(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0013】
以下に、本発明の実施の形態について図面を参照して詳細に説明する。なお、以下では、図中の同一または相当部分には同一符号を付して、その説明が原則的に繰返さないものとする。
【0014】
(電力変換装置の構成)
図1は、この発明の実施の形態に従う電力変換装置の構成を示す回路ブロック図である。
図1において、電力変換装置100は、電力系統1の無効電力を補償する無効電力補償装置として使用される。
【0015】
図1を参照して、電力変換装置100は、モジュラー・マルチレベル変換器(以下、MMCと称する)2と、MMC2を制御する制御装置3とを備える。
【0016】
MMC2は、変圧器4と、三相(U,V,W相)の交流ラインUL,VL,WLとを含む。変圧器4は、3つの一次巻線および3つの二次巻線を含む。3つの一次巻線は、電力系統1の三相の送電線にそれぞれ接続される。3つの二次巻線は、交流ラインUL,VL,WLの一方端子にそれぞれ接続される。
【0017】
MMC2は、電力系統1に対して、変圧器4を介して無効電力を注入または吸収するように構成される。具体的には、電力系統1の三相交流電圧(以下、「系統電圧」ともいう)が低くなった場合には、MMC2は、系統電圧を上げるように電力系統1に無効電力を注入する。一方、系統電圧が高くなった場合には、MMC2は、系統電圧を下げるように電力系統1から無効電力を吸収する。MMC2は、電力系統1に対して、系統電圧と直交する電流を注入または吸収することで、無効電力を補償することができる。
【0018】
したがって、電力変換装置100が理想状態である場合、電力系統1からMMC2へ融通される有効電力は、無効電力に比べて十分に小さくなる。なお、理想状態とは、MMC2内部(単位変換器5)での電力損失が略零である場合、および系統電圧が三相平衡状態である場合を含んでいる。
【0019】
MMC2は「電力変換器」の一実施例に対応する。なお、
図1では、MMC2は、変圧器4を介して電力系統1に接続されているが、連系用リアクトルを介して電力系統1に接続される構成であってもよい。
【0020】
MMC2は、アームA1〜A3をさらに含む。アームA1は、交流ラインULの他方端子と交流ラインVLの他方端子との間に接続される。アームA2は、交流ラインVLの他方端子と交流ラインWLの他方端子との間に接続される。アームA3は交流ラインWLの他方端子と交流ラインULの他方端子との間に接続される。すなわち、アームA1〜A3はデルタ結線で接続されている。
【0021】
アームA1〜A3の各々は、複数の単位変換器5(以下、単に「セル」とも称する)を有する。複数のセル5の各々は、制御装置3からの制御信号に従って双方向の電力変換を行なうように構成される。
図1の例では、アームA1〜A3の各々において、n個(nは2以上の整数)のセル5が直列接続されている。すなわち、MMC2は合計3n個のセル5を有している。
【0022】
アームA1は、複数のセル5と直列に接続されたリアクトルL1をさらに有する。アームA2は、複数のセル5と直列に接続されたリアクトルL2をさらに有する。アームA3は、複数のセル5と直列に接続されたリアクトルL3をさらに有する。リアクトルL1〜L3の各々は、デルタ結線内を流れる循環電流を抑制するために配置されている。リアクトルL1〜L3の各々は、対応するアームのセル5とそれぞれ直列に接続されていれば、その位置は
図1に示された位置に限られるものではない。または、リアクトルL1〜L3の各々は、対応するA1〜A3内に複数個を分散して配置してもよい。
【0023】
アームA1〜A3において、初段のセル5の出力端子5aは、リアクトルL1〜L3を介して交流ラインUL,VL,WLの他方端子にそれぞれ接続される。アームA1〜A3の最終段のセル5の出力端子5bは、交流ラインVL,WL,ULの他方端子にそれぞれ接続される。各アームにおいて、初段および最終段を除いた他のセル5の出力端子5aは前段のセル5の出力端子5bに接続され、出力端子5bは次段のセル5の出力端子5aに接続される。
【0024】
電力系統1の三相の送電線には、電力系統1およびMMC2の間に流れる電流iu,iv,iw(以下、「出力電流」とも称する)を検出するための電流検出器Cu,Cv,Cwがそれぞれ配置される。さらに、送電線には、電力系統1の三相交流電圧(以下、「系統電圧」とも称する)Vu,Vv,Vwを検出するための電圧検出器34が配置される。
【0025】
さらに、交流ラインULには、アームA1に流れる電流(以下、「アーム電流iuv」とも称する)を検出するための電流検出器35が配置される。交流ラインVLには、アームA2に流れる電流(以下、「アーム電流ivw」と称する)を検出するための電流検出器36が配置される。交流ラインWLには、アームA3に流れる電流(以下、「アーム電流iwu」とも称する)を検出するための電流検出器37が配置される。
【0026】
なお、出力電流iu,iv,iwは、電流検出器Cu,Cv,Cwを用いずに、電流検出器35〜37によるアーム電流iuv,ivw,iwuの検出値に基づいて演算することも可能である。Iu=Iuv−Iwu、Iv=Ivw−Iuv、Iw=Iwu−Ivwである。
【0027】
これらの電流検出器Cu,Cv,Cw,35〜37および電圧検出器34の検出値は、制御装置3に入力される。制御装置3は、図示しない上位コントローラからの指令および、各検出器から入力された検出信号等を用いて、アームA1〜A3の各々(すなわち、3n個のセル5の各々)の動作を制御する。
【0028】
制御装置3は、たとえばマイクロコンピュータ等で構成することが可能である。一例として制御装置3は、図示しないメモリおよびCPU(Control Processing Unit)を内蔵し、メモリに予め格納されたプログラムをCPUが実行することによるソフトウェア処理によって、以下で説明する制御動作を実行することができる。あるいは、当該制御動作の一部または全部については、ソフトウェア処理に代えて、内蔵された専用の電子回路等を用いたハードウェア処理によって実現することも可能である。
【0029】
(単位変換器の構成)
次に、
図2を用いて、
図1に示されるセル5の構成例を説明する。
【0030】
図2を参照して、セル5は、主回路6と、自己給電回路7と、駆動回路8と、抵抗R1,R2と、スイッチング素子T1とを含む。
【0031】
主回路6は、いわゆるフルブリッジ構成を有する。具体的には、主回路6は、出力端子5a,5bと、スイッチング素子Q1〜Q4と、ダイオードD1〜D4と、直流コンデンサC1と、電圧検出器30と、スイッチSWとを含む。
【0032】
スイッチング素子Q1〜Q4は、自己消弧型の電力用半導体素子であり、たとえばIGBT(Insulated Gate Bipolar Transistor)で構成される。スイッチング素子Q1,Q3は電力線対(正極線PLおよび負極線NL)の間に直列に接続されている。スイッチング素子Q2,Q4は電力線対の間に直列に接続されている。スイッチング素子Q1,Q2のコレクタはともに正極線PLに接続され、スイッチング素子Q3,Q4のエミッタはともに負極線NLに接続されている。スイッチング素子Q1のエミッタとスイッチング素子Q3のコレクタとの接続点は出力端子5aに接続されている。スイッチング素子Q2のエミッタとスイッチング素子Q4のコレクタとの接続点は出力端子5bに接続されている。ダイオードD1〜D4は、スイッチング素子Q1〜Q4にそれぞれ逆並列に接続されている。
【0033】
直流コンデンサC1は、正極線PLおよび負極線NLの間に接続され、直流電力を蓄える。直流コンデンサC1には、電解コンデンサ、フィルムコンデンサ等の各種コンデンサを用いることができる。直流コンデンサC1は「第1の蓄電素子」の一実施例に対応する。
【0034】
電圧検出器30は、直流コンデンサC1の端子間の直流電圧(以下、単に「コンデンサ電圧VDC」とも称する)を検出し、検出したコンデンサ電圧VDCを示す信号を駆動回路8に出力する。
【0035】
各セル5において、出力端子5bを基準とした出力端子5aまでの電圧を「セル電圧Vcell」と定義すると、セル電圧Vcellは、スイッチング素子Q1〜Q4のオンオフ状態によって制御される。セル5は、スイッチング素子Q1〜Q4のスイッチング動作に応じて、セル電圧Vcellを、+VDC,0,−VDCの間で切り替えることができる。
【0036】
図1に示したMMC2において、各アームAの2端子間の電圧は、このアームAに含まれるn個のセル5のセル電圧Vcellの和で表される。したがって、各アームAの電圧は、セル5の主回路6を構成するスイッチング素子Q1〜Q4のオンオフ状態によって制御することができる。
【0037】
制御装置3は、MMC2の出力電流iu,iv,iwを制御することで、電力系統1およびMMC2の間で送受される有効電力、およびMMC2から電力系統1に出力される無効電力を制御するように構成される。制御装置3は、電力系統1およびMMC2の間で送受される有効電力を制御することで、各セル5の直流コンデンサC1のコンデンサ電圧VDCを直流電圧指令値VDC*に追従させる。直流電圧指令値VDC*は、図示しない上位コントローラから入力されてもよく、制御装置3において予め定められていてもよい。制御装置3は、また、MMC2から電力系統1に出力される無効電力を制御することで、系統電圧を安定化させる。
【0038】
具体的には、制御装置3は、アーム電圧指令値Vuv*,Vvw*,Vwu*、各セル5のコンデンサ電圧VDC、およびアーム電流iuv,ivw,iwuに基づいて、各セル5のセル電圧Vcellを制御するためのセル電圧指令値Vcell*を生成する。本実施の形態では、3n個のセル5に対応して、3n個のセル電圧指令値Vcell*が生成される。制御装置3は、3n個のセル電圧指令値Vcell*に基づいて、3n個のセル5の各々の主回路6に与えるゲート信号GCを生成する。
【0039】
図2に戻って、スイッチSWは、出力端子5a,5b間に接続される。スイッチSWは、対応するセル5が正常である場合は開放(オフ)され、対応するセル5が故障した場合は閉成(オン)される。スイッチSWがオンされると、出力端子5a,5b間が短絡されるため、対応するセル5がバイパスされる。スイッチSWは「第2のスイッチ」の一実施例に対応する。
【0040】
駆動回路8は、自己給電回路7から供給される直流電力によって駆動される。駆動回路8は、制御装置3から、主回路6のフルブリッジ回路におけるスイッチング動作を制御するためのゲート信号GC、および、フルブリッジ回路のスイッチング動作を停止(すべてオフ)するためのゲート遮断信号GBを受ける。駆動回路8は、ゲート信号GCに応答してスイッチング素子Q1〜Q4のオンオフを制御する。また、駆動回路8は、ゲート遮断信号GBに応答して、スイッチング素子Q1〜Q4をオフ状態に固定する。
【0041】
駆動回路8はさらに、制御装置3から、スイッチSWのオンオフを制御するためのオン指令を受ける。駆動回路8は、オン指令に従って励磁コイル9を通電することにより、スイッチSWのオンオフを制御する。駆動回路8の制御構成については後述する。
【0042】
自己給電回路7は、主回路6の直流コンデンサC1に蓄えられた電力を利用して駆動回路8の電源電圧を生成するように構成される。すなわち、自己給電回路7は、主回路6の直流コンデンサC1から駆動回路8に電源を供給する。
【0043】
(自己給電回路の構成)
図3は、
図2に示した自己給電回路7の構成例を示す回路図である。
図2および
図3を用いて、自己給電回路7の構成例を説明する。
【0044】
自己給電回路7は、正極線PLおよび負極線NLの間に、抵抗R1と電気的に直列に接続される。自己給電回路7は、入力端子7a,7bと、出力端子7c,7dと、コンデンサC2と、電源回路10と、電圧検出器32とを含む。
【0045】
入力端子7aは、抵抗R1の一方端子に接続される。抵抗R1の他方端子は正極線PLに接続される。入力端子7bは負極線NLに接続される。出力端子7c,7dは駆動回路8に接続される。
【0046】
コンデンサC2は、入力端子7aおよび7bの間に接続される。言い換えれば、コンデンサC2は、正極線PLおよび負極線NLの間に、抵抗R1と電気的に直列に接続される。抵抗R1およびコンデンサC2の直列回路は、直流コンデンサC1に電気的に並列に接続される。抵抗R1は、直流コンデンサC1からコンデンサC2に流れる電流を制限するための「限流抵抗」として機能し得る。以下の説明では、抵抗R1に流れる電流を「入力電流Iin」とも称する。
【0047】
コンデンサC2には、コンデンサ電圧VDCを抵抗R1(限流抵抗)によって低減させた電圧が印加される。コンデンサC2には、電解コンデンサ、フィルムコンデンサ等の各種コンデンサを用いることができる。コンデンサC2は「第2の蓄電素子」の一実施例に対応する。
【0048】
電圧検出器32は、コンデンサC2の端子間の直流電圧(以下、「入力電圧Vin」とも称する)を検出し、検出した入力電圧Vinを示す信号を電源回路10に出力する。
【0049】
電源回路10は、コンデンサC2に電気的に並列に接続され、コンデンサC2から与えられる入力電圧Vinを駆動回路8の電源電圧に変換するように構成される。具体的には、
図3を参照して、電源回路10は、DC/DCコンバータ12と、制御部14とを含む。DC/DCコンバータ12は、コンデンサC2の端子間の直流電圧(入力電圧Vin)を駆動回路8の駆動に必要な電圧に変換して駆動回路8に供給する。DC/DCコンバータ12は、コンデンサC2から供給される直流電力を駆動回路8に伝達することができる。
【0050】
DC/DCコンバータ12には、たとえば絶縁型DC/DCコンバータを適用することができる。絶縁型DC/DCコンバータは、フライバックコンバータ、フォワードコンバータ、プッシュプルコンバータ、ハーフブリッジコンバータ、およびフルブリッジコンバータなどの公知の方式を用いることができる。
図3の例では、DC/DCコンバータ12は、フライバックコンバータである。DC/DCコンバータ12は、トランスTRと、スイッチング素子T2と、ダイオードD5と、コンデンサC3とを有する。
【0051】
トランスTRは、互いに絶縁された一次巻線および二次巻線を有する。スイッチング素子T2は、一次巻線に直列接続される。一次巻線およびスイッチング素子T2の直列回路はコンデンサC2に並列接続される。スイッチング素子T2は任意の自己消弧型のスイッチング素子によって構成することができる。スイッチング素子T2は、たとえばNチャネル型のMOSFET(Metal Oxide Field Effect Transistor)で構成される。
【0052】
スイッチング素子T2は、制御部14から供給される制御信号S2によってオンオフ動作する。スイッチング素子T2のオン期間中、一次巻線に入力電圧Vinが印加される。トランスTRは、一次巻線に供給される電力を二次巻線に伝達する。
【0053】
二次巻線の一方端はダイオードD5のアノードに接続され、他方端は出力端子7dに接続される。ダイオードD5のカソードは出力端子7cに接続される。出力端子7cおよび7dの間にはコンデンサC3が接続される。ダイオードD5およびコンデンサC3は、スイッチング素子T2のオフ期間中に二次巻線から放出されるエネルギを整流し、直流化する。これにより、DC/DCコンバータ12は、出力端子7cおよび7dの間に直流電圧を発生することができる。
【0054】
ここで、DC/DCコンバータ12の出力電圧をVoutとすると、DC/DCコンバータ12における電圧変換比はVout/Vinで表される。電圧変換比Vout/Vinは、トランスTRの一次巻線および二次巻線の巻数比と、スイッチング素子T2のデューティ比とによって決まる。スイッチング素子T2のデューティ比とは、スイッチング周期に対するスイッチング素子T2のオン期間の比である。
【0055】
制御部14は、スイッチング素子T2のデューティ比を制御することにより、スイッチング素子T2のオンオフを制御するための制御信号S2を生成する。制御部14は、たとえばマイクロコンピュータで構成される。
【0056】
図2に示すように、抵抗R2およびスイッチング素子T1は、自己給電回路7の入力端子7aおよび7bの間に電気的に直列に接続される。スイッチング素子T1は、たとえばNチャネル型のMOSFETで構成される。スイッチング素子T1は、ドレインが抵抗R2の一方端子に接続され、ソースが負極線NLに接続される。抵抗R2の他方端子は自己給電回路7の入力端子7aに接続される。
【0057】
スイッチング素子T1は、電源回路10の制御部14からゲートに入力される制御信号S1によってオンオフが制御される。具体的には、制御部14からH(論理ハイ)レベルの制御信号S1が入力されると、スイッチング素子T1がオンされ、抵抗R2がコンデンサC2と電気的に並列に接続される。一方、制御部14からL(論理ロー)レベルの制御信号S1が入力されると、スイッチング素子T1がオフされ、抵抗R2はコンデンサC2と電気的に切り離される。スイッチング素子T1は「第1のスイッチ」の一実施例に対応する。なお、第1のスイッチは、電源回路10によってオンオフを制御できれば、リレー等の他の種類のスイッチであってもよい。また、抵抗R2とスイッチング素子T1との接続順序を入れ換えても、電気的に等価な回路構成が形成される。
【0058】
電源回路10の制御部14は、後述するように、電圧検出器32により検出される入力電圧Vinに基づいて、スイッチング素子T1のオンオフを制御することにより、コンデンサC2の過充電を抑制するように構成される。スイッチング素子T1がオンのとき、抵抗R2は「過充電抑制抵抗」として機能し得る。
【0059】
(電源回路の制御構成)
次に、自己給電回路7における電源回路10の制御構成について説明する。以下では、電源回路10が有するコンデンサC2の過充電抑制機能について説明する。
【0060】
図4は、
図3に示した電源回路10の制御部14の制御構成を示すブロック図である。
図4を参照して、制御部14は、電圧制御部16と、過充電抑制回路18とを有する。
【0061】
電圧制御部16は、DC/DCコンバータ12を制御する。電圧制御部16は、スイッチング素子T2のデューティ比を制御する。電圧制御部16は、スイッチング素子T2のオンオフを制御するための制御信号S2を生成し、生成した制御信号S2をスイッチング素子T2のゲートへ出力する。
【0062】
過充電抑制回路18は、電圧検出器32により検出される入力電圧Vinに基づいて、スイッチング素子T1のオンオフを制御することにより、コンデンサC2の過充電を抑制するように構成される。具体的には、過充電抑制回路18は、比較器COM1を有する。比較器COM1は、電圧検出器32により検出された入力電圧Vinと予め定められた閾値VH,VLとを比較し、その比較結果を示す信号を出力する。比較器COM1の出力信号は、制御信号S1としてスイッチング素子T1のゲートに与えられる。
【0063】
より具体的には、比較器COM1において、閾値VHは閾値VLよりも高い電圧値に設定されている(VH>VL)。入力電圧Vinが閾値VHよりも大きい場合、比較器COM1はHレベルの制御信号S1を出力する。入力電圧Vinが閾値VLよりも小さい場合、比較器COM1はLレベルの制御信号S1を出力する。比較器COM1はヒステリシスを有している。閾値VHは「第1の閾値」に対応し、閾値VLは「第2の閾値」に対応する。
【0064】
このような構成とすることにより、入力電圧Vinが閾値VHよりも上昇すると、制御信号S1がLレベルからHレベルに遷移することによりスイッチング素子T1がオンされる。また、入力電圧Vinが閾値VLよりも低下すると、制御信号S1がHレベルからLレベルに遷移するため、スイッチング素子T1がオフされる。
【0065】
図5は、スイッチング素子T1がオフ状態のときの電流経路を模式的に示す図である。
図5を参照して、スイッチング素子T1がオフ状態のときには、抵抗R2(過充電抑制抵抗)がコンデンサC2から電気的に分離される。そのため、図中に破線矢印で示すように、直流コンデンサC1から抵抗R1(限流抵抗)を介してコンデンサC2に電流が流れる。抵抗R1の電気抵抗値をR1とすると、入力電流Iinは次式(1)で与えられる。
Iin=(VDC−Vin)/R1 …(1)
コンデンサC2の電圧(入力電圧Vin)は、電源回路10のDC/DCコンバータ12によって駆動回路8の駆動に必要な電圧に変換されて駆動回路8に供給される。
【0066】
ここで、セル5においては、主回路6の運転中に駆動回路8に安定的に電源を供給するために、主回路6から自己給電回路7に供給される電力が、自己給電回路7から駆動回路8に供給される電力よりも大きくなるように、電力の需給バランスが定められている。そのため、コンデンサC2では、直流コンデンサC1による充電電力が駆動回路8への放電電力を上回るために、入力電圧Vinが徐々に上昇する。コンデンサC2の過充電を抑制するため、過充電抑制回路18は、電圧検出器32により検出される入力電圧Vinが閾値VH(第1の閾値)よりも上昇すると、Hレベルの制御信号S1を出力してスイッチング素子T1をオンすることにより、抵抗R2(過充電抑制抵抗)をコンデンサC2と電気的に並列に接続する。
【0067】
図6は、スイッチング素子T1がオン状態のときの電流経路を模式的に示す図である。
図6を参照して、スイッチング素子T1をオンすることにより、図中に破線矢印で示すように、直流コンデンサC1から抵抗R1(限流抵抗)および抵抗R2(過充電抑制抵抗)を介して電流が流れる。
【0068】
コンデンサC2の電圧(入力電圧Vin)は、電源回路10のDC/DCコンバータ12によって駆動回路8の駆動に必要な電圧に変換されて駆動回路8に供給される。
【0069】
なお、抵抗R2の電気抵抗値R2は、抵抗R2の投入により抵抗R2に流れる電流が入力電流Iinよりも大きくなるように選定することで、コンデンサC2への電力供給が停止される。その一方で、コンデンサC2から抵抗R2に向けて、コンデンサC2に蓄積された電荷が逆流することになる。そこで、
図7に示すように、逆流防止用のダイオードD6をさらに設ける構成としてもよい。ダイオードD6は、アノードが抵抗R2の一方端子に電気的に接続され、カソードがコンデンサC2の一方端子に電気的に接続される。このようにすると、スイッチング素子T1がオンのときにも、自己給電回路7から駆動回路8に対して電源を安定して供給することができる。
【0070】
図6または
図7の状態において、入力電圧Vinが徐々に低下し、電圧検出器32による入力電圧Vinの検出値が閾値VLよりも低下すると、過充電抑制回路18は、Lレベルの制御信号S1を出力することによりスイッチング素子T1をオフさせる。これにより、
図5に示す電流経路が再び形成される。直流コンデンサC1による充電電力と駆動回路8への放電電力との差分である余剰電力によってコンデンサC2が再び充電されるため、入力電圧Vinが上昇に転じる。
【0071】
このように過充電抑制回路18は、電圧検出器32による入力電圧Vinの検出値に基づいて、
図5の状態(スイッチング素子T1がオン)と
図6の状態(スイッチング素子T1がオフ)とを交互に繰り返す。これにより、電源回路10は、コンデンサC2の過充電を抑制しながら、駆動回路8に対して電源を供給することができる。
【0072】
しかしながら、上記構成においては、抵抗R1(限流抵抗)が損傷し、その抵抗値が低下する事態が生じる場合がある。たとえば、抵抗R1が複数の抵抗素子の直列回路により構成されている場合、当該複数の抵抗素子のうちの少なくとも1つが短絡すると、直列回路全体の電気抵抗値が低下する。抵抗R1の電気抵抗値が低下すると、入力電流Iinが増大する。
【0073】
図8は、スイッチング素子T1がオフ状態のときの電流経路を模式的に示す図である。
図8を参照して、抵抗R1の故障により電気抵抗値R1が低下した場合には、式(1)に従って入力電流Iinが増大する。入力電流Iinが増大すると、入力電圧Vinの上昇速度が速くなる。そのため、
図5に比べて、入力電圧Vinはより短時間で閾値VHに達することになる。過充電抑制回路18は、電圧検出器32により検出される入力電圧Vinが閾値VHよりも上昇すると、スイッチング素子T1をオンさせる。
【0074】
図9は、スイッチング素子T1がオン状態のときの電流経路を模式的に示す図である。
図9を参照して、スイッチング素子T1をオンすると、直流コンデンサC1から抵抗R1,R2を介して電流が流れる。入力電流Iinが増大する。
【0075】
ただし、抵抗R1の電気抵抗値が低下しているため、抵抗R2を投入してもコンデンサC2の電圧が閾値VHよりも高くなることがある。この場合、スイッチング素子T1をオンした後も、引き続きコンデンサC2に電力が供給されるため、
図6に比べて入力電圧Vinの下降速度は遅くなり、結果的により長い時間で閾値VLに達することになる。
【0076】
過充電抑制回路18は、電圧検出器32による入力電圧Vinの検出値に基づいて、
図8の状態(スイッチング素子T1がオン)と
図9の状態(スイッチング素子T1がオフ)とを交互に繰り返す。これにより、抵抗R1が故障している状況においても、電源回路10は、コンデンサC2の過充電を抑制しながら、駆動回路8に電源を供給することができる。
【0077】
ただし、スイッチング素子T1がオンのときには(
図9参照)、抵抗R1の電気抵抗値が低下していることで、
図6に比べて、抵抗R2(過充電抑制抵抗)にはより大きな電流が流れることになる。抵抗R1の電気抵抗値が小さくなるほど、抵抗R2に流れる電流は大きくなる。そのため、抵抗R2で消費される電力も大きくなり、抵抗R2が過負荷状態に陥る可能性がある。
【0078】
なお、実際の設定では、抵抗R2で消費される損失および許容温度が規定される。本願明細書において、抵抗R2の過負荷状態とは、抵抗R2で消費される損失および抵抗R2の温度が、規定される損失および許容温度をそれぞれ超える状態をいう。過負荷状態が継続することにより、ジュール熱によって抵抗R2が過熱されて損傷する可能性がある。したがって、抵抗R2の過熱を防ぐためには、抵抗R2の過負荷状態を速やかに検知してセル5の運転を停止させる必要がある。
【0079】
ここで、抵抗R1が正常であるときと、抵抗R1が故障しているときとでは、入力電流Iinの大きさが異なることから、入力電圧Vinの時間的変化も異なる。その結果、過充電抑制回路18におけるスイッチング素子T1のオンオフ制御も異なることになる。
【0080】
そこで、本実施の形態においては、電源回路10は、過充電抑制回路18により生成されるスイッチング素子T1の制御信号S1に基づいて、抵抗R2(過充電抑制抵抗)の過負荷状態を検知するように構成される。具体的には、
図4を参照して、電源回路10の制御部14は、過負荷検知回路20をさらに有する。過負荷検知回路20は、低域通過フィルタ(LPF)22と、比較器COM2とを含む。
【0081】
LPF22は、たとえば容量素子および抵抗素子で構成される。LPF22は、過充電抑制回路18により生成された制御信号S1を平均化した信号S1♯を生成する。LPF22は「平滑回路」の一実施例に対応する。
【0082】
比較器COM2は、LPF22の出力信号S1♯と基準値REFとを比較する。比較器COM2は、信号S1♯と基準値REFとを比較し、その比較結果に従って検知信号OVLを生成する。具体的には、信号S1♯が基準値REFよりも大きい場合、比較器COM2はHレベルの検知信号OVLを生成する。一方、信号S1♯が基準値REFよりも小さい場合、比較器COM2はLレベルの検知信号OVLを生成する。
【0083】
以下、
図10および
図11を参照して、過負荷検知回路20の動作について説明する。
図10は、抵抗R1が正常であるときの過充電抑制回路18および過負荷検知回路20の動作を説明するためのタイミング図である。
図10には、入力電流Iin、入力電圧Vin、制御信号S1および、LPF22の出力信号S1♯の波形が示される。
【0084】
過充電抑制回路18は、電圧検出器32による入力電圧Vinの検出値と閾値VH,VLとを比較し、その比較結果に従って制御信号S1を生成する。制御信号S1は、入力電圧Vinが閾値VHよりも上昇するとHレベルに立ち上がり、かつ、入力電圧Vinが閾値VLよりも低下するとLレベルに立ち下がるパルス信号となる。
【0085】
なお、制御信号S1がHレベルの期間、すなわちスイッチング素子T1のオン時間をTonとし、オフ時間をToffとし、スイッチング素子T1のスイッチング周期をT(=Ton+Toff)とすると、スイッチング周期Tに対するオン時間Tonの比(Ton/T)は、制御信号S1のデューティ比DRに相当する。
【0086】
制御信号S1を平均化した信号S1♯は、リップルを含んだ波形となり、その平均値は制御信号S1の振幅にデューティ比DRを乗じた大きさとなる。以下の説明では、簡単のため、制御信号S1の振幅を「1」とする。すなわち、信号S1♯の大きさは制御信号S1のデューティ比DRに等しくなる。
【0087】
図11は、抵抗R1が故障しているときの過充電抑制回路18および過負荷検知回路20の動作を説明するためのタイミング図である。
図11には、入力電流Iin、入力電圧Vin、制御信号S1および、LPF22の出力信号S1♯の波形が示される。
【0088】
図10と同様に、
図11においても、制御信号S1はパルス信号となる。ただし、
図11では、制御信号S1のデューティ比DRが、
図10における制御信号S1のデューティ比DRとは異なる。
【0089】
図8で説明したように、抵抗R1が故障して電気抵抗値が低下している場合には、入力電流Iinが増大するため、制御信号S1がLレベルのとき(スイッチング素子T1がオフのとき)、入力電圧Vinの上昇速度は速くなる。そのため、
図10に比べて入力電圧Vinはより短時間で閾値VHに達することになり、結果的に制御信号S1がLレベルの期間、すなわちスイッチング素子T1のオフ時間Toffが短くなる。
【0090】
また、
図9で説明したように、制御信号S1がHレベルのとき(スイッチング素子T1がオンのとき)には、コンデンサC2に電力が供給され続けるため、入力電圧Vinの下降速度は遅くなる。そのため、
図10に比べて入力電圧Vinがより長い時間で閾値VLに達することになり、結果的に制御信号S1がHレベルの期間、すなわちスイッチング素子T1のオン時間Tonが長くなる。
【0091】
このように抵抗R1の故障時には、抵抗R1の正常時に比べて、制御信号S1において、オフ時間Toffが短くなるとともにオン時間Tonが長くなる。このため、
図10の制御信号S1のデューティ比DRに比べて、制御信号S1のデューティ比DRが大きくなる傾向が現れる。この結果、制御信号S1を平均化した信号S1♯も、
図10の信号S1♯に比べて大きくなる。
【0092】
これによると、抵抗R1が正常であるときの信号S1♯よりも大きく、抵抗R1が故障しているときの信号S1♯よりも小さくなるように基準値REFを設定すれば、信号S1♯と基準値REFとを比較することにより、抵抗R2の過負荷状態を検知することができる。したがって、基準値REFは、抵抗R1が正常であるときの制御信号S1のデューティ比DRよりも大きく、抵抗R1が故障しているときの制御信号S1のデューティ比DRよりも小さいデューティ比に対応して設定される。
【0093】
図10の例では、信号S1♯が基準値REFよりも小さい、すなわち、制御信号S1のデューティ比DRが基準値REFよりも小さいため、過負荷検知回路20は抵抗R2が過負荷状態でないと判断してLレベルの検知信号OVLを出力する。
【0094】
これに対して、
図11の例では、信号S1♯が基準値REFよりも大きい、言い換えれば、制御信号S1のデューティ比DRが基準値REFよりも大きいため、過負荷検知回路20は抵抗R2が過負荷状態であると判断してHレベルの検知信号OVLを出力する。
【0095】
図4に戻って、過負荷検知回路20は、抵抗R2の過負荷状態を検知すると、Hレベルの検知信号OVLを生成して駆動回路8へ出力する。駆動回路8は、ゲートドライバ24と、SWドライバ26と、I/F(インターフェイス)回路28とを含む。
【0096】
I/F回路28は、図示しない光ファイバケーブルを介して制御装置3と通信する。I/F回路28は、制御装置3から、主回路6のフルブリッジ回路を制御するためのゲート信号GCを受信する。I/F回路28はさらに、制御装置3から、フルブリッジ回路を構成するスイッチング素子Q1〜Q4のスイッチング動作を停止(すべてオフ)するためのゲート遮断信号GBを受信する。I/F回路28は、受信したゲート信号GCおよびゲート遮断信号GBをゲートドライバ24へ出力する。
【0097】
ゲートドライバ24は、ゲート信号GCに応答してスイッチング素子Q1〜Q4のオンオフを制御する。または、ゲートドライバ24は、ゲート遮断信号GBに応答して、スイッチング素子Q1〜Q4をオフに固定された状態(停止状態)とする。
【0098】
SWドライバ26は、スイッチSWのオンオフを制御するための回路である。SWドライバ26は、制御装置3からのオン指令に応答してスイッチSWの励磁コイル9(
図2参照)への通電を制御する。励磁コイル9は非通電時にスイッチSWをオフするように設けられている。通常動作時、励磁コイル9の通電が停止されているため、スイッチSWはオフされる。一方、制御装置3は、複数のセル5のうちのいずれかのセル5において異常を検知した場合には、この異常のセル5に向けてオン指令を出力する。故障したセル5では、I/F回路28がオン指令を受信してSWドライバ26へ出力する。オン指令に応答して励磁コイル9が通電されることによりスイッチSWがオンされ、故障したセル5の出力が短絡される。
【0099】
I/F回路28は、過負荷検知回路20からHレベルの検知信号OVLを受けると、検知信号OVLをSWドライバ26およびゲートドライバ24へ出力する。SWドライバ26は、Hレベルの検知信号OVLを受けると、スイッチSWをオンすることにより、自己のセル5をバイパスさせる。ゲートドライバ24は、Hレベルの検知信号OVLを受けると、主回路6のフルブリッジ回路のゲート信号を遮断することにより、スイッチング素子Q1〜Q4をオフ状態に固定する。
【0100】
図12は、自己給電回路7における電源回路10の制御処理を説明するためのフローチャートである。
図12に示される制御処理を電源回路10が実行することにより、各セル5では上述したコンデンサC2の過充電抑制機能および抵抗R2の過負荷検知機能が実現される。
【0101】
図12を参照して、電源回路10は、ステップS01により、電圧検出器32による入力電圧Vinの検出値を取得すると、ステップS02により、入力電圧Vinの検出値が閾値VH(第1の閾値)よりも大きいか否かを判定する。入力電圧Vinの検出値が閾値VHより大きい場合(S02のYES判定時)、電源回路10は、ステップS03により、Hレベルの制御信号S1を生成する。これにより、ステップS04では、スイッチング素子T1がオンされ、
図6に示した電流経路が形成される。
【0102】
一方、入力電圧Vinの検出値が閾値VH以下である場合(S02のNO判定時)には、電源回路10はさらにステップS09により、入力電圧Vinの検出値が閾値VL(第2の閾値)より小さいか否かを判定する。入力電圧Vinの検出値が閾値VL以上である場合(S09のNO判定時)、電源回路10は、ステップS03に進み、Hレベルの制御信号S1を生成する。したがって、ステップS04により、スイッチング素子T1がオンされる。
【0103】
これに対して、入力電圧Vinの検出値が閾値VLより小さい場合(S09のYES判定時)、電源回路10は、ステップS10により、Lレベルの制御信号S1を生成する。これにより、ステップS11では、スイッチング素子T1がオンされ、
図5に示した電流経路が形成される。
【0104】
次に、電源回路10は、ステップS05に進み、平滑回路(LPF22)を用いて、制御信号S1を平均化した信号S1♯を生成する。電源回路10は、ステップS06により、信号S1♯と基準値REFとを比較する。
【0105】
信号S1♯が基準値REFよりも大きい場合(S06のYES判定時)、電源回路10は、抵抗R2は過負荷状態であると判断してHレベルの検知信号OVLを生成する。駆動回路8は、電源回路10からHレベルの検知信号OVLを受けると、ステップS07により、スイッチSWをオンすることにより、自己のセル5をバイパスさせる。駆動回路8は、主回路6のフルブリッジ回路のゲート信号を遮断することにより、スイッチング素子Q1〜Q4をオフ状態に固定する。
【0106】
このように本実施の形態に従う電力変換装置によれば、各セル5は、主回路6の直流コンデンサC1から駆動回路8に電源を供給する自己給電回路7を有する。この自己給電回路7は、直流コンデンサC1の端子間に抵抗R1(限流抵抗)と電気的に直列に接続されたコンデンサC2を有しており、コンデンサC2の電圧(入力電圧Vin)を駆動回路8の電源電圧に変換するように構成される。コンデンサC2の端子間には、抵抗R2(過充電抑制抵抗)およびスイッチング素子T1(第1のスイッチ)が電気的に直列に接続されており、自己給電回路7は、コンデンサC2の電圧の検出値に基づいてスイッチング素子T1のオンオフを制御することにより、コンデンサC2の過充電を抑制するように構成される。自己給電回路7はさらに、スイッチング素子T1のオンオフを制御するための制御信号S1に基づいて、抵抗R2の過負荷状態を検知するように構成される。
【0107】
これによると、コンデンサC2の過充電を抑制するための抵抗R2に直列接続されたスイッチング素子T1のオンオフを制御するための制御信号S1を用いて、抵抗R2の過負荷状態を検知することができる。したがって、抵抗R1の故障の発生などによって抵抗R2が過熱されて損傷することを防止することができる。
【0108】
さらに、制御信号S1を利用して抵抗R2の過負荷状態を検知できるため、抵抗R2の温度を検知するための温度センサ等を必要とせず、簡易な構成で信頼性の高い電力変換装置を実現することができる。
【0109】
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。