのサイクル数を測定し、サイクル寿命とした。なお、各電池のサイクル寿命は、電池R3のサイクル寿命を100とした指数である。
【0069】
【表2】
【0070】
表2に示すように、実施例の電池はいずれも、比較例の電池と比べて高い初回充放電効率を有し、且つサイクル特性も同等以上であった。
【0071】
<実施例9>
[負極活物質の作製]
不活性雰囲気中で、Si粉末(3N、10μm粉砕品)及びLi
2SiO
3粉末(10μm粉砕品)を、42:58の質量比で混合し、遊星ボールミル(フリッチュ製、P−5)のポット(SUS製、容積:500mL)に充填した。当該ポットにSUS製ボール(直径20mm)を24個入れてフタを閉め、200rpmで50時間粉砕処理した。その後、不活性雰囲気中で粉末を取り出し、温度600℃の条件で、不活性雰囲気・4時間の熱処理を行った。熱処理した粉末(以下、母粒子という)を粉砕し、40μmのメッシュに通した後、石炭ピッチ(JFEケミカル製、MCP250)と混合して、温度800℃の条件で、不活性雰囲気・5時間の熱処理を行い、母粒子の表面を炭素で被覆して導電層を形成した。炭素の被覆量は、母粒子、導電層を含む粒子の総質量に対して5質量%である。その後、篩を用いて平均粒径を5μmに調整することにより負極活物質A9を得た。
【0072】
[負極活物質の分析]
負極活物質A9の粒子断面をSEMで観察した結果、Si粒子の平均粒径は100nm未満であった。また、Li
2SiO
3からなるマトリックス中にSi粒子が略均一に分散していることが確認された。
図3は、負極活物質A9のXRDパターンを示す。負極活物質A9のXRDパターンには、主にSiとLi
2SiO
3に由来する回析ピークが確認された。2θ=27.0°付近に現れるLi
2SiO
3の面指数(111)の半値幅は0.233°であった。なお、2θ=25°にSiO
2の回析ピークは観察されなかった。負極活物質A9をSi−NMRで測定した結果、SiO
2の含有量は7質量%未満(検出下限値以下)であった。
【0073】
[負極の作製]
次に、上記負極活物質及びポリアクリロニトリル(PAN)を、95:5の質量比で混合し、N−メチル−2−ピロリドン(NMP)を添加した後、混合機(シンキー製、あわとり練太郎)を用いて攪拌して、負極合材スラリーを調製した。そして、銅箔の片面に負極合材層の1m
2当りの質量が25gとなるように当該スラリーを塗布し、大気中、105℃で塗膜を乾燥した後、圧延することにより負極を作製した。負極合材層の充填密度は、1.50g/cm
3とした。
【0074】
[非水電解液の調製]
エチレンカーボネート(EC)と、ジエチルカーボネート(DEC)とを、3:7の体積比で混合した混合溶媒に、LiPF
6を濃度が1.0mol/Lとなるように添加して非水電解液を調製した。
【0075】
[非水電解質二次電池の作製]
不活性雰囲気中で、Niタブを取り付けた上記負極及びリチウム金属箔を、ポリエチレン製セパレータを介して対向配置させることにより電極体とした。当該電極体をアルミニウムラミネートフィルムで構成される電池外装体内に入れ、非水電解液を電池外装体内に注入し、電池外装体を封止して電池T9を作製した。
【0076】
<実施例10>
ボールミルの処理時間を150時間に変更したこと以外は、実施例1と同様の方法で負極活物質A10及び電池T10を作製した。負極活物質A10のXRDパターンにおいて、2θ=27.0°付近に現れるLi
2SiO
3の面指数(111)の半値幅は0.401°であった。
【0077】
<実施例11>
ボールミルの処理時間を20時間に変更したこと以外は、実施例9と同様の方法で負極活物質A11及び電池T11を作製した。負極活物質A11のXRDパターンにおいて、2θ=27.0°付近に現れるLi
2SiO
3の面指数(111)の半値幅は0.093°であった。
【0078】
<実施例12>
ボールミルの処理時間を10時間に変更したこと以外は、実施例9と同様の方法で負極活物質A12及び電池T12を作製した。負極活物質A12のXRDパターンにおいて、2θ=27.0°付近に現れるLi
2SiO
3の面指数(111)の半値幅は0.051°であった。
【0079】
<実施例13>
Li
2SiO
3に代えて、Li
2Si
2O
5を用いたこと以外は、実施例9と同様の方法で負極活物質A13及び電池T13を作製した。負極活物質A13のXRDパターンにおいて、2θ=24.9°付近に現れるLi
2Si
2O
5の面指数(111)の半値幅は0.431°であった。
【0080】
<実施例14>
ボールミルの処理時間を20時間に変更したこと以外は、実施例13と同様の方法で負極活物質A14及び電池T14を作製した。負極活物質A14のXRDパターンにおいて、2θ=24.9°付近に現れるLi
2Si
2O
5の面指数(111)の半値幅は0.102°であった。
【0081】
<実施例15>
ボールミルの処理条件を150rpm、30時間に変更したこと以外は、実施例9と同様の方法で負極活物質A15及び電池T15を作製した。負極活物質A15のXRDパターンにおいて、2θ=27.0°付近に現れるLi
2SiO
3の面指数(111)の半値幅は0.192°であった。なお、Si粒子の平均粒径は200nm未満であった。
【0082】
<比較例6>
上記ボールミルを用いて、Si粉末(3N、10μm粉砕品)及びLi
2SiO
3粉末(10μm粉砕品)を、それぞれ不活性雰囲気で50時間粉砕した後、42:58の質量比で混合し、熱処理をせず、混合状態のまま負極活物質B6として用いた。また、実施例1と同様の方法で電池R6を作製した。負極活物質B1では、Si粒子の表面にLi
2SiO
3粒子が付着しているものの、Li
2SiO
3のマトリックス(連続相)が形成されていない。即ち、Li
2SiO
3相中にSi粒子が分散した単一粒子構造を有さない。また、負極活物質B6のXRDパターンにおいて、2θ=27.0°付近に現れるLi
2SiO
3の面指数(111)の半値幅は0.032°であった。
【0083】
<比較例7>
ボールミルの処理条件を50rpm、50時間に変更したこと以外は、実施例19と同様の方法で負極活物質B7及び電池R7を作製した。負極活物質B7のXRDパターンにおいて、2θ=27.0°付近に現れるLi
2SiO
3の面指数(111)の半値幅は0.042°であった。
【0084】
<比較例8>
ボールミルによる粉砕処理後の熱処理において、温度1000℃の条件で、不活性雰囲気・4時間の熱処理を行ったこと以外は、実施例9と同様の方法で負極活物質B8及び電池R8を作製した。負極活物質B8のXRDパターンにおいて、2θ=27.0°付近に現れるLi
2SiO
3の面指数(111)の半値幅は0.038°であった。
【0085】
実施例8〜15及び比較例6〜8の各電池について、以下の方法で初回充放電効率の評価及び負極活物質粒子の外観評価を行った。評価結果は、表3に示した。
【0086】
[初回充放電効率の評価]
・充電
0.2Itの電流で電圧が0Vになるまで定電流充電を行い、その後0.05Itの電流で電圧が0Vになるまで定電流充電を行った。
・放電
0.2Itの電流で電圧が1.0Vになるまで定電流放電を行った。
・休止
上記充電と上記放電との間の休止期間は10分とした。
1サイクル目の充電容量に対する放電容量の割合を、初回充放電効率とした。
初回充放電効率(%)=1サイクル目の放電容量/1サイクル目の充電容量×100
【0087】
[負極活物質粒子の外観評価(粒子崩壊の確認)]
1サイクルの充放電を行った電池を不活性雰囲気下で分解した。分解した電池から負極を取り出し、不活性雰囲気下でクロスセクションポリッシャー(日本電子製)を用いて負極活物質断面を露出させ、当該断面をSEMで観察して粒子崩壊の有無を確認した。粒子断面において、元々1つの粒子が2個以上の微粒子に割れている状態を粒子崩壊と定義した。
【0088】
【表3】
【0089】
表3に示すように、実施例の負極活物質A9〜A15はいずれも、比較例の負極活物質B6〜B8と比べて充放電による粒子の崩壊が発生し難く、実施例の電池T9〜T15は比較例の電池R6〜R8に比べて良好な初回充放電効率を有する。即ち、面指数(111)の回析ピークの半値幅が0.05°以上であるリチウムシリケートのマトリックス中にSi粒子が分散した負極活物質を用いることで、当該半値幅が0.05°未満である負極活物質を用いた場合よりも初回充放電効率が向上する。
【0090】
<実施例16>
[正極の作製]
コバルト酸リチウムと、アセチレンブラック(電気化学工業社製、HS100)と、ポリフッ化ビニリデン(PVdF)とを、95:2.5:2.5の質量比で混合した。当該混合物に分散媒としてN−メチル−2−ピロリドン(NMP)を添加した後、混合機(プライミクス社製、T.K.ハイビスミックス)を用いて攪拌し、正極合材スラリーを調製した。次に、アルミニウム箔上に正極合材スラリーを塗布し、乾燥させた後、圧延ローラにより圧延して、アルミニウム箔の両面に密度が3.6g/cm
3の正極合材層が形成され
た正極を作製した。
【0091】
[負極の作製]
実施例9で用いた負極活物質A9と、黒鉛とを、5:95の質量比で混合したものを負極活物質A16(負極活物質A9:5質量%)として用いた。負極活物質A16と、カルボキシメチルセルロースナトリウム(CMC−Na)と、スチレン−ブタジエンゴム(SBR)とを、97.5:1.0:1.5の質量比で混合し、水を添加した。これを混合機(プライミクス製、T.K.ハイビスミックス)を用いて攪拌し、負極合材スラリーを調製した。次に、銅箔上に負極合材層の1m
2当りの質量が190gとなるように当該スラリーを塗布し、大気中、105℃で塗膜を乾燥し、圧延して、銅箔の両面に密度が1.6g/cm
3の負極合材層が形成された負極を作製した。
【0092】
[非水電解質二次電池の作製]
上記各電極にタブをそれぞれ取り付け、タブが最外周部に位置するように、セパレータを介してタブが取り付けられた正極及び負極を渦巻き状に巻回することにより巻回電極体を作製した。当該電極体をアルミニウムラミネートシートで構成される外装体に挿入して、105℃で2時間真空乾燥した後、上記非水電解液を注入し、外装体の開口部を封止して電池T16を作製した。この電池の設計容量は800mAhである。
【0093】
<実施例17>
負極活物質A9の添加量を10質量%に変更したこと以外は、実施例16と同様の方法で負極活物質A17及び電池T17を作製した。
【0094】
<実施例18>
負極活物質A9の添加量を30質量%に変更したこと以外は、実施例16と同様の方法で負極活物質A18及び電池T18を作製した。
【0095】
<比較例9>
負極活物質A9の代わりに比較例6で用いた負極活物質B6を用いたこと以外は、実施例16と同様の方法で負極活物質B9及び電池R9を作製した。
【0096】
<比較例10>
負極活物質B6の添加量を10質量%に変更したこと以外は、比較例9と同様の方法で負極活物質B10及び電池R10を作製した。
【0097】
<比較例11>
負極活物質B6の添加量を30質量%に変更したこと以外は、比較例9と同様の方法で負極活物質B11及び電池R11を作製した。
【0098】
実施例16〜18及び比較例9〜11の各電池について、以下の方法で初回充放電効率及び充放電サイクル特性の評価を行った。評価結果は、表4に示した。
【0099】
[初回充放電効率]
・充電
1It(800mA)の電流で電圧が4.2Vになるまで定電流充電を行い、その後4.2Vの定電圧で電流が1/20It(40mA)になるまで定電圧充電した。
・放電
1It(800mA)の電流で電圧が2.75Vになるまで定電流放電を行った。
・休止
上記充電と上記放電との間の休止期間は10分とした。
上記充放電条件で各電池について初回充放電効率を測定した。
【0100】
[サイクル試験]
上記充放電条件で各電池についてサイクル試験を行った。1サイクル目の放電容量の80%に達するまでのサイクル数を測定し、サイクル寿命とした。なお、各電池のサイクル寿命は、電池R3のサイクル寿命を100とした指数である。
【0101】
【表4】
【0102】
表4に示すように、実施例の電池T16〜T18はいずれも、比較例の電池R9〜R11と比べて高い初回充放電効率を有し、且つサイクル特性も良好であった。