特許第6834626号(P6834626)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 住友電気工業株式会社の特許一覧

<>
  • 特許6834626-発光ダイオード 図000002
  • 特許6834626-発光ダイオード 図000003
  • 特許6834626-発光ダイオード 図000004
  • 特許6834626-発光ダイオード 図000005
  • 特許6834626-発光ダイオード 図000006
  • 特許6834626-発光ダイオード 図000007
  • 特許6834626-発光ダイオード 図000008
  • 特許6834626-発光ダイオード 図000009
  • 特許6834626-発光ダイオード 図000010
  • 特許6834626-発光ダイオード 図000011
  • 特許6834626-発光ダイオード 図000012
  • 特許6834626-発光ダイオード 図000013
  • 特許6834626-発光ダイオード 図000014
  • 特許6834626-発光ダイオード 図000015
  • 特許6834626-発光ダイオード 図000016
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6834626
(24)【登録日】2021年2月8日
(45)【発行日】2021年2月24日
(54)【発明の名称】発光ダイオード
(51)【国際特許分類】
   H01L 33/04 20100101AFI20210215BHJP
【FI】
   H01L33/04
【請求項の数】4
【全頁数】22
(21)【出願番号】特願2017-47506(P2017-47506)
(22)【出願日】2017年3月13日
(65)【公開番号】特開2018-152458(P2018-152458A)
(43)【公開日】2018年9月27日
【審査請求日】2019年11月21日
(73)【特許権者】
【識別番号】000002130
【氏名又は名称】住友電気工業株式会社
(74)【代理人】
【識別番号】100088155
【弁理士】
【氏名又は名称】長谷川 芳樹
(74)【代理人】
【識別番号】100113435
【弁理士】
【氏名又は名称】黒木 義樹
(74)【代理人】
【識別番号】100136722
【弁理士】
【氏名又は名称】▲高▼木 邦夫
(74)【代理人】
【識別番号】100174399
【弁理士】
【氏名又は名称】寺澤 正太郎
(74)【代理人】
【識別番号】100108257
【弁理士】
【氏名又は名称】近藤 伊知良
(72)【発明者】
【氏名】勝山 造
【審査官】 右田 昌士
(56)【参考文献】
【文献】 特開2001−036134(JP,A)
【文献】 特開平07−307524(JP,A)
【文献】 特開2011−035138(JP,A)
【文献】 特開平10−135573(JP,A)
【文献】 特開2007−053369(JP,A)
【文献】 特開2004−200375(JP,A)
【文献】 特開2008−147290(JP,A)
【文献】 特開2005−294813(JP,A)
【文献】 米国特許出願公開第2015/0144871(US,A1)
【文献】 韓国公開特許第10−2010−0055303(KR,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 33/00 − 33/64
H01S 5/00 − 5/50
(57)【特許請求の範囲】
【請求項1】
発光ダイオードであって、
第1軸の方向に配列された複数の量子井戸構造を含み、側面、上面及び下面を有する発光領域と、
前記発光領域の前記側面、前記上面及び前記下面の少なくともいずれか一面上に設けられた第1導電型半導体を含むエミッタ領域と、
前記発光領域の前記側面に接続されたコレクタと、
を備え、
前記発光領域及び前記コレクタは、前記第1軸に交差する基準面に沿って配列されており、
前記量子井戸構造は、第1導電型キャリアのためのサブバンド構造を有し、
前記コレクタは、前記発光領域の前記側面に接触を成す金属電極を備える、発光ダイオード。
【請求項2】
前記量子井戸構造は、第1井戸層、第2井戸層、第1障壁層、及び第2障壁層を含み、前記第1障壁層は前記第1井戸層を前記第2井戸層から隔てており、前記第1井戸層は前記第1障壁層を前記第2障壁層から隔てている、請求項1に記載された発光ダイオード。
【請求項3】
前記発光領域は、前記第1軸の方向に配列された複数の第1単位セルを含み、前記第1単位セルは、前記第1井戸層、前記第2井戸層、前記第1障壁層、及び前記第2障壁層を含み、前記第1障壁層の厚さは前記第2障壁層の厚さより小さい、請求項2に記載された発光ダイオード。
【請求項4】
前記量子井戸構造は、前記第1軸の方向に交差する平面に沿って延在する障壁層を含み、前記障壁層の一部又は全部に、ドーパントが添加されている、請求項2又は請求項3に記載された発光ダイオード。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、非干渉性の光を発生する半導体発光素子、特に発光ダイオードに関する。
【背景技術】
【0002】
特許文献1は、量子カスケードレーザを開示する。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開平8−279647号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
量子カスケードレーザの発光は、多段に配列された発光層を利用した光学カスケーディング(単極性キャリアの縦続的な光学遷移)を利用する。縦続的な光学遷移を可能にするために、縦続的に配列された発光層のエネルギー準位は、外部電圧の印加を利用して隣接した発光層間において合わされる。このような縦続的な光学遷移の利用は、サブバンド遷移の波長領域において光学利得を高めることができる。
【0005】
pn接合を有するレーザダイオードは、レーザ発振を引き起こすしきい値電流未満における動作において、非干渉性の弱い光、いわゆる自然放出光を発生する。発明者の知見によれば、量子カスケードレーザの発光波長帯において非干渉性の光源、換言すれば、非干渉性の光を発生する半導体発光素子は、有用である。発明者の検討によれば、多段の発光層は、大きな光学利得を提供できる一方で、縦続的に配列された発光層のエネルギー準位を外部電圧により整合させることは、大きな外部印加電圧を必要とする。このような多段の発光層の縦続接続は、自然放出光の発生には不便である。
【0006】
本発明の一側面は、単極性のキャリアの光学遷移を用いて非干渉性の光を発生する、発光ダイオードといった半導体発光素子を提供することを目的とする。
【課題を解決するための手段】
【0007】
本発明の一側面に係る発光ダイオードは、第1軸の方向に配列された複数の量子井戸構造を含み、側面、上面及び下面を有する発光領域と、前記発光領域の前記側面、前記上面及び前記下面の少なくともいずれか一面上に設けられた第1導電型半導体を含むエミッタ領域と、前記発光領域の前記側面に接続されたコレクタと、を備え、前記発光領域及び前記コレクタは、前記第1軸に交差する基準面に沿って配列されており、前記量子井戸構造は、第1導電型キャリアのためのサブバンド構造を有する。
【0008】
本発明の上記の目的および他の目的、特徴、並びに利点は、添付図面を参照して進められる本発明の好適な実施の形態の以下の詳細な記述から、より容易に明らかになる。
【発明の効果】
【0009】
以上説明したように、本発明の一側面をよれば、単極性のキャリアの光学遷移を用いて非干渉性の光を発生する、発光ダイオードといった半導体発光素子を提供できる。
【図面の簡単な説明】
【0010】
図1図1は、本実施形態に係る発光ダイオードを模式的に示す図面である。
図2図2は、本実施形態に係る発光ダイオードを模式的に示す図面である。
図3図3は、本実施形態に係る発光ダイオードのための発光領域の構造を示す図面である。
図4図4は、実施例1に係る量子井戸構造におけるエネルギーレベル及び層構造を模式的に示す図面である。
図5図5は、実施例2に係る量子井戸構造におけるエネルギーレベル及び層構造を模式的に示す図面である。
図6図6は、本実施形態に係る発光ダイオードのエミッタ領域から発光領域の上面へのキャリアの供給を模式的に示す図面である。
図7図7は、本実施形態に係る発光ダイオードのエミッタ領域から発光領域の上面へのキャリアの供給を模式的に示す図面である。
図8図8は、本実施形態に係る発光ダイオードのエミッタ領域から発光領域の側面へのキャリアの供給を模式的に示す図面である。
図9図9は、本実施形態に係る発光ダイオードの発光領域の側面からコレクタ領域へのキャリアの供給を模式的に示す図面である。
図10図10は、本実施形態に係る発光ダイオードのための量子フィルタを示す図面である。
図11図11は、本実施形態に係る発光ダイオードを模式的に示す図面である。
図12図12は、本実施形態に係る発光ダイオードのための量子フィルタを示す図面である。
図13図13は、本実施形態に係る発光ダイオードのためのレンズ構造を模式的に示す図面である。
図14図14は、本実施形態に係る発光ダイオードを製造する方法における主要な工程を模式的に示す図面である。
図15図15は、本実施形態に係る発光ダイオードを製造する方法における主要な工程を模式的に示す図面である。
【発明を実施するための形態】
【0011】
いくつかの具体例を説明する。
【0012】
具体例に係る発光ダイオードは、(a)第1軸の方向に配列された複数の量子井戸構造を含み、側面、上面及び下面を有する発光領域と、(b)前記発光領域の前記側面、前記上面及び前記下面の少なくともいずれか一面上に設けられた第1導電型半導体を含むエミッタ領域と、(c)前記発光領域の前記側面に接続されたコレクタと、を備え、前記発光領域及び前記コレクタは、前記第1軸に交差する基準面に沿って配列されており、前記量子井戸構造は、第1導電型キャリアのためのサブバンド構造を有する。
【0013】
発光ダイオードによれば、エミッタ領域は、第1導電型の半導体領域を有しており、エミッタ領域は、発光領域の側面、上面及び下面のいずれか一面を介して発光領域にキャリアを提供する。発光領域は電子・正孔の再結合による発光ではなく、電子及び正孔の一方である単極性キャリアのサブバンド間の遷移を利用して光を生成する。また、発光領域の側面は第1軸の方向に延在すると共に、量子井戸構造は第1軸の方向に配列される。コレクタは、発光領域内の量子井戸構造に並列に接続されて、発光領域の側面を介して発光領域からキャリアを受ける。個々の量子井戸構造内のキャリアは、量子井戸構造内の移動中に光学遷移により光を生成できる。遷移したキャリアは、発光領域の側面を介してコレクタに流れ込む。発光ダイオードは、光共振器を含まないので、可干渉性の光を生成できず、非干渉性の光を提供する。
【0014】
具体例に係る発光ダイオードでは、前記量子井戸構造は、第1井戸層、第2井戸層、第1障壁層、及び第2障壁層を含み、前記第1障壁層は前記第1井戸層を前記第2井戸層から隔てており、前記第1井戸層は前記第1障壁層を前記第2障壁層から隔てている。
【0015】
この発光ダイオードによれば、この量子井戸構造は、上位のエネルギー準位、及び下位のエネルギー準位を単一極性のキャリアに提供することを容易にする。また、この量子井戸構造が、緩和のためのエネルギー準位を更に提供できるときには、緩和のためのエネルギー準位は、上位のエネルギー準位から下位のエネルギー準位に遷移した単極性キャリアが上位のエネルギー準位の緩和時間より小さい時間で緩和することを促進する。
【0016】
具体例に係る発光ダイオードでは、前記発光領域は、前記第1軸の方向に配列された複数の第1単位セルを含み、前記第1単位セルは、前記第1井戸層、前記第2井戸層、前記第1障壁層、及び前記第2障壁層を含み、前記第1障壁層の厚さは前記第2障壁層の厚さより小さい。
【0017】
この発光ダイオードによれば、第1障壁層の厚さは第2障壁層の厚さより小さいので、単位セル内の第1井戸層及び第2井戸層が、当該単位セル内の第2障壁層により隔てられる他の井戸層に比べてより密に結合する。
【0018】
具体例に係る発光ダイオードでは、前記量子井戸構造は、前記第1軸の方向に交差する平面に沿って延在する障壁層を含み、前記障壁層の一部又は全部に、ドーパントが添加されている。
【0019】
この発光ダイオードによれば、ドープされた障壁層は、井戸層への注入のために有用である。
【0020】
具体例に係る発光ダイオードでは、前記コレクタは、前記発光領域の前記側面に接触を成す半導体を備える。
【0021】
この発光ダイオードによれば、コレクタの半導体領域は、エミッタ領域からのキャリアを発光領域の側面から受ける。
【0022】
具体例に係る発光ダイオードでは、前記コレクタは、前記発光領域の前記側面に接触を成す金属電極を備える。
【0023】
この発光ダイオードによれば、コレクタの金属電極は、エミッタ領域からのキャリアを発光領域の側面から受ける。
【0024】
本発明の知見は、例示として示された添付図面を参照して以下の詳細な記述を考慮することによって容易に理解できる。引き続いて、添付図面を参照しながら、非干渉性の光を発生する半導体発光素子、特に発光ダイオードに係る実施の形態を説明する。可能な場合には、同一の部分には同一の符号を付する。
【0025】
図1は、本実施形態に係る半導体発光素子を模式的に示す一部破断斜視図である。図2は、本実施形態に係る半導体発光素子を模式的に示す一部破断斜視図である。図3は、本実施形態に係る半導体発光素子のための量子井戸構造及びエネルギー準位を模式的に示す図面である。縦方向の座標軸(縦軸)は、キャリアのエネルギーレベルを示し、残り2つの座標軸(横軸)は、空間座標のためのX軸及びZ軸並びにY軸を示す。図3を参照した説明は、電子のキャリアについて行われるけれども、この説明は、半導体物理に係る知見に基づき正孔のキャリアに読み替えできる。
【0026】
非干渉性の光を発生する半導体発光素子11を説明する。引き続く説明から理解されるように、半導体発光素子11は、pn接合を含まず、これ故にホールと電子との再結合による発光を利用せずに単極性キャリアを利用する。半導体発光素子11が非干渉性の光を発生するという点で、pn接合を含む半導体光素子に係る技術分野において、可干渉性の光を生成する光素子をレーザダイオードと呼び、非干渉性の光を発生する光素子を「発光ダイオード」と呼ぶ用法に従って、以下の説明では、半導体発光素子11を「発光ダイオード」として参照する。半導体発光素子11は、光共振器を含まず、非干渉性の光を発生する。
【0027】
図1及び図2を参照すると、発光ダイオード11a、11bは、発光領域15と、エミッタ領域17と、コレクタ19とを備える。発光領域15、エミッタ領域17、及びコレクタ19は、基板13の主面13a上に設けられる。発光領域15及びコレクタ19は、第1軸Ax1に交差する基準面に沿って配列されており、或いは、発光領域15、エミッタ領域17、及びコレクタ19は、第1軸Ax1に交差する基準面に沿って配列されていてもよい。
【0028】
発光領域15は、第1側面15b、第2側面15c、上面15d、下面15e、第3側面15f及び第4側面15gを有する。第1側面15b、第2側面15c、第3側面15f及び第4側面15gは、第1軸Ax1の方向に延在し、上面15d及び下面15eの各々は、第1軸Ax1に交差する基準面に沿って延在する。第1側面15b及び第2側面15cは、第1軸Ax1に交差する第2軸Ax2の方向に延在する。第3側面15f及び第4側面15gは、第1軸Ax1及び第2軸Ax2に交差する第3軸Ax3の方向に延在する。
【0029】
基板13の主面13aは、第1エリア13b及び第2エリア13cを含み、半導体メサMSは、第1エリア13b上に設けられる。半導体メサMSは、発光領域15を含む。本実施例では、第2エリア13cは第1エリア13bを囲む。
【0030】
発光領域15は、複数の量子井戸構造21を含み、図3に示されるように、量子井戸構造21の各々は、第1導電型キャリアのためのサブバンド構造を有する。各量子井戸構造21は、基板13の主面13a上に設けられる。発光領域15の発光領域15は、第1軸Ax1の方向に配列される複数の単位セル15aを有する。具体的には、量子井戸構造21は、井戸層及び障壁層といった複数の半導体層(21a、21b、21c、21d)を有する。これらの半導体層(21a〜21d)は、主面13aに交差する第1軸Ax1の方向に配列される。単位セル15aは、3つのエネルギー準位(E1、E2、E3を有する。
【0031】
エミッタ領域17は、第1導電型半導体を含み、第1導電型半導体は、発光領域15の上面15d、下面15e、及び側面の少なくともいずれか一面上に設けられる。側面は、第1側面15b、第2側面15c、第3側面15f及び第4側面15gの少なくともいずれかの面を含むことができる。具体的には、エミッタ領域17は、発光領域15の上面15d上に設けられ、更に第1側面15b及び/又は第2側面15c上に設けられることができる。或いは、エミッタ領域17は、側面(第1側面15b、第2側面15c、第3側面15f及び第4側面15gの少なくともいずれかの面)上に設けられる。
【0032】
コレクタ19は、発光領域15の側面に接続されて、発光領域15からの第1導電型キャリアを受ける。コレクタ19は、エミッタ領域17から離れており、半導体メサMSの発光領域15の側面上に設けられる。具体的には、コレクタ19は、発光領域15の第1側面15b、第2側面15c、第3側面15f及び第4側面15gの少なくともいずれか一つ上に設けられることができる。本実施例では、コレクタ19は、第2エリア13c上において発光領域15の側面上に配置され、具体的には、第2エリア13c上において発光領域15を囲むように第1側面15b、第2側面15c、第3側面15f及び第4側面15g上に設けられ、これらの側面に接触を成す。コレクタ19は、金属及び/又は半導体を備えることができる。半導体は、第1導電型半導体又は量子フィルタ構造を備えることができる。
【0033】
発光ダイオード11a、11bによれば、エミッタ領域17は、第1半導体領域23を有しており、エミッタ領域17は、発光領域15の上面15d、下面15e及び側面のいずれか一面を介して発光領域15にキャリアを提供する。発光領域15は電子・正孔の再結合による発光ではなく、電子及び正孔の一方である単極性キャリアのサブバンド間の遷移(例えば、中赤外及び遠赤外の波長帯、具体的には、2〜15マイクロメートルの波長)を利用して光を生成する。また、発光領域15の側面は第1軸Ax1の方向に延在すると共に、量子井戸構造21は第1軸Ax1の方向に配列される。コレクタ19は、発光領域15内の量子井戸構造21に並列に接続されて、発光領域15の側面を介して発光領域15からキャリアを受ける。個々の量子井戸構造21内のキャリアは、量子井戸構造21内の移動中に光学遷移により光を生成できる。遷移したキャリアは、発光領域15の側面を介してコレクタ19に流れ込む。発光ダイオード11a、11bは、光共振器を含まないので、可干渉性の光を生成できず、非干渉性の光を提供する。
【0034】
エミッタ領域17は、一又は複数の半導体を備えることができる。本実施例では、エミッタ領域17の第1半導体領域23は、上面15dに沿って延在する。具体的には、第1半導体領域23は、発光領域15の側面の上縁から離れている。エミッタ領域17は、発光領域15に第1導電型キャリアを与える。エミッタ領域17及びコレクタ19は、互いに電気的に分離されて、エミッタ領域17からのキャリアは発光領域15を流れてコレクタ19に到達する。
【0035】
発光ダイオード11a、11bは、エミッタ領域17上に設けられた第1電極31aと、コレクタ19に接続される第2電極31bとを備える。第1電極31a及び第2電極31bは、それぞれ、エミッタ領域17及びコレクタ19に電気的に接続されている。エミッタ領域17は、コンタクト層28aを搭載すると共に、発光領域15の上面に接触を成す。第1電極31aは、エミッタ領域17の第1導電型半導体又はコンタクト層28aの第1導電型半導体にオーミック接触を成す。
【0036】
エミッタ領域17から発光領域15に提供されるキャリアの導電型は、発光領域15からコレクタ19に提供されるキャリアの導電型と同じであり、発光ダイオード11a、11bは、単極性キャリアを利用する。
【0037】
本実施例では、発光ダイオード11a、11bでは、発光領域15及びエミッタ領域17は、第1軸Ax1の方向に配列されると共に、第1エリア13b上の発光領域15並びに第2エリア13c上のコレクタ19は、第1軸Ax1に交差する第2軸Ax2及び/又は第3軸Ax3の方向に配列される。第1半導体領域23は、発光領域15の側面の上縁から離れており、この隔置により、第1半導体領域23から発光領域15を介してコレクタ19に至る経路を提供する。第1半導体領域23から発光領域15の量子井戸構造21にわたって単極性キャリアが供給され、これらの単極性キャリアは、発光領域15の量子井戸構造21におけるサブバンドの上位のエネルギー準位から下位のエネルギー準位への光学遷移により発光に寄与する。発光領域15における光遷移により下位のエネルギー準位の単極性キャリアはコレクタ19に流れ込む。エミッタ領域17からの単極性キャリアは、コレクタ19に流れ込む単極性キャリアと同じ導電型を有する。この発光ダイオード11a、11bは、発光に際して、単極キャリアの光学遷移を利用すると共に、エミッタ領域17、発光領域15及びコレクタ19の配列は、発光に際して、単極キャリアのカスケーディング(縦続的な光学遷移)を必要としない。縦続的な光学遷移を避けて、非干渉性の光を生成できる半導体発光素子11の動作電圧を低減可能である。
【0038】
発光ダイオード11a、11bの具体的な構造を説明する。
【0039】
(第1構造)
図1を参照しながら、発光ダイオード11a(11)を説明する。発光ダイオード11aでは、半導体メサMSが、基板13の主面13aから第1軸Ax1の方向に延在する。コレクタ19は、第1導電型の第2半導体領域25を備え、第2半導体領域25は、発光領域15の第1側面15b、第2側面15c、第3側面15f及び第4側面15g上に設けられる。発光領域15の第1側面15b、第2側面15c、第3側面15f及び第4側面15gを覆うコレクタ19の第2半導体領域25は、第2エリア13c上において第1軸Ax1の方向に延在する。第2半導体領域25の導電型は、第1半導体領域23の導電型と同じである。本実施例では、第2半導体領域25は、第2エリア13c上に設けられて、発光領域15の第1側面15b、第2側面15c、第3側面15f及び第4側面15gに接触を成す。第2半導体領域25は、一又は複数の半導体層を含むことができる。
【0040】
半導体メサMSの発光領域15の上面15d上において、第1半導体領域23及びコンタクト層28aは発光領域15の側面の上縁から離れて、アイランド構造27を形成する。第1電極31aは、第1アイランド27a上に設けられて、発光領域15からの光を反射できる。第1アイランド27aは、分離溝27cにより第2アイランド27b(発光領域15の側面におけるコレクタ19の第2半導体領域25)から隔離される。また、発光領域15の側面におけるコレクタ19の第2半導体領域25は、発光領域15の上面15dから第2電極31bを隔置できる。第2電極31bは、第1エリア13bと第2エリア13cとの境界から離れており、第1電極31aは、発光領域15の上面15dの全体を覆うように設けられることができる。
【0041】
発光ダイオード11aは、エミッタ領域のために設けられた第1電極31aと、コレクタ19の第2半導体領域25上に設けられた第2電極31bとを備え、第1電極31a及び第2電極31bは、それぞれ、エミッタ領域17の第1導電型半導体及びコレクタ19の第1導電型半導体にオーミック接触を成す。
【0042】
絶縁性被覆膜37が、発光領域15の上面、第1半導体領域23及び第2半導体領域25の側面及び上面、コンタクト層28aの側面、並びに分離溝27cの側面及び底面を覆うと共に、第1アイランド27aの上面に第1開口37aを有し、コレクタ19の第2半導体領域25の上面上に第2開口37bを有する。第1電極31aが、第1開口37aを通して第1半導体領域23に電気的に接続され、具体的には、第1半導体領域23上のコンタクト層28aに接触を成す。また、第2電極31bが、第2開口37bを通して第2半導体領域25に電気的に接続され、第2半導体領域25に接触を成す。
【0043】
(第2構造)
図2を参照しながら、発光ダイオード11b(11)を説明する。発光ダイオード11bでは、半導体メサMSが、基板13の主面13aから第1軸Ax1の方向に延在する。コレクタ19は、金属電極33を備え、金属電極33は、第1半導体領域23からのキャリアを発光領域15を介して受ける。金属電極33は、第2エリア13c上において発光領域15の側面上を第1軸Ax1の方向に延在する。本実施例では、金属電極33は、発光領域15の第1側面15b、第2側面15c、第3側面15f及び第4側面15g上において第1軸Ax1の方向に延在して、発光領域15の上面15d上において終端する。この延在により、単位セル15aの並列接続が可能になる。金属電極33の端部は、発光領域15の上面15d上において、エミッタ領域17の第1半導体領域23及びコンタクト層28aから離れている。具体的には、コレクタ19の金属電極33は、第2エリア13c上に設けられて、発光領域15の第1側面15b、第2側面15c、第3側面15f及び第4側面15gに接触を成す。
【0044】
半導体メサMSの発光領域15の上面15d上において、第1半導体領域23及びコンタクト層28aは発光領域15の側面の上縁から離れて、第1アイランド27aを形成する。第1アイランド27aは、発光領域15の上面上の金属電極33の端部から隔置される。
【0045】
第1電極31aは、第1アイランド27a上に設けられて、発光領域15からの光を反射できる。また、第1電極31aは、第1アイランド27aの外側にも設けられることができ、発光領域15の上面15dの全体を覆うように設けられてもよい。発光領域15の側面の金属電極33及び半導体メサMSの上面上の金属電極33は、同様に、発光領域15からの光を反射できる。発光領域15の側面の金属電極33は、第2エリア13c上の第2電極31bに接続される。
【0046】
絶縁性被覆膜37が、発光領域15の側面上の金属電極33を覆う、第1半導体領域23の側面、コンタクト層28aの側面及び上面、並びに発光領域15の上面15dを覆うと共に、第1アイランド27aの上面に第1開口37aを有し、基板13の第2エリア13cの上面上に第2開口37bを有する。第1電極31aが、第1開口37aを通して第1半導体領域23に電気的に接続され、具体的には、第1半導体領域23上のコンタクト層28aに接触を成す。また、第2電極31bが、第2開口37bを通して金属電極33に電気的に接続され、金属電極33に接触を成す。
【0047】
第1構造及び第2構造のための半導体発光素子11の構造。
基板13:InP。
発光領域15:アンドープAllnAs/アンドープInGaAs/アンドープAllnAs/アンドープInGaAsの4層を単位ユニットとした50周期の超格子構造。
第1半導体領域23:SiドープInP/アンドープAlInAs、あるいは、SiドープInP/SiドープAlGaInAs/アンドープAlInAs、あるいは、SiドープInP/アンドープAlGaPSbの積層構造。
半導体メサMSのサイズ:15マイクロメートル。
半導体メサMSの厚さ:1.0マイクロメートル。
発光領域15の厚さ:0.8マイクロメートル。
第1半導体領域23のサイズ:10マイクロメートル。
第1半導体領域23の厚さ:0.2マイクロメートル。
第2半導体領域25:SiドープInP/SiドープGaInAs、あるいは、SiドープInP/SiドープGaInAsP/SiドープGaInAsの積層構造。
第2半導体領域25の厚さ:1.0マイクロメートル。
コンタクト層28a:SiドープInGaAs、0.1マイクロメートル。
金属電極33:Ti/Pt/Au。
【0048】
発光ダイオード11bは、エミッタ領域のための第1電極31aと、コレクタ19のための第2電極31bとを備え、第1電極31a及び金属電極33は、それぞれ、エミッタ領域17の第1導電型半導体及び発光領域15の第1導電型半導体にオーミック接触を成す。金属電極33は、第2電極31bに接続される。
【0049】
(実施例1)
図4を参照しながら、量子井戸構造の構造を説明する。引き続く説明では、電子がキャリアとして利用されるが、同様に、正孔をキャリアとして利用されることができる。上位エネルギー準位E3から下位エネルギー準位E2への遷移確率を高めるために、キャリアの引き抜きにより下位エネルギー準位E2上のキャリア密度を下げることが好適である。量子井戸構造21の一例は、複数(例えば2つ)の井戸層(21a、21b)と、これらの井戸層を隔てる一又は複数の障壁層とを備えることが良い。障壁層(21c)は、障壁層(21d)に比べて薄くして、井戸層(21a、21b)内の電子の波動関数がそれぞれ障壁層(21c)を介して井戸層(21b、21a)に浸みだして互いに結合する。この構造を「結合量子井戸」として参照する。結合量子井戸は、障壁層(21c)の中心線(厚み方向の中心)を基準にして左右に対称な井戸構造を有する。このような構造では、下位エネルギー準位E2よりLOフォノンエネルギーと同程度に低い緩和エネルギー準位E1を形成することができ、上位エネルギー準位E3から下位エネルギー準位E2に発光遷移した電子を速やかにフォノン散乱(共鳴)によって緩和エネルギー準位E1に遷移させることができる。また、結合量子井戸は、上位エネルギー準位E3の波動関数と下位エネルギー準位E2の波動関数との重なりを大きくして、発光遷移確率を増加させ、これにより光学利得を増大できる。
結合量子井戸の具体例。
井戸層/障壁層:アンドープInGaAs/アンドープAllnAs。
井戸層(21a)厚:4nm。
内側の障壁層(21d)厚:2nm。
井戸層(21b)厚:4nm。
外側の障壁層(21c)厚:10nm。
発振に係るエネルギー差(上位エネルギー準位E3と下位エネルギー準位E2との差):270meV(発振波長:4.6マイクロメートル)。
光学利得:96cm−1/period。
Epop(下位エネルギー準位E2と緩和エネルギー準位E1との差):35.6meV。
基板13:InP基板。
また、発光領域が、量子カスケード半導体レーザにおける注入層を必須である構造を必要としない。これ故に、量子井戸構造の設計の自由度が大きい。また、例えば外側の障壁層のAlInAsの厚さも含めた4層の設計において、障壁層には引っ張りの応力を導入しまた井戸層には圧縮の応力を導入する格子の不整合を利用すると共に、引っ張りと圧縮の応力を量子井戸構造の全体として実質的に相殺することによって、良好な結晶性を保ちながら、大きな導電帯バンドギャップ差(深い量子井戸の形成)を形成することができる。これによって、キャリヤの漏洩を抑制することによる温度特性の改善、及び発振波長範囲の拡大を提供できる。
【0050】
(実施例2)
図5に示されるように、量子井戸構造の障壁層の少なくとも一部に、キャリアの極性と同じ極性のドーパントを添加することができる。この添加により、両井戸層への注入効率を改善できる。例えば、10nm厚のAlInAs障壁層において、井戸層に接する薄層領域21ca、21ccをアンドープにすると共に、これらの間にドーパント添加の薄層領域21cbを設けることができる。ドーピング濃度は自由キャリア吸収による損失を低減するために1017cm−3程度又はそれ以下であることが良い。このドーパント添加の薄層領域は、発光領域の半導体積層における面内方向の導電性を高めることができ、エミッタ領域から面内の方向に離れた位置において井戸層にキャリアを提供できる。
【0051】
(実施例3)
本実施形態に係る発光ダイオード11a、11bは、発光領域15内の複数の量子井戸構造21にエミッタ領域17から第1軸Ax1の方向にキャリアを注入して、各量子井戸構造21内にキャリアを提供する。量子井戸構造21内のキャリアが量子井戸層の面内方向と平行な方向に輸送される。
このような構造のデバイスに電子を注入した場合、発光領域内の電子分布をシミュレーションにより見積もる。
面内方向のキャリア輸送を見積もるために、シミュレーションによる数値実験を行うデバイスモデルを以下に示す。
メサ構造内の発光領域上のエミッタ領域の開口の中心からメサ上面の上縁の一方までのメサ片幅:10マイクロメートル。
メサ構造内の発光領域上のエミッタ領域の開口の中心からメサ上面の上縁の他方までのメサ片幅が10、20、50及び100マイクロメートル。
電子は、エミッタ領域の開口から電界によりドリフトし発光領域に注入される。
発光領域:AlInAs/GaInAs多重量子井戸構造。
モデル名、 縦方向の電気伝導率、 横方向の電気伝導率、 縦/横電気伝導率比。
第1モデル、 4.3E−5、 1.7E−2、 2.53E−3。
第2モデル、 1.5E−5、 1.7E−2、 8.74E−4。
第3モデル、 1.7E−6、 1.7E−2、 9.84E−5。
記法「2.53E−3」は、2.53×10−3を示す。
縦/横電気伝導率比は、縦方向の電気伝導率を横方向の電気伝導率で割った値である。
横方向の電流密度について。
100マイクロメートルのメサ幅を有するモデルの計算結果によれば、横方向の電子流密度分布は、量子井戸の縦方向と横方向の電気伝導率比が大きいほど大きくなる。また、20マイクロメートルのメサ幅を有するモデルの計算結果によれば、3桁程度の電気伝導率比では、コレクタ電極での電子流密度は、深さ方向に大きな違いはない。
縦方向の電流密度について。
100マイクロメートルのメサ幅を有するモデルの計算結果によれば、縦方向の電子流密度分布は、エミッタ電極直下辺りに分布している。また、20マイクロメートルのメサ幅を有するモデルの計算結果によれば、量子井戸の縦方向と横方向の電気伝導率比が大きいほど下方への分布が少なくなるが、3ケタ程度の電気伝導率比でも十分に下方まで電子は分布する。
【0052】
本実施形態に係る発光ダイオード11a、11bは、量子井戸構造21内のキャリアが量子井戸層の面内方向と平行な方向に輸送される点で量子カスケード半導体レーザとは異なっており、量子カスケード半導体レーザに内在するヘテロ障壁を備えない。ヘテロ障壁がないことにより、本実施形態に係る発光ダイオードは、低電圧で駆動可能であって、量子井戸構造21を多層化することに起因して動作電圧が上昇することなく、並列に接続された量子井戸構造21によって大きな光学利得を得ることができる。また、本実施形態に係る発光ダイオードは、量子カスケード半導体レーザにおけるトンネル輸送による損失の発生無い。
【0053】
本実施形態の構造は、電流が流れる方向に量子カスケード半導体レーザのように多段の量子井戸間にカスケードのために設けられる注入層を備えないので、電流注入側(エミッタ)と引き抜き側(コレクタ)の2つの電極間での電圧降下は、発振波長のエネルギーに係る電圧降下と当該素子の直列抵抗による電圧降下との和になる。光学利得を高めるために、発光領域内の量子井戸構造の単位セルは多重に積層する構造を採用するけれども、この積層の数と共に増大する電圧上昇は、本実施形態の構造における動作機構上発生せず、半導体発光素子11の動作電圧が大幅に低減される。
【0054】
量子カスケード半導体レーザは、発光のための単位セルの縦続的な積層とこの積層方向へのキャリア注入とを用いるので、量子カスケード半導体レーザにおけるキャリア注入層におけるキャリア損失が生じる。一方、本実施形態に係る素子構造はキャリア注入層を必要とせずに、キャリア注入層におけるキャリア損失が生じない。本実施形態に係る素子構造では、発光層の積層構造に係る設計自由度が大きくなって、デバイスの特性の改善、具体的には閾値電流、動作電圧及び消費電力の低減が可能となると共に、大きな段差のないプレーナデバイスとしてウエハ上面から電極を構成できることから、他のデバイスとの集積化やアレー化などといった機能の拡大も可能となる。さらに、キャリア注入層がないために、発光層のエピ層厚を低減できると共に、エピ成長後にフォトルミネッセンスなどによる非破壊の光学特性の評価が可能となるために、製造時間の短縮、コストの低減にも寄与する。
【0055】
図6を参照しながら、エミッタ領域から発光領域の上面へのキャリアの供給を説明する。図6の(a)部は、エミッタ領域17及び発光領域15における無バイアス下のバンド構造を模式的に示す図面である。図6の(b)部は、エミッタ領域17及び発光領域15における順方向の外部バイアス下のバンド構造を模式的に示す図面である。図6の(a)部及び(b)部では、発光領域15が超格子構造を有することを示すために、単位セル15aの配列が描かれている。単位セル15aは、図6の(c)部に示される。図6の(a)部及び(b)部において、「Ef1」はフェルミ準位又は偽フェルミ準位を示し、「Ec1」は伝導帯を示す。第1半導体層33aの伝導帯のレベルは、第2半導体層33bの伝導帯のレベルより高い。
エミッタ領域の構造。
第1半導体層33a:アンドープAlGaPSb、厚さ20nm。
第2半導体層33b:SiドープInP、厚さ200nm。
【0056】
図6の(b)部に示されるように、外部バイアスを発光ダイオードに印加して、第1半導体層33aと第2半導体層33bとの間のヘテロ障壁を小さくする。ヘテロ障壁の低下に応答して、高いエネルギーのキャリアC(電子)が熱キャリア放出によってヘテロ障壁を越えてエミッタ領域17から発光領域15の超格子構造に注入される。注入されたキャリアは、個々のキャリアのエネルギーに応じた伝導帯内のレベルにおいて、電界に引かれて発光領域15をドリフト又は拡散しながらエネルギーを失って、様々な単位セル内に落ち込む。単位セル内をコレクタ領域にドリフトしながら高いエネルギー準位(E3)から低いエネルギー準位(E2)への光学遷移により光を生成する。エネルギー準位(E2)のキャリアは、更に低いエネルギー準位(E1)に速やかに緩和する。
【0057】
図7を参照しながら、エミッタ領域から発光領域の上面へのキャリアの供給を説明する。図7の(a)部は、エミッタ領域17及び発光領域15における無バイアス下のバンド構造を模式的に示す図面である。図7の(b)部は、エミッタ領域22及び発光領域15における順方向の外部バイアス下のバンド構造を模式的に示す図面である。図7では、発光領域15が単位セル15aの配列を超格子構造を有することを示すために、周期的に井戸層及びバリア層の繰り返し配列が描かれている。単位セル15a及び発光領域15における準位E4は、図7の(c)部に示される。図7の(a)部及び(b)部において、「Ef1」はフェルミ準位又は偽フェルミ準位を示し、「Ec1」は伝導帯を示す。エミッタ領域22は、発光領域15の上面に接したトンネリング構造32を含む第1半導体層32aを備える。
エミッタ領域18の構造。
第1半導体層32a:アンドープAlGaPSb/GaInAs。
第2半導体層32b:SiドープInP、厚さ200nm。
トンネリング構造32は、例えば以下の構造を有する。
AlGaPSb(厚さ5nm)/GaInAs(厚さ2nm)/AlGaPSb(厚さ5nm)。
【0058】
図7の(b)部に示されるように、外部バイアスを発光ダイオードに印加して、第1半導体層32aと第2半導体層32bとの間のヘテロ障壁を小さくする。第2半導体層32bの伝導帯のレベルが、発光領域15における離散的なエネルギー準位(E4)付近になると、トンネリング構造32を通して第2半導体層32bの伝導帯から発光領域15の超格子構造のエネルギー準位(E4)にキャリアCがトンネリングTにより注入される。注入されたキャリアは、個々のキャリアのエネルギーに応じた伝導帯内のレベル(例えば、準位E4)において、電界に引かれて発光領域15をドリフト又は拡散しながらエネルギーを失って、様々な単位セル内に落ち込む。単位セル15a内をコレクタ領域にドリフトしながら高いエネルギー準位(E3)から低いエネルギー準位(E2)への光学遷移により光を生成する。エネルギー準位(E2)のキャリアは、更に低いエネルギー準位(E1)に速やかに緩和する。
【0059】
エミッタ領域17から発光領域15の側面へのキャリアの供給を説明する。必要な場合には、第1構造及び第2構造においては、エミッタ領域17の第1半導体領域23は、発光領域15の上面15d(更には第1側面15b及び第2側面15c)に接触を成す第1半導体層33aと、第1半導体層33a上に設けられた第2半導体層33bを備えることができる。第1半導体層33aは、図8に示されるように、上位エネルギー準位E3に等しい又は高い(キャリア極性に応じた電位の向きに高い)伝導バンドエネルギー(E17)を有する半導体を有する。第2半導体層33bは、発光領域15の等価的な屈折率よりも小さい屈折率を有する半導体を備える。第1半導体層33aの伝導バンドエネルギーレベルは、大きな外部印加電圧を必要とせずに、エミッタ領域17から発光領域15の上位エネルギー準位E3へのキャリア注入を可能にする。
【0060】
発光領域15からコレクタ19の第2半導体領域25へのキャリアの供給を説明する。必要な場合には、第1構造においては、コレクタ19の第2半導体領域25は、発光領域15の側面(第1側面15b、第2側面15c、第3側面15f及び第4側面15g)に接触を成す第3半導体層35aと、第3半導体層35a上に設けられた第4半導体層35bとを備える。第3半導体層35aは、図9に示されるように、下位エネルギー準位E2、好ましく緩和エネルギー準位E1に等しいか又は低い伝導バンドエネルギー(E19)を有する半導体を有する。第4半導体層35bは、発光領域15の等価的な屈折率よりも小さい屈折率を有する半導体を備える。第3半導体層35aの伝導バンドエネルギーレベルは、大きな外部印加電圧を必要とせずに、発光領域15のエネルギー準位からコレクタ19へのキャリア引き抜きを可能にする。
【0061】
図10は、本実施形態に係る半導体発光素子のための量子フィルタ構造を示す図面である。コレクタ19は、発光領域15の第1側面15b、第2側面15c、第3側面15f及び第4側面15gの少なくともいずれか一面上に設けられた量子フィルタ構造29を含み、量子フィルタ構造29は、複数の半導体を備えることができる。コレクタ19の量子フィルタ構造29は、発光領域15の第1側面15b、第2側面15c、第3側面15f及び第4側面15gの少なくともいずれか一面に沿って第1軸Ax1の方向に延在すると共に発光領域15の該側面に接触を成して、複数の量子井戸構造21に並列に接続される。コレクタ19の量子フィルタ構造29は、下位エネルギー準位のキャリアを選択的に透過可能である。図10に示されるように、コレクタ19の量子フィルタ構造29は、量子井戸構造21の低エネルギー準位(例えば、E1)における透過率が量子井戸構造21の高エネルギー準位(例えば、E3)における透過率より大きいフィルタ特性を有する超格子構造を有する。また、量子フィルタ構造29は、量子井戸構造21の低エネルギー準位(例えば、E1、E2)における透過率が量子井戸構造21の高エネルギー準位(例えば、E3)における透過率より大きいフィルタ特性を提供するように構成されることができる。更には、量子フィルタ構造29は、量子井戸構造21の低エネルギー準位(例えば、E2)における透過率が量子井戸構造21の高エネルギー準位(例えば、E3)における透過率より大きいフィルタ特性を提供するように構成されることができる。量子井戸構造21における並列接続は、縦続的な光学遷移を避けることを可能にする。個々の量子井戸構造21におけるキャリアは、第1軸Ax1の方向に交差する軸(第2軸Ax2及び第3軸Ax3)方向にコレクタ19に向けてドリフトする。
【0062】
図10を参照すると、量子フィルタ構造29の超格子構造は、III族構成元素としてアルミニウムを含む複数の第1半導体層29aと、III族構成元素としてIII族構成元素としてガリウムを含む複数の第2半導体層29bとを含む。第1半導体層29aは、III族構成元素としてアルミニウムを含む三元又は四元(例えば、三元以上)のIII−V化合物半導体バリア、例えばAlInAsを含み、第2半導体層29bは、III族構成元素としてガリウムを含む三元又は四元(例えば、三元以上)のIII−V化合物半導体井戸、例えばGaInAsを含む。量子フィルタ構造29の超格子構造は、例えば交互に配列された3つの井戸及び4つのバリアを含む。
【0063】
量子フィルタ構造29の超格子構造の第1例。
AlInAs障壁層:2nm、4層。
GaInAs井戸層:4.25nm、3層。
図10に示される量子フィルタ透過特性は、緩和エネルギー準位E1、(例えば0.14エレクトロンボルト)に相当するエネルギーを有するキャリアを容易に通過させることができ、上位エネルギー準位E3、(例えば0.45エレクトロンボルト)に相当するエネルギーを有するキャリアを通過し難くすることができる。
【0064】
量子フィルタ構造29の超格子構造の第2例。
AlInAs/GaInAs系において、第1例に比べて、井戸及び障壁の層数が少なく、及び/又は膜厚が異なるように構成してもよい。具体的には、AlInAs/GaInAs系は、井戸及び障壁の総数が3つからなる半導体積層を含むことができ、或いは井戸及び障壁の総数が5つからなる半導体積層を含むことができる。
【0065】
量子フィルタ構造29の超格子構造の第3例。
障壁層がAlInAsを備える。井戸層が、III族構成元素としてガリウムを含む。井戸層は、井戸層のバンドギャップがGaInAsとほぼ同じになるような組成を備えることが好ましい。
AlInAs/GaAsSb (障壁層/井戸層)
障壁層がAlInAsを備える。井戸層が、III族構成元素としてガリウム及びインジウムを含む。
AlInAs/InGaSb (障壁層/井戸層)
AlInAs/AlGaInAs (障壁層/井戸層)
障壁層がAlInAsを備える。井戸層が、III族構成元素としてガリウムを含むと共にV族構成元素としてアンチモンを含む。
AlInAs/GaAsSb (障壁層/井戸層)
AlInAs/InGaSb (障壁層/井戸層)
障壁層がAlInAsを備える。井戸層が、III族構成元素としてガリウム及びインジウムを含むと共にV族構成元素としてヒ素を含む。
AlInAs/GaInAs (障壁層/井戸層)
AlInAs/AlGaInAs (障壁層/井戸層)
【0066】
量子フィルタ構造29の超格子構造の第4例。
井戸層がGaInAsを備える。障壁層が、III族構成元素としてアルミニウム及びガリウムを含む。障壁層は、障壁層のバンドギャップがAlInAsより大きくなる組成を備えることが好ましい。
AlGaPSb/GaInAs (障壁層/井戸層)
AlGaAsSb/GaInAs (障壁層/井戸層)
井戸層がGaInAsを備える。障壁層が、III族構成元素としてアルミニウム及びインジウムを含む。
AlInPSb/GaInAs (障壁層/井戸層)
AlInAsSb/GaInAs (障壁層/井戸層)
井戸層がGaInAsを備える。障壁層が、III族構成元素としてアルミニウムを含むと共にV族構成元素としてアンチモンを含む。
AlGaPSb/GaInAs (障壁層/井戸層)
AlGaAsSb/GaInAs (障壁層/井戸層)
AlInPSb/GaInAs (障壁層/井戸層)
AlInAsSb/GaInAs (障壁層/井戸層)
井戸層がGaInAsを備える。障壁層が、III族構成元素としてアルミニウムを含むと共にV族構成元素としてアンチモン及びヒ素を含む。
AlGaAsSb/GaInAs (障壁層/井戸層)
AlInAsSb/GaInAs (障壁層/井戸層)
井戸層がGaInAsを備える。障壁層が、III族構成元素としてアルミニウムを含むと共にV族構成元素としてアンチモン及びリンを含む。
AlGaPSb/GaInAs (障壁層/井戸層)
AlInPSb/GaInAs (障壁層/井戸層)
井戸層がGaInAsを備える。障壁層が、III族構成元素としてアルミニウムを含むと共にV族構成元素としてアンチモン、ヒ素及びリンを含む。
AlPAsSb/GaInAs (障壁層/井戸層)
【0067】
量子フィルタ構造29の超格子構造の第5例。
超格子構造は、第1例から第4例におけるいずれかの材料の井戸層と第1例から第4例におけるいずれかの材料の障壁層とを含む。第1例から第5例において、材料の組み合わせにおける井戸と障壁との格子定数は、格子不整合に起因する結晶欠陥を引き起こさない程度の格子定数差に収める。
【0068】
図11は、本実施形態に係る発光ダイオードを模式的に示す図面である。図12は、本実施形態に係る発光ダイオードのための量子フィルタを示す図面である。図11に示されるように、発光ダイオード11cは、基板13の裏面13eに第3電極31dを備えることができ、量子フィルタ構造29に効率的に電圧を印加するために、第3電極31dは、例えば裏面13eにおける第2エリア13cの反対側のエリア上に設けられることができ、開口31eを有する。開口31eのサイズは、下面15eのサイズより大きい。コレクタ19は、発光領域15の側面に接触を成す量子フィルタ構造29を備える。図12の(a)部に示されるように、発光領域15は複数の基本構造15aa、15ab、15acを含み、基本構造15aa、15ab、15acは、単一の光学遷移を提供できる単位セル15aと同様に、第1軸Ax1の方向に配列される。基本構造15aa、15ab、15acは、量子力学的に互いの独立した量子準位(サブバンド構造)を有する。具体的には、各基本構造15aaは、3つの準位(Ea1、Ea2、Ea3、ここでEa1>Ea2>Ea3)を有し、各基本構造15abは、3つの準位(Eb1、Eb2、Eb3、ここでEb1>Eb2>Eb3)を有し、各基本構造15acは、3つの準位(Ec1、Ec2、Ec3、ここでEc1>Ec2>Ec3)を有する。準位(Ea1、Ea2、Ea3、Eb1、Eb2、Eb3、Ec1、Ec2、Ec3)は互いに異なる。基本構造15aa、15ab、15acは、それぞれ光学遷移を提供できる。具体的には、図12の(a)部に示されるように、基本構造15aaは、光学遷移可能なサブバンドギャップDEaを有し、基本構造15abは、光学遷移可能なサブバンドギャップDEbを有し、基本構造15acは、光学遷移可能なサブバンドギャップDEcを有する。サブバンドギャップDEa、DEb、及びDEcは、互いに異なる。コレクタ19の量子フィルタ構造29は、発光領域15内の基本構造15aa、15ab、15acに並列に接続される。量子フィルタ構造29の透過特性は、基本構造15aa、15ab、15acのいずれを活性にすべきか決定する。この決定は、第2電極31bと第3電極31dとの間の電位差に依る。具体的には、図12の(b)部、(c)部及び(d)部に示されるように、量子フィルタ構造29の透過特性は、第2電極31bと第3電極31dとの間の電位差(基準電位GNDに対する電位差Va、Vb、Vc)に応じて変更される。活性化された基本構造(15aa、15ab及び15acのいずれか一つ)が発光に寄与できる。活性化された基本構造では、下位準位のキャリアが量子フィルタ構造29を介して引き抜かれて、サブバンド間の遷移による発光が促進される。活性化されない基本構造(15aa、15ab及び15acの残り)では、下位準位のキャリアが量子フィルタ構造29を介して引き抜かれずに、サブバンド間の遷移による発光が生じない。活性化されない基本構造は、発光に寄与できない。基本構造15aa、15ab、15acは、それぞれ、第2電極31bと第3電極31dとの間に電圧差(例えば、Va、Vb、Vc)が印加されることに応じて、活性化される。本実施例では、図12の(b)部を参照すると、電位差(Va)の印加により、レベル(Ea1)からのキャリアが引き抜かれる。図12の(c)部を参照すると、電位差(Vb)の印加により、レベル(Eb1)からのキャリアが引き抜かれる。図12の(d)部を参照すると、電位差(Vc)の印加により、レベル(Ec1)からのキャリアが引き抜かれる。本実施例では、量子フィルタ構造29の透過特性は、第2電極31bと第3電極31dとの間の電位差ゼロにおいてレベル(Ea1)からのキャリアが引き抜かれるように設計されている。
【0069】
図13は、本実施形態に係る発光ダイオードを模式的に示す図面である。図13の(a)部に示されるように、本実施形態に係る半導体発光素子11(11b)は、基板13の裏面にモノリシックレンズ41を備えることができる。図13の(b)部に示されるように、本実施形態に係る半導体発光素子11(11b)の基板13の裏面は、マイクロレンズ43を搭載することができる。半導体発光素子11は、モノリシックレンズ41及びマイクロレンズ43と発光領域15との間に設けられた半導体層45を含み、この半導体層45は、発光領域15の平均屈折率より大きな屈折率を有する。
【0070】
図14及び図15を参照しながら、第1構造を製造する方法の概要を説明する。工程S101では、図14の(a)部に示されるように、Feドープ半絶縁性InP基板61を準備する。結晶成長は、例えばMBE法もしくはMOCVD法によって行われることができる。InP基板61上に、例えば上記の4層構造を備える単位セルの積層を有する発光領域のための超格子構造63を成長する。超格子構造63上に、エミッタ及びコンタクトのためのSiドープAlInAs層65及びSiドープGaInAs層67を成長する。これの工程により、半導体積層69が形成される。
【0071】
工程S102では、図14の(b)部に示されるように、半導体積層69の主面69a上にストライプ及びコレクタ領域のための第1SiNマスク71を形成すると共に、第1SiNマスク71を用いて半導体積層69をエッチングしてストライプ構造73を形成する。ストライプ構造73は、超格子構造63a、発光領域65a、SiドープAlInAs層65a及びSiドープGaInAs層67aを含む。
【0072】
図14の(c)部に示されるように、工程S103では、第1SiNマスク71を除去することなく、コレクタ領域のための選択成長を行う。コレクタ領域のために、SiドープGaInAs層75aを成長すると共に、SiドープGaInAs層75a上にSiドープInP層75bを成長して、ストライプ構造73を平坦に埋め込むコレクタ領域75を形成する。SiドープGaInAs層75aは比較的薄く、例えば10〜50nmの厚さで成長されることが良い。第2構造の形成では、選択成長を行うことなく第1SiNマスク71を除去すると共に、金属電極のための金属膜を堆積する。量子フィルタ構造の形成では、SiドープAlInAs層75aの成長に先だって、量子フィルタ構造のための半導体薄膜をストライプ構造73の側面、具体的には超格子構造63aの側面上に成長する。
【0073】
図15の(a)部に示されるように、工程S104では、第1SiNマスク71を除去した後に、アイランド及び分離溝を形成するための第2SiNマスク77を形成すると共に、第2SiNマスク77を用いてストライプ構造73をエッチングして、第1アイランド79a、第2アイランド79b及び分離溝79cを形成する。第1アイランド79aは、SiドープAlInAs層65b及びSiドープGaInAs層67bを含む。第2アイランド79bは、SiドープInGaAs層75a上にSiドープInP層75bを含む。分離溝79cは、発光領域15に到達して、第1アイランド79aを第2アイランド79bから隔置する。
【0074】
図15の(b)部に示されるように、工程S105では、第2SiNマスク77を除去した後に、第1アイランド79a、第2アイランド79b及び分離溝79c上にパッシベーション膜87を形成する。パッシベーション膜87は、第1アイランド79a、第2アイランド79b及び分離溝79cを覆うと共に、第1アイランド79a及び第2アイランド79b上にそれぞれ第1開口87a及び第2開口87bを有する。第1開口87a及び第2開口87bの形成のために、マスク89を用いることができる。マスク89は、第1アイランド79a及び第2アイランド79b上にそれぞれ第1開口89a及び第2開口89bを有する。マスク89を用いてパッシベーション膜87のための絶縁膜をエッチングして、パッシベーション膜87を得る。
【0075】
図15の(c)部に示されるように、工程S106では、パッシベーション膜87を形成した後に、第1開口89a及び第2開口89b上にそれぞれ第1電極91a及び第2電極91bを形成する。第1電極91a及び第2電極91bの形成は、例えばリフトオフ法及びメッキ法を用いることができる。
【0076】
以上説明したように、本実施形態によれば、単極性のキャリアの光学遷移を用いることを可能にする半導体発光素子を提供できる。また、上記の説明は、III−V化合物半導体を例示しながら行われたが、光学遷移を可能にするサブバンド構造を提供できる発光領域は、これに限定されない。
【0077】
好適な実施の形態において本発明の原理を図示し説明してきたが、本発明は、そのような原理から逸脱することなく配置および詳細において変更され得ることは、当業者によって認識される。本発明は、本実施の形態に開示された特定の構成に限定されるものではない。したがって、特許請求の範囲およびその精神の範囲から来る全ての修正および変更に権利を請求する。
【産業上の利用可能性】
【0078】
以上説明したように、本実施形態によれば、単極性のキャリアの光学遷移を用いて非干渉性の光を発生する、発光ダイオードを提供できる。
【符号の説明】
【0079】
11…半導体発光素子、11a、11b…発光ダイオード、13…基板、13b…第1エリア、13c…第2エリア、15…発光領域、15a…単位セル、15b…第1側面、15c…第2側面、15d…上面、15e…下面、15f…第3側面、15g…第4側面、17…エミッタ領域、19…コレクタ、21…量子井戸構造、23…第1半導体領域、25…第2半導体領域、MS…半導体メサ、33…金属電極。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15