特許第6836162号(P6836162)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 大同特殊鋼株式会社の特許一覧

<>
  • 特許6836162-冷却処理方法 図000004
  • 特許6836162-冷却処理方法 図000005
  • 特許6836162-冷却処理方法 図000006
  • 特許6836162-冷却処理方法 図000007
  • 特許6836162-冷却処理方法 図000008
  • 特許6836162-冷却処理方法 図000009
  • 特許6836162-冷却処理方法 図000010
  • 特許6836162-冷却処理方法 図000011
  • 特許6836162-冷却処理方法 図000012
  • 特許6836162-冷却処理方法 図000013
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6836162
(24)【登録日】2021年2月9日
(45)【発行日】2021年2月24日
(54)【発明の名称】冷却処理方法
(51)【国際特許分類】
   C21D 1/00 20060101AFI20210215BHJP
   C21D 9/00 20060101ALI20210215BHJP
   C21D 1/18 20060101ALI20210215BHJP
【FI】
   C21D1/00 119
   C21D9/00 M
   C21D1/18 X
   C21D1/18 E
【請求項の数】5
【全頁数】15
(21)【出願番号】特願2017-42233(P2017-42233)
(22)【出願日】2017年3月6日
(65)【公開番号】特開2018-145483(P2018-145483A)
(43)【公開日】2018年9月20日
【審査請求日】2020年1月27日
(73)【特許権者】
【識別番号】000003713
【氏名又は名称】大同特殊鋼株式会社
(74)【代理人】
【識別番号】100076473
【弁理士】
【氏名又は名称】飯田 昭夫
(74)【代理人】
【識別番号】100112900
【弁理士】
【氏名又は名称】江間 路子
(74)【代理人】
【識別番号】100198247
【弁理士】
【氏名又は名称】並河 伊佐夫
(72)【発明者】
【氏名】宇野 聡
(72)【発明者】
【氏名】清水 崇行
【審査官】 河野 一夫
(56)【参考文献】
【文献】 特開2007−023335(JP,A)
【文献】 特開2014−237886(JP,A)
【文献】 特表2003−531958(JP,A)
【文献】 実開昭58−135461(JP,U)
【文献】 特開2017−171956(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C21D 1/00
C21D 1/18
C21D 9/00
(57)【特許請求の範囲】
【請求項1】
凹凸形状を有する成形面と、該成形面と一対をなす平坦な背面とを備え且つ重量が150kg以上400kg未満の被処理物を冷却処理する方法であって、
加熱された該被処理物を冷却する際、前記背面に対する冷却を、前記成形面に対する冷却よりも強として、
前記成形面の熱伝達係数に対する前記背面の熱伝達係数の比である熱伝達係数比が、800℃において、1.1以上5以下となる冷却条件で冷却を行ない、冷却処理による歪みを抑制するようになしたことを特徴とする冷却処理方法。
【請求項2】
凹凸形状を有する成形面と、該成形面と一対をなす平坦な背面とを備え且つ重量が400kg以上の被処理物を冷却処理する方法であって、
加熱された該被処理物を冷却する際、前記背面に対する冷却を、前記成形面に対する冷却よりも強として、
前記成形面の熱伝達係数に対する前記背面の熱伝達係数の比である熱伝達係数比が、800℃において、1.12以上1.3以下となる冷却条件で冷却を行ない、冷却処理による歪みを抑制するようになしたことを特徴とする冷却処理方法。
【請求項3】
前記被処理物の中心部における最遅冷却部位にて、1000℃から500℃までの平均冷却速度が15℃/分よりも遅いことを特徴とする請求項1,2の何れかに記載の冷却処理方法。
【請求項4】
前記被処理物を放冷により冷却するとともに、該被処理物の背面に対して衝風冷却を行うことを特徴とする請求項1〜3の何れかに記載の冷却処理方法。
【請求項5】
該被処理物の表面の温度分布を検知する温度検知手段と、
吐出口から冷却用ガスを吐出させて該被処理物の表面を冷却する冷却手段と、
該冷却手段を位置移動可能に保持する移動手段と、を備えた冷却処理設備を用いて、
前記被処理物の背面側における最遅冷却部位の近傍に前記冷却手段を移動させて、該最遅冷却部位の局所冷却を行うことを特徴とする請求項1〜3の何れかに記載の冷却処理方法。
【発明の詳細な説明】
【技術分野】
【0001】
この発明は、金型等の被処理物を焼入れする際の冷却処理に適用される冷却処理方法に関する。
【背景技術】
【0002】
普通鋼、特殊鋼などからなる被処理物を焼入れすると、歪みが発生することが知られている。金型に代表されるような特に大きな被処理物の場合、歪み、すなわち反りや変形が大きくなるため、これらを修正するための加工シロを大きくしなければならず、加工費や加工時間の増加を招いている。
ここで、焼入れ性に優れる工具鋼等は、焼入れ冷却時に急冷しなくても必要な焼入れ硬さが得られるため、大きな被処理物については工具鋼等の焼入れ性に優れた素材を用いることが、低歪み化に有効であった。しかしながら、近年、更なる低歪み化が要求されるようになり、工具鋼等を用いて焼入れ冷却速度を遅くする従来の熱処理方法では、十分な低歪み化が達成できなくなってきた。
【0003】
尚、下記特許文献1では、焼入れする際の冷却処理において、金型の成形面と背面とで熱伝達係数を異ならせる点が開示されているが、この特許文献1に記載のものは、成形面を背面よりも早く冷却するものであり、本発明とは別異のものである。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2015−178643号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
本発明は以上のような事情を背景とし、金型等の被処理物を焼入れした際の歪みを良好に抑制することが可能な冷却処理方法を提供することを目的としてなされたものである。
【課題を解決するための手段】
【0006】
而して本発明の請求項1は、凹凸形状を有する成形面と、該成形面と一対をなす平坦な背面とを備え且つ重量が150kg以上400kg未満の被処理物を冷却処理する方法であって、
加熱された該被処理物を冷却する際、前記背面に対する冷却を、前記成形面に対する冷却よりも強として、
前記成形面の熱伝達係数に対する前記背面の熱伝達係数の比である熱伝達係数比が、800℃において、1.1以上5以下となる冷却条件で冷却を行ない、冷却処理による歪みを抑制するようになしたことを特徴とする。
【0007】
本発明の冷却処理方法は、15℃/分より遅い冷却速度でも焼入可能な、Crを3〜8%含有する熱間工具鋼(SKD61,SKD61改良鋼等)に適用して特に好適である。
【0008】
凹凸を有する成形面と平坦な背面とを備える金型等の被処理物では、成形面と背面とでその表面積が異なるため、焼入れ加熱させた後の冷却処理の際、成形面からの抜熱量と背面からの抜熱量との差分に基づく冷却ムラが生じ、これが歪み発生の要因となっていた。抜熱量の差分の調整は、表面積の小さい背面に対する冷却を相対的に強とし、背面からの抜熱量を増大させることで可能となる。具体的には、抜熱量は表面積と熱伝達係数との積で表されることから、抜熱量の差分の調整は背面の熱伝達係数を大きくすることで実現される。
本発明者らが様々な金型形状及び冷却条件について評価した結果、成形面と背面の熱伝達係数の比(背面の熱伝達係数/成形面の熱伝達係数)が1.1以上となる冷却条件で、低歪みの効果が得られることを見出した。本発明は、このような知見に基づいてなされたものである。
【0009】
尚、熱伝達係数比が過度に大きすぎると、それまでとは逆方向に歪んでしまう。最適な熱伝達係数の比は、被処理物の重量や形状にも左右されるため、1.1以上の範囲で必要に応じて適宜最適な熱伝達係数比を採用することができる。被処理物の重量が150kg以上400kg未満の請求項1では熱伝達係数比を5以下とする。
【0010】
ここで熱伝達係数(W/(m2・k))とは、単位面積当り、単位時間当り且つ被処理物表面とその周りの雰囲気との温度差1℃当りに被処理物から雰囲気中に流れる熱移動量で、この熱伝達係数は被処理物に対する冷却の強弱の程度を表す。具体的には、被処理物に向けて送る冷却用ガスのガス量やガス圧力,雰囲気温度,被処理物の材質等、個々の冷却条件を総合したトータルの冷却の強弱の程度を表す。この熱伝達係数は、対象とする金型等の被処理物をセットし、冷却時の被処理物表面とその近傍雰囲気の温度変化を測定し、被処理物からどれだけ熱量が移動したかを知ることによって、予め実験的に求めておくことができる。熱伝達係数は、被処理物の温度によっても変化するため、本発明では被処理物の表面温度800℃での熱伝達係数で規定する。尚、温度測定は熱電対や放射温度計、赤外線カメラなどを用いることができる。
【0011】
ここで本発明では、被処理物の重量が400kg以上の場合、熱伝達係数比を1.12以上、1.3以下とする(請求項2)。
【0012】
本発明ではまた、前記被処理物の中心部における最遅冷却部位にて、1000℃から500℃までの平均冷却速度を15℃/分よりも遅くすることができる(請求項3)。被処理物の低歪み化を図るためには、被処理物の表面と中心部との温度差を小さくすることも重要である。平均冷却速度が15℃/分よりも速い場合には、被処理物の表面と中心部との温度差が大きくなり、大きな熱応力が発生し、低歪みが達成できないおそれが生じるため、本発明では、前記被処理物の中心部における最遅冷却部位を15℃/分よりも遅い冷却速度で冷却することが望ましい。
【0013】
ここで、被処理物の中心部における最遅冷却部位は、おおよそ被処理物の重心位置若しくはその近傍位置である。測温にあたっては、被処理物の重心位置若しくはその近傍位置に穴をあけ熱電対を用いて測定することができる。また、被処理物が金型等である場合には、予め金型に形成されている水冷用の穴、鋳抜きピン用の穴、押出しピン用の穴等の中から重心位置に近いものを選択し、かかる穴内に挿入した熱電対を使って測温し、これを中心部における最遅冷却部位の温度とすることも可能である。被処理物の中心部付近は冷却が最も遅い部位であるため、多少測温位置がずれていても冷却速度はほぼ同じだからである。
【0014】
一方、冷却速度が遅すぎると焼入れ性の良い工具鋼等であってもパーライト変態が発生し、金型等に必要な硬さが得られなくなってしまう。焼入れ性は被処理物の組成によって異なるため冷却速度で規定することは難しいが、少なくともパーライト変態の面積率が5%以下となる冷却速度以上で冷却することが必要である。この場合の最遅冷却部位での冷却速度は、およそ2℃/分〜8℃/分以上に該当する。
【0015】
本発明では、成形面及び背面の熱伝達係数に1.1倍以上の差を与えられれば、その冷却手段には依存しない。例えば、被処理物の背面側に対して水やアルコール類等の液体やそのミストを直接噴射して背面の冷却を強とすることが可能である。また被処理物の成形面に保温材を当てるなどの手段を用いて、成形面の冷却を弱(即ち、背面の冷却を相対的に強)とする場合であっても、熱伝達係数比が同じであれば同様の低歪みの効果を得ることができるが、本発明では、被処理物を放冷により冷却するとともに、被処理物の背面に対して衝風冷却を行うことができる(請求項4)。この場合、冷却用のガスとして、窒素ガス、アルゴンガス、ヘリウムガス、大気などを用いることができる。
【0016】
本発明ではまた、被処理物の表面の温度分布を検知する温度検知手段と、吐出口から冷却用ガスを吐出させて被処理物の表面を冷却する冷却手段と、冷却手段を位置移動可能に保持する移動手段と、を備えた冷却処理設備を用いて、被処理物の背面側の表面における最遅冷却部位の近傍に冷却手段を移動させて、最遅冷却部位の局所冷却を行うことができる(請求項5)。このようにすれば、温度検知手段により得られた被処理物の背面の温度分布に基づいて特定された背面側の最遅冷却部位、即ち冷却速度が最も遅い部位に対して冷却用ガスを吐出させることで、背面での温度分布のばらつきを抑えるとともに、背面の冷却速度を速めて、所定の熱伝達係数比を得ることができる。
尚、局所冷却を行うと被処理物の背面内で熱伝達係数が変化する。本発明において熱伝達係数比を求める際は、局所冷却中の被処理物の背面内で最も冷却が遅い箇所の熱伝達係数を背面の熱伝達係数とする。
【発明の効果】
【0017】
以上のような本発明によれば、金型等の被処理物を焼入れした際の歪みを良好に抑制することが可能な冷却処理方法を提供することができる。
【図面の簡単な説明】
【0018】
図1】本発明の一実施形態の冷却処理方法に用いられる冷却処理設備の全体構成を示した図である。
図2図1の可動アームの先端部を拡大して示した図である。
図3図2の可動アームの先端部を回転させた場合の回転前後の状態を示した図である。
図4】歪み測定に用いるレーザ光の色と、測定精度との関係を示した図である。
図5】冷却処理設備における冷却動作の一例を説明するための図である。
図6】同実施形態の冷却処理方法にて冷却される金型を示した図である。
図7】平面度の測定方法を説明するための図である。
図8図6の金型を冷却した場合の熱伝達係数比と平面度との関係を示した図である。
図9】同実施形態の冷却処理方法にて冷却される図6とは異なる金型を示した図である。
図10図9の金型を冷却した場合の熱伝達係数比と平面度との関係を示した図である。
【発明を実施するための形態】
【0019】
次に本発明の実施形態を図面に基づいて詳しく説明する。図1は、本実施形態の冷却処理方法にて用いられる冷却処理設備10の全体構成を示した図である。図1において、12は被処理物としての金型で、図示を省略した加熱室にて焼入れ温度にまで加熱された後にクレーン等によってセット治具14上に載置される。20は後述する局所冷却用のノズル22が取り付けられたロボット、24は金型12の前方に位置し、金型12表面の温度分布を検知する温度検知手段としての赤外線カメラである。
またこの冷却処理設備10では、図1(A)中左側に圧縮エアを生成・貯留するための一連の装置であるコンプレッサ26、ドライヤ27、エアタンク28を有している。更にこの冷却処理設備10では、設備の動作制御を行う制御部30を有している。
【0020】
金型12は、工具鋼(SKD61)から成り、凹凸形状を有し表面積が大きい成形面(意匠面)12aと、この成形面12aとは反対側に位置する平坦な背面12bを備えており、本例では背面12bを前方(ロボット20及び赤外線カメラ24が配されている側)に向けた状態で、金型12がセット治具14上に載置されている。
尚、金型12に用いられる鋼種は特に限定されるものではなく、焼入れ性に優れた特殊鋼を適宜採用することが可能である。また金型のサイズについても特に限定されるものではないが、焼入れの冷却過程で冷却ムラが生じ易い重量150kg以上のものにおいて、本発明は特に有効である。
【0021】
赤外線カメラ24は、金型12の背面12b全体が検知範囲に含まれるようにその位置が設定されており、金型12の背面12bの温度分布を検知するとともに、金型12の背面12bの最遅冷却部位(最高温度部位)を特定し、且つ、最遅冷却部位の温度を検知する。そして赤外線カメラ24による温度検知の結果は制御部30へと送られる。制御部30は、その検知結果に基づいて金型12に対する冷却条件を制御する。尚、更に金型12の赤外線カメラ24とは反対側に、成形面12aの温度分布を検知する赤外線カメラ25を設けておくことも可能である。
【0022】
ロボット20は、架台32上に固定された基部34と、そこから延びる可動アーム36を有している。可動アーム36は回転又は屈曲する複数の関節部を有し、可動アーム36の先端部38は図1中2点鎖線で示す可動範囲内を上下、左右、及び前後方向に、即ち3次元方向に移動可能とされている。そしてその先端部38には金型12を局所冷却するためのノズル22が取り付けられている。
尚、焼入れ温度にまで加熱された直後の金型12は非常に高温となる。本例では金型12からの放射熱の影響がロボット20全体に及ぶのを防止するため、金型12の正面からずれた位置にロボット20が設置されている。
【0023】
図2は、可動アーム36の先端部38を拡大して示した図である。同図で示すように先端部38は、関節軸Pを中心に可動アーム36の根元側に対し回転可能に連結されている。そして先端部38の、関節軸Pとは反対側に位置する取付部材40には、箱状の熱遮蔽体42が取付ボルト44により取付固定されている。
【0024】
熱遮蔽体42は、可動アーム36側の取付部材40に直接固定される被固定部42aと、この被固定部42aに直交する状態で固定されている平板状の基体42bと、基体42b上の一方の面を覆うように基体42bに固定された蓋体42cと、を備え、全体として上下、左右、及び前後の各方向に熱遮蔽用の壁が形成された箱形状を成している。熱遮蔽体42は、金型12から可動アーム36の先端部38に向かって放射される熱を遮蔽して、内部に収納されているセンサ等を保護する。
【0025】
46は、金型12の表面の歪みを測定するために用いるレーザ式の変位検出センサで、熱遮蔽体42の内部に収納された状態で、断面T字状のブラケット47を介して基体42bの内面に固定されている。図2(A)及び(B)で示すように、センサ46は、関節軸Pから最も離間した(図中左側の)位置、即ち金型12の表面に対して最も接近可能な位置にある熱遮蔽体42の第1の壁面48の近傍に配設されている。第1の壁面48には開口51が形成され、そこに耐熱ガラス52が嵌め込まれており、センサ46の発光部46aから発せらせた検出用のレーザ光は開口51を通じて外部に向けて出射され、対象物である金型12表面にて反射した後、同じく開口51を通じて、受光部46bにて受光される。受光された反射光は受光部46b内の光位置検出素子上で結像され、その結像位置に基づいて、金型12表面までの高さ方向の変位量が計測される。
本例ではセンサ46、熱遮蔽体42及びこれらを移動可能に保持している可動アーム36により非接触式の歪測定装置11が構成されている。
【0026】
本例では、センサ46を用いて焼入れ温度まで加熱された高温状態の金型12の表面の変位量(歪み量)を測定するため、センサ46から出射されるレーザ光が赤色だと、金型12自体の赤熱の影響を受け易い。従って本例のセンサ46では、波長が350〜450nmの青色レーザ光を用いている。
【0027】
図4は、レーザ式変位センサ46から出射されるレーザ光が赤色の場合(同図(B))及び青色(波長が350〜450nm)の場合(同図(C))での測定精度を示した図である。これら図4(B)及び(C)で示した測定結果は、図4(A)で示す300mm×300mm×300mmのブロック13の中心付近に10mm×10mm×高さ1mmの段差を作成し、このブロック13を800℃に加熱した状態でその段差を測定した結果である。詳しくはこの1mmの段差を10回測定し、10回の平均値及び平均値との差が一番大きい測定値を誤差棒としてプロットしたものである。測定はブロック13とセンサ46との測定距離を逐次変化させながら行っている。
【0028】
図4(B)で示すように赤色レーザの場合、ブロック13の赤熱の影響を受け、1mmの段差をまともに測定することができない。一方、青色レーザの場合は、図4(C)で示すように測定距離(ブロック13とセンサ46との距離)が近いほど正確に段差を測定できている。金型の歪み測定では、繰り返し精度0.2mm以内が必要とされるが、図4で示した結果によれば青色レーザであれば測定距離を500mm以下とすることで、繰り返し精度0.2mm以内、即ち段差1mmに対し、±0.1mmの誤差範囲以内で測定することが可能であることが分かる。
【0029】
但し金型12は非常な高温であるため、測定距離(図3(A)のL1)を500mm以下とすると熱遮蔽体42内部のセンサ46の温度が動作保証範囲を超える場合がある。このため本例では、図2で示すように熱遮蔽体42の被固定部42aに、熱遮蔽体42の内部に冷却用の圧縮エアを導入するための導入口54が設けられている。この導入口54を通じて、図示を省略する流量調節バルブを介してエアタンク28と連結された配管55の先端が、熱遮蔽体42の内部に挿入されており、本例では制御部30の制御に基づいて導入口54からエアタンク28内の圧縮エアが熱遮蔽体42の内部に供給される。尚、基体42bには排気口58が外部と連通する状態で形成されており、熱遮蔽体42の内部に導入された圧縮エアは排気口58を通じて外部に排出される。
このように本例では、圧縮エアが熱遮蔽体42の内部を流通する構成とすることで、センサ46が高温(具体的には50℃以上)になるのを防止している。尚、歪み測定の際にセンサ46と金型12との間に位置して遮熱を行う第1の壁面48に水冷機構部を設けることで、センサ46が高温になるのを防止することも可能である。
【0030】
一方、金型12を局所冷却するためのノズル22は、図2(A)で示すように熱遮蔽体42の被固定部42aの内側にブラケット60を介して取付固定されており、その先端の吐出口22aは、熱遮蔽体42内のセンサ46が近接配置されている第1の壁面48とは異なる第2の壁面49から外方に向けて突出している。
このノズル22は、図示を省略する流量調節バルブを介してエアタンク28と連結されており、制御部30の制御に基づいてノズル22の吐出口22aからは、金型を局所冷却のための冷却用ガスとして、圧縮エアが吐出される。
【0031】
以上のように冷却処理設備10では、熱遮蔽体42の第1の壁面48とは異なる第2の壁面49から、冷却用ガスが吐出されるようにノズル22の吐出口22aが設けられており、先端部38を関節軸P周りに回転させることで、歪み測定と局所冷却との切替を行なう。即ち、金型12の歪み測定を行う場合には図3(A)で示すように、熱遮蔽体42の第1の壁面48を金型12の表面に対向させる。また金型12の局所冷却を行う場合には図3(B)で示すように熱遮蔽体42の第2の壁面49を金型12の表面に対向させる。
【0032】
次に、本実施形態の冷却処理設備10を用いて冷却処理を行った場合の動作の一例を説明する。尚、この例では、SKD61から成り、幅600mm×高さ600mm×厚み150mmの金型12における最遅冷却部位での冷却速度が10℃/minとなるように冷却処理を行うものとする。
図1で示すように先ず、金型12は図示を省略した加熱室にて焼入れ温度にまで加熱された後にクレーン等によってセット治具14上に載置される。
そして金型12は大気中で放冷される。これとともに赤外線カメラ24が金型12表面の温度分布を検知する。そしてその温度分布の検知結果に基づいて金型12表面の最遅冷却部位が特定される。制御部30は最遅冷却部位の位置情報(X,Y座標)をロボット20に出力する。
【0033】
ロボット20は、図3(B)で示すように、可動アーム36の先端部38に取り付けられたノズル22の吐出口22aを、特定された最遅冷却部位のポイントGに位置移動させる。そして最遅冷却部位のポイントGの上方L2の距離(ここでは300mm)から冷却用の圧縮エアを最遅冷却部位に向けて吹き付け、最遅冷却部位(若しくは最遅冷却部位及びその周辺部)を局所的に冷却する。
【0034】
この例では、最遅冷却部位が600℃になるまでこの冷却動作を継続させる。図5の1点鎖線で示すように、制御部30は、冷却動作を開始してからの予定表面温度の推移、即ち冷却速度(本例では10℃/min)が予め設定されており、赤外線カメラ24の監視により随時特定される最遅冷却部位にノズル22の吐出口22aを位置移動させながら、その検知温度と予定表面温度との差分に基づいて、冷却条件を制御する。
詳しくは、最遅冷却部位の検知温度が図5に示した予定表面温度を上回っている場合には局部冷却用の圧縮エアの量を増加させ、検知温度が予定表面温度を下回っている場合には局部冷却用の圧縮エアの量を減少させる。このようにすることで冷却処理の対象となった背面12bにおける最遅冷却部位を、予定していた冷却速度若しくはこれに近似する冷却速度で冷却することができる。
尚、最遅冷却部位の検知温度が600℃を下回った以降についても予め設定された予定表面温度の推移と一致するように引き続き冷却処理を行うことも可能である。また場合によっては最遅冷却部位の検知温度が600℃以下の所定温度となった時点で、油冷に切り替えて引き続き冷却処理を行うことも可能である。
【0035】
次に、図6に示す重量190kgの金型70(SKD6、500mm×450mm×180mm)に対して、熱伝達係数比が異なる冷却処理を行い、冷却処理後の金型70についてパーライト面積率及び背面の平面度を評価した結果を下記表1に示している。
【0036】
【表1】
【0037】
評価に際しては、熱処理前において、予め金型70の背面の平面度が0.02mm以下であることを確認したのち、加熱炉において、1030℃まで加熱・保持し、その後、加熱炉から取り出して金型70を放冷するとともに、金型70の背面70b若しくは成形面70aに対し冷却処理設備10を用いて衝風冷却を実施した。
詳しくは、比較例1,2については、成形面70aに対し衝風冷却を実施し、成形面70aに対する冷却を強とした。実施例1〜5及び比較例4〜13については、背面70bに対し衝風冷却を実施し、背面70bに対する冷却を強とした。これらの実施例及び比較例では、衝風冷却の風量を変化させることで熱伝達係数比の値を変化させている。尚、比較例3については、放冷のみで冷却を行っている。
【0038】
衝風冷却中の金型70の表面温度は、赤外線カメラ24、25で計測した。また金型70内部(重心近傍位置)にΦ3の穴明け後、熱電対を挿入し、金型70内部の温度を測定した。そして冷却処理終了後、パーライト面積率及び金型70の背面70bの平面度を測定した。
【0039】
<熱伝達係数比>
各冷却処理条件に対応する熱伝達係数は、以下のようにして求めることができる。先ず金型70と同じ鋼種で作製した200mm×200mm×100mmの試験片を作製し、試験片の一方の表面の中央から2mmの深さと、試験片の重心位置の深さにそれぞれ熱電対を埋設し、試験片の表面温度と金型内部温度(重心位置での温度)を測定可能としておく。また試験片の、温度測定される表面から20mm離れた雰囲気温度も熱電対にて測定可能としておく。
【0040】
この試験片を1030℃に加熱して1時間保持した後、熱伝達係数を求めたい冷却処理の方法と同じ方法で、試験片を500℃まで冷却するとともに、試験片の温度変化を熱電対にて測定する。次に、測定された温度変化が再現できるように、熱伝達係数を変化させながらシミュレーションを実施し、測定された温度変化が再現できればその熱伝達係数をその冷却処理方法における熱伝達係数とすることができる。本例では試験片の表面温度が800℃の時点での熱伝達係数をその表面の熱伝達係数とする。このようにして、各冷却処理方法における成形面の熱伝達係数及び背面の熱伝達係数を求め、(背面の熱伝達係数)/(成形面の熱伝達係数)で算出される値を熱伝達係数比とした。
【0041】
<最遅冷却部位の冷却速度>
表1に示す最遅冷却部位の冷却速度(℃/分)は、熱電対により測定された金型内部(重心近傍位置)での1000℃から500℃までの平均冷却速度である。
【0042】
<平面度>
平面度(mm)は、図7に示すように、測定したい平面(ここでは背面70b)に位置する2つの基準点kを結んだ直線mから、その直線mの直上に位置する背面70bの測定点pが直線mの垂直方向にどれだけずれているかを表すもので、背面70bの中で様々な2つの基準点kを設定したとき、最も大きな平面度となったものを、背面70bにおける平面度とした。ここでは平面度0.5mm以下を目標とする。
【0043】
<パーライト面積率>
金型70の最遅冷却部位(ここでは重心近傍位置)から、10×10×10mmの大きさの試験片を採取し、その1面を鏡面研磨した後、ピクリン酸や硝酸等を用いてエッチングを行なう。パーライト変態した箇所はエッチングにより黒く変色するため、黒く変色した領域の面積率(%)を求める。ここで、金型に要求される硬さが得られるようにパーライト面積率5%以下を目標とする。
【0044】
表1及び図8に示すように、金型70においては、冷却処理時の熱伝達係数比を異ならせることで平面度が変化する。熱伝達係数比が1未満の場合には金型70の背面側が凸となるような変形が生じ、また、熱伝達係数比が10に近い場合には背面側が凹となるような変形が生じ、それぞれ平面度が悪化する傾向が認められる。
この評価において、背面の平面度が優れているのは、熱伝達係数比が1.1〜5の範囲内である。成形面70aと背面70bとを同じ強さで冷却した場合(即ち、熱伝達係数比が1の場合)、その平面度は0.68mmであるのに対し、背面側の冷却能を高めて、熱伝達係数比を1.1〜5の範囲内とすることで、平面度を目標値である0.5mm以下とすることができる。
【0045】
また、表1で示す実施例及び比較例は、金型内部の最遅冷却部位における冷却速度が23℃/分以上と速く、パーライト面積率はいずれも0%であり、パーライトの発生は認められなかった。
【0046】
次に、図9に示す重量480kgの金型80(SKD61、幅660mm×高さ500mm×厚み220mm)を用いて、熱伝達係数比が異なる冷却処理を行い、最遅冷却部位のパーライト面積率及び背面の平面度を評価した結果を下記表2に示している。尚、評価の方法は、上記金型70の場合と同様である。
【0047】
【表2】
【0048】
表2及び図10に示すように、金型80においても、金型70の場合と同様に、熱伝達係数比が小さい場合に背面側が凸となるような変形が生じ、一方、熱伝達係数比が大きくなると背面側が凹となるような変形が生じ、それぞれ平面度が悪化する傾向が認められる。この評価において、背面の平面度が優れているのは、熱伝達係数比が1.1〜1.3の範囲内である。成形面80aと背面80bとを同じ強さで冷却した場合(即ち、熱伝達係数比が1の場合)、その平面度は0.6〜0.8mmであるのに対し、背面側の冷却能を高めて、熱伝達係数比を1.1〜1.3の範囲内とすることで、平面度を目標値である0.5mm以下とすることができる。このように、重量が異なる金型70と80のいずれにおいても、熱伝達係数比を1.1以上に大きくすることで、平面度が0.5mm以下の低歪みの金型を得ることができている。
【0049】
また、表2で示す実施例及び比較例は、金型内部の最遅冷却部位における冷却速度が9〜13℃/分で、パーライト面積率は、いずれも目標値である5%以下を満足している。
【0050】
以上のように本実施形態の冷却処理方法では、加熱された金型を冷却する際、背面に対する冷却を、成形面に対する冷却よりも強として、成形面の熱伝達係数に対する背面の熱伝達係数の比である熱伝達係数比が、800℃において、1.1以上となる冷却条件で冷却を行なうことで、平面度に優れた金型を得ることができる。
【0051】
本実施形態の冷却処理方法によれば、質量が400kg以上である金型80の場合、熱伝達係数比を1.1以上1.3以下とすることが低歪み化に有効であり、更に最遅冷却部位を15℃/分よりも遅い冷却速度で冷却した実施例6〜12において平面度0.5mm以下の金型が得られている。

【0052】
本発明ではまた、金型12の表面の温度分布を検知する赤外線カメラ24と、吐出口22aから冷却用ガスを吐出させて金型の表面を冷却するノズル22と、ノズル22を位置移動可能に保持する可動アーム36と、を備えた冷却処理設備10を用いて、金型12の背面12b側の表面における最遅冷却部位(最高温度部位)の近傍にノズル22を移動させて、最遅冷却部位の局所冷却が行われる。
この冷却処理設備10では、赤外線カメラ24により得られた金型12の背面12bの温度分布に基づいて特定された最遅冷却部位に対して冷却用ガスを吐出させるため、背面12bでの温度分布のばらつきが抑えられるとともに、背面12bの冷却速度が速められて、所定の熱伝達係数比を得ることができる。
【0053】
以上本発明の実施形態を詳述したがこれはあくまで一例示である。例えば被処理物として金型以外のものを用いることも可能である。また上記実施形態では背面側を衝風冷却することで所定の熱伝達係数比を得たが、他の方法を用いて所定の熱伝達係数比を得ることも可能である等、本発明はその趣旨を逸脱しない範囲において種々変更を加えた態様で実施可能である。
【符号の説明】
【0054】
10 冷却処理設備
12,70,80 金型(被処理物)
12a,70a,80a 成形面
12b,70b,80b 背面
22 ノズル(冷却手段)
22a 吐出口
24 赤外線カメラ(温度検知手段)
36 可動アーム(移動手段)
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10