【実施例】
【0023】
以下に、本願発明の最適実施例を示す。本願発明の実施に際しては、当業者の常識及び先行技術の開示に従い、実施例を適宜に変更できる。
【0024】
(正極板の作製)
Ca0.06質量%、Sn1.5質量%、Al0.02質量%以下、及び不可避不純物を含有するPb−Ca−Sn系合金から、厚さ3.8mmの正極格子を鋳造して正極集電体とした。なお、正極格子の合金組成、寸法、デザイン、および鋳造、エキスパンド、圧延シート打抜き等の製造方法は任意である。
ボールミル法による鉛粉99.9質量%と、合成樹脂繊維0.1質量%を、25℃で比重が1.16の硫酸を加えて正極ペーストとし、これを正極格子に充填して、熟成と乾燥を行い、正極格子と正極活物質からなる正極板を作製した。ペースト充填量は、化成後の正極/負極電極材料質量比が1.19〜1.56となるように調整した。正極活物質の密度等は任意である。
【0025】
(負極板の作製)
Ca0.06〜0.13質量%、Sn0〜0.9質量%、Al0.02質量%以下、及び不可避不純物を含有するPb−Ca−Sn系合金、又はPb-Ca系合金からなる厚さ1.9mmの負極格子を鋳造し、表1及び表2に示すNo.1〜90の電池に用いる負極集電体とした。なお、負極格子の寸法、デザイン等は任意である。
ボールミル法の鉛粉98.3質量%と、合成樹脂繊維0.1質量%、カーボンブラック0.1質量%、BaSO
41.4質量%、及びリグニン0.1質量%を、25℃で比重が1.14の硫酸を加えて負極ペーストとし、これを負極格子に充填して、熟成と乾燥を行い、負極格子と負極活物質からなる負極板を作製した。ペースト充填量は、化成後の正極/負極電極材料質量比が1.19〜1.56となるように調整した。負極活物質の密度等は任意である。
【0026】
(電池の組立)
正極板8枚と負極板9枚を、微細ガラスマットセパレータを介して積層して極板群とし、極板群の長さが電槽内寸法になるまで圧迫を加えて電槽内に収納した。足し鉛に純鉛を用いて、同極板間を接続する正極ストラップ、及び負極ストラップをそれぞれ形成した。なお、ストラップには、純鉛に限らず、Pb−Sn系合金を使用することができる。
電槽に蓋体を接着した後、蓋体の注液部から電解液として硫酸を加え、電槽化成を施して、正極/負極電極材料質量比が1.19〜1.56、定格容量200Ah、2Vの制御弁式鉛蓄電池を組み立てた。
【0027】
(加速試験)
作製したNo.1〜90の鉛蓄電池について、以下の加速試験を行った。
試験条件
(1)容量確認試験:25℃、0.2CA、終止電圧1.75V/セル
(2)回復充電:25℃、2.23V/セル定電圧充電(最大電流0.2CA)、48時間
(3)フロート充電:50℃、2.23V/セル×14日間
(4)放電深度5%放電:50℃、0.005CA×10時間
(5)フロート充電:50℃、2.23V/セル×14日間
上記(1)〜(5)の工程を繰り返し行い、(1)の工程で放電時間が4時間未満になる時点で終了する。
【0028】
(寿命判定)
上記(1)〜(5)の2サイクルを25℃での寿命1年と換算して、加速試験終了までの期間からフロート寿命を判定した。目標とするフロート寿命は25℃換算で13年とした。
【0029】
(負極腐食量)
加速試験終了後の電池を解体して取り出した負極ストラップと耳の溶接部の断面を金属顕微鏡で観察し、腐食層を除いた耳厚みを確認して、負極腐食量を下式を用いて算出した。
負極腐食量(%)=(耳初期厚み−試験後の腐食層を除いた耳厚み)/耳初期厚み×100
寿命年数及び負極腐食量の結果を表1、表2に示す。
【0030】
【表1】
【0031】
【表2】
【0032】
表1のNo.1〜18、No.19〜36、No.37〜54の電池は、種々の負極格子合金を用い、正極/負極電極材料質量比をそれぞれ1.27、1.39、及び1.51としたものであり、それぞれ
図3〜5に対応する。
【0033】
正極/負極電極材料質量比が1.39である電池(No.19〜36、
図4)は、負極格子の合金組成に関わらず、負極耳腐食量が大きく、フロート寿命は目標値である25℃換算13年に遙かに及ばない。
【0034】
正極/負極電極材料質量比が1.27である電池(No.1〜18、
図3)、及び1.51である電池(No.37〜54、
図5)において、負極格子の合金組成中、Caが0.06質量%又は0.13質量%である電池(No.1〜3、No.16〜18、No.37〜39、No.52〜54)、及びSnが0.9質量%である電池(No.7、11、15、43、47、51)は、負極耳腐食量が大きく、目標のフロート寿命を達成していない。
これに対して、正極/負極電極材料質量比が1.27及び1.51であり、負極格子の合金組成が、Ca:0.07〜0.12質量%、Sn:0〜0.75質量%を満たす電池(No.4〜6、8〜10、12〜14、40〜42、44〜46、48〜50)は、負極耳腐食量が小さく、25℃換算13年を上回る寿命性能を有している。
【0035】
表2は、負極格子の合金組成について、それぞれCaが0.07〜0.12質量%、Snが0〜0.75質量%であることを満たす5種類の電池(No.55〜60、No.61〜66、No.67〜72、No.73〜78、及びNo.79〜84)と、負極格子の合金組成中、Caが0.06質量%でSnが0.75質量%である電池(No.85〜90)において、それぞれ正極/負極電極材料質量比を1.19〜1.56の範囲で異ならせた結果(No.4、22、40、6、24、42、9、27、45、13、31、49、14、32、50、3、21、39を含む。)であり、
図6、7は、その結果をグラフ化したものである。
【0036】
Caが0.06質量%でSnが0.75質量%である電池(No.85〜90、
図6)は、いずれの正極/負極電極材料質量比であっても、負極耳腐食量が大きく、寿命年数が短いから、負極格子の合金組成が適正でないことが分かる。
前者の5種類の電池において、正極/負極電極材料質量比が1.43の場合(No.58、64、70、76、82)は、1.39の場合(No.22、24、27、31、32)と同じく、負極耳腐食量が大きく、寿命年数が短いから、正極/負極電極材料質量比が適正でないことがわかる。
正極/負極電極材料質量比が1.19の場合(No.55、61、67、73、79)は、いずれも負極耳腐食量は小さいが、25℃換算の寿命年数が13年を切っている。これは、正極活物質利用率が高いことにより、正極劣化が進んだことによるものである。
これに対して、前者の5種類の電池において、正極/負極電極材料質量比が1.32、1.35、1.47又は1.56の場合(No.56、57、59、60、62、63、65、66、68、69、71、72、74、75、77、78、80、81、83、84)は、正極/負極電極材料質量比が1.27又は1.51の場合(No.4、40、6、42、9、45、13、49、14、50)と同様に、負極耳腐食量が小さく、かつ、25℃換算の寿命年数13年以上を達成している。
【0037】
以上の結果から、負極格子又は負極耳の合金組成が、Caを0.07質量%以上0.12質量%以下、Snを0.75質量%以下含むPb−Ca−Sn系合金又はPb−Ca系合金であり、正極/負極電極材料質量比が1.27以上1.35以下、又は1.47以上である場合に、長寿命の制御弁式鉛蓄電池が得られることがわかる。
【0038】
なお、正極/負極電極材料質量比は、前述のように、正極格子に充填する正極ペーストと負極格子に充填する負極ペーストとの量比によって調整することができる。
市販の電池について、化成後の正極/負極電極材料質量比を確認するためには、電池に100%以上の充電をしてから解体して、正極板及び負極板を取り出し、正極電極材料、負極電極材料の質量を測定し、質量比を算出すればよい。また、できるだけ新品又は新品に近い電池で確認することが望ましい。