特許第6837036号(P6837036)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ サンパワー コーポレイションの特許一覧

特許6837036ベース拡散エリアを小さくした太陽電池および該製造方法
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6837036
(24)【登録日】2021年2月10日
(45)【発行日】2021年3月3日
(54)【発明の名称】ベース拡散エリアを小さくした太陽電池および該製造方法
(51)【国際特許分類】
   H01L 31/068 20120101AFI20210222BHJP
   H01L 31/0224 20060101ALI20210222BHJP
   H01L 31/0352 20060101ALI20210222BHJP
【FI】
   H01L31/06 300
   H01L31/04 260
   H01L31/04 340
【請求項の数】11
【全頁数】14
(21)【出願番号】特願2018-167275(P2018-167275)
(22)【出願日】2018年9月6日
(62)【分割の表示】特願2017-83513(P2017-83513)の分割
【原出願日】2007年6月6日
(65)【公開番号】特開2019-9460(P2019-9460A)
(43)【公開日】2019年1月17日
【審査請求日】2018年10月5日
(31)【優先権主張番号】11/492,282
(32)【優先日】2006年7月24日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】505379467
【氏名又は名称】サンパワー コーポレイション
(74)【代理人】
【識別番号】110000877
【氏名又は名称】龍華国際特許業務法人
(72)【発明者】
【氏名】デ・セウスター,デニス
(72)【発明者】
【氏名】カズンズ,ピーター,ジェイ
【審査官】 原 俊文
(56)【参考文献】
【文献】 特開2001−189481(JP,A)
【文献】 特開2002−124692(JP,A)
【文献】 特開昭57−102077(JP,A)
【文献】 特開昭57−164585(JP,A)
【文献】 特開平09−172196(JP,A)
【文献】 米国特許出願公開第2004/0200520(US,A1)
【文献】 特開2002−057352(JP,A)
【文献】 米国特許第4927770(US,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 31/00−31/20
IEEE Xplore
(57)【特許請求の範囲】
【請求項1】
太陽電池であって、
接合を形成する、第1拡散領域および第2拡散領域と、
前記第1拡散領域に電気的に結合された第1金属構造体および第2拡散領域に電気的に結合された第2金属構造体であって、前記第2金属構造体の一部が前記第1拡散領域上に延在している、第1金属構造体および第2金属構造体と、
前記第1拡散領域上に配置される第1絶縁体領域であって、前記第1金属構造体が、前記第1絶縁体領域内の開口を通して前記第1拡散領域に電気的に結合されている、第1絶縁体領域と、
前記第2拡散領域上に配置され、前記第1絶縁体領域と連続する第2絶縁体領域であって、前記第2金属構造体が、前記第2絶縁体領域内の開口を通して前記第2拡散領域に電気的に結合されている、第2絶縁体領域と、
前記第2金属構造体と前記第1拡散領域との間の第3絶縁体領域と、を含
前記第1拡散領域がエミッタ拡散領域であり、前記第2拡散領域がベース拡散領域であり、
前記エミッタ拡散領域が、2つまたは2つより多い別個のベース拡散領域を囲む連続的な層である、
太陽電池。
【請求項2】
前記第3絶縁体領域が、前記第1絶縁体領域上に配置されている、請求項1に記載の太陽電池。
【請求項3】
前記第3絶縁体領域が、前記第2絶縁体領域上に配置されている、請求項1または2に記載の太陽電池。
【請求項4】
前記第1拡散領域が、前記第2拡散領域と直接接触している、請求項1〜3のいずれか1項に記載の太陽電池。
【請求項5】
前記エミッタ拡散領域がホウ素でドープされており、前記ベース拡散領域がリンでドープされている、請求項1〜4のいずれか1項に記載の太陽電池。
【請求項6】
前記第3絶縁体領域がポリイミドを含む、請求項1〜のいずれか1項に記載の太陽電池。
【請求項7】
前記第3絶縁体領域が、前記接合の上に配置されている、請求項1〜のいずれか1項に記載の太陽電池。
【請求項8】
前記第3絶縁体領域が、前記第2金属構造体と前記第1拡散領域との間、及び前記第2金属構造体と前記第2拡散領域との間に配置されている、請求項1〜のいずれか1項に記載の太陽電池。
【請求項9】
前記第1拡散領域が、前記第2拡散領域の断面サイズよりも大きな断面サイズを有する、請求項1〜のいずれか1項に記載の太陽電池。
【請求項10】
太陽電池を製造する方法であって、
第1拡散領域および第2拡散領域を形成して接合を形成する段階と、
前記第1拡散領域に電気的に結合する第1金属構造体および第2拡散領域に電気的に結合する第2金属構造体を、前記第2金属構造体の一部が前記第1拡散領域上に延在するように形成する段階と、
前記第1拡散領域上に配置される第1絶縁体領域を、前記第1金属構造体が、前記第1絶縁体領域内に形成された開口を通して前記第1拡散領域に電気的に結合されるように形成する段階と、
前記第2拡散領域上に配置され、前記第1絶縁体領域と連続する第2絶縁体領域を、前記第2金属構造体が、前記第2絶縁体領域内に形成された開口を通して前記第2拡散領域に電気的に結合されるように形成する段階と、
前記第2金属構造体と前記第1拡散領域との間に第3絶縁体領域を形成する段階と、を含
前記第1拡散領域および前記第2拡散領域を形成して前記接合を形成する前記段階が、前記第1拡散領域をエミッタ拡散領域として形成し、前記第2拡散領域をベース拡散領域として形成する段階を含み、
前記エミッタ拡散領域が、2つまたは2つより多い別個のベース拡散領域を囲む連続的な層である、
方法。
【請求項11】
前記第3絶縁体領域を前記形成することが、スクリーン印刷またはインクジェット印刷法を実施することを含む、請求項10に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、太陽電池に関する。より詳細には、太陽電池構造に関するが、それに限定されることはない。
【背景技術】
【0002】
太陽電池は、太陽の照射を電気エネルギーに変換する公知の装置である。太陽電池は、半導体プロセス技術を使用して、半導体ウェハ上に製造することができる。一般に、太陽電池は、シリコン基板内にP型及びN型の拡散領域を形成することによって製造することができる。太陽電池に当てられた太陽照射によって、電子及び正孔が生成し、これらは、拡散領域へと移動し、それにより、拡散領域間で電圧差が生じる。背面電極型太陽電池(back side contact solar cell)では、両拡散領域及びそれらに結合されている金属グリッドが、太陽電池の背面に設けられている。この金属グリッドによって、外部電気回路を太陽電池に結合でき、太陽電池によって該外部電気回路に給電を行うことが可能となる。背面電極型太陽電池は、米国特許第5053083号及び第4927770号明細書にも記載されており、これらの文献は参照によりここに援用される。
【0003】
効率は、太陽電池の電力発生の性能に直接的に関係するので、太陽電池の最も重要な特徴である。したがって、太陽電池の効率を増大させる技術が、一般に望まれている。本発明は、従来の太陽電池と比較してより高い効率を可能にする改善された背面電極型太陽電池構造を開示する。
【発明の概要】
【0004】
一態様では、太陽電池は、背面に形成されたベース拡散領域及びエミッタ拡散領域を有する。エミッタ拡散領域は、太陽電池において小数電荷キャリアを収集するように構成されており、ベース拡散領域は、多数電荷キャリアを収集するように構成されている。エミッタ拡散領域は、ベース拡散領域を分離する連続する領域であってよい。各ベース拡散領域の面積は小さくなっていてよく、それにより、小数電荷キャリアは減少し、多数電荷キャリアの横方向流れによる直列の抵抗損失も実質的に増大することはない。各ベース拡散領域は、例えばドット(dot)の形状を有していてよい。
【0005】
本発明の上記の及び他の特徴は、添付の図面及び特許請求の範囲を含む本開示全体を読むことによって、当業者に直ちに明らかとなるであろう。
【図面の簡単な説明】
【0006】
図1】背面電極型太陽電池の断面図であり、電荷キャリアの横方向の輸送を概略的に示す。
図2】拡散領域のピッチがウェハの厚みより小さく作られている場合の、図1の太陽電池の電荷キャリアの垂直方向の輸送を概略的に示す。
図3(a)】集光型システムにおいて使用されている太陽電池の一例の断面図である。
図3(b)】集光型システムにおいて使用されている太陽電池の一例の斜視図である。
図4】ストリップ状拡散領域を有する太陽電池の一例を示す。
図5】本発明の態様による太陽電池を概略的に示す。
図6(a)】本発明の態様に基づく、図5の太陽電池の変形を概略的に示す。
図6(b)】本発明の態様に基づく、図5の太陽電池の変形を概略的に示す。
図7(a)】本発明の態様に基づく、図5の太陽電池の変形を概略的に示す。
図7(b)】本発明の態様に基づく、図5の太陽電池の変形を概略的に示す。
図8(a)】本発明の態様に基づく、図5の太陽電池の変形を概略的に示す。
図8(b)】本発明の態様に基づく、図5の太陽電池の変形を概略的に示す。
図9(a)】本発明の態様による太陽電池の製造過程の一断面図を示す。
図9(b)】本発明の態様による太陽電池の製造過程の一断面図を示す。
図9(c)】本発明の態様による太陽電池の製造過程の一断面図を示す。
図9(d)】本発明の態様による太陽電池の製造過程の一断面図を示す。
図9(e)】本発明の態様による太陽電池の製造過程の一断面図を示す。
【発明を実施するための形態】
【0007】
異なる図面においても、同じ参照番号が使用されていれば、同じ又は類似の構成要素を指す。
【0008】
本開示では、本発明の態様をよく理解できるように、多数の特定の詳細、例えば構造及び製造ステップの例が提案されている。しかし、当業者は、1つ又は複数の前記詳細がなくとも本発明が実施可能であることを理解するであろう。
【0009】
本開示は、太陽電池の製造に関する。太陽電池の製造プロセスは、同一出願人による開示、つまり、William P. Mulligan、Michael J. Cudzinovic、Thomas Pass、David Smith、Neil Kaminar、Keith McIntosh及びRichard M. Swansonによる2003年4月10日出願の「Improved Solar Cell and Method of Manufacture」と題する米国特許出願第10
/412638号明細書、William P. Mulligan、Michael J. Cudzinovic、Thomas Pass
、David Smith及びRichard M. Swansonによる2003年4月10日出願の「Metal Contact Structure for Solar Cell and Method of Manufacture」と題する米国特許出願公開
第2004/0200520号(出願第10/412638号)明細書、並びにSmithら
に特許された米国特許第6998288号明細書にも開示されており、これらの文献は、参照によりここに援用される。
【0010】
通常の操作では、少数電荷キャリアは太陽電池のエミッタ拡散領域に収集され、多数電荷キャリアはベース拡散領域に収集される。N型基板を有する背面電極型太陽電池の場合には、少数電荷キャリアは、P型拡散領域(この場合には「エミッタ拡散領域」)によって収集され、金属グリッドを介して正極端子に導通している。多数電荷キャリアは、N型拡散領域(この場合には「ベース拡散領域」)によって収集され、金属グリッドを介して負極端子に導通している。キャリアの生成のほとんどが太陽電池の前面で起こる場合には、多数電荷キャリア及び少数電荷キャリアの両キャリアは、拡散領域によって収集されるべく、生成地点から背面へと移動しなくてはならない。この距離は、「キャリア移動距離(carrier path length)」とも呼ばれ、背面電極型太陽電池の性能を決定する上での重
要なパラメータとなる。
【0011】
多数及び少数電荷キャリアの移動距離は、太陽電池の背面の拡散領域のピッチ(つまり間隔)に依存する。ピッチが大きくなればなるほど、電荷キャリアは、収集されるために生成地点から横方向により長い距離を移動しなくてはならない。図1に、背面電極型太陽電池の一例の断面図を示し、電荷キャリアの横方向輸送を概略的に例示する。図1のの例では、太陽電池はウェハ101を備えており、このウェハ101は、その背面にベース拡散領域102及びエミッタ拡散領域103を有している。ベース金属指(metal finger)105によって、ベース拡散領域102との外部電気接続が可能となり、エミッタ金属指106によって、エミッタ拡散領域との外部電気接続が可能となる。これらの拡散領域の上には、絶縁体層104が形成されている。図1の例では、ウェハ101は、約0.200mmの厚みを有するN型シリコンウェハであり、拡散領域のピッチは、約2.000mmである。黒丸は、この例では多数電荷キャリアである電子を表す。白丸は、この例では
少数電荷キャリアである正孔を表す。点線は、ウェハ101内での電荷キャリアの移動路を表す。
【0012】
少数電荷キャリア及び多数電荷キャリアの横方向の移動は、背面電極型太陽電池に2つの不都合な損失機構をもたらす。つまり(a)少数電荷キャリアの横方向の輸送による少数電荷キャリアの再結合の増加、及び(b)多数電荷キャリアの横方向の輸送による直列抵抗の増大、をもたらす。ピッチは、図1の例のウェハの厚みより数倍大きいので、電荷キャリアの横方向輸送、ひいてはそれに関連する損失も甚大となる。
【0013】
ピッチが、ウェハの厚みより数倍小さいのであれば、電荷キャリア輸送は、ほぼ一次元(垂直方向の輸送)となり、前述した横方向の損失機構は抑えられる。これについて、図2に概略的に示す。図2は、図1の太陽電池において、拡散領域のピッチをウェハ101の厚みよりも小さくした場合の電荷キャリアの垂直方向の輸送を示している。図1及び2の太陽電池は、ウェハ101の厚み及び拡散領域のピッチ以外の構成は同じである。図2の例では、ウェハ101の厚みは0.150mmであり、拡散領域のピッチは、約0.050mmである。黒丸は、この例では多数電荷キャリアである電子を表す。白丸は、この例では少数電荷キャリアである正孔を表す。点線は、ウェハ101における電荷キャリアの移動路を表す。図2の他の要素は、図1を参照して前述した通りである。
【0014】
高効率の背面電極型拡散太陽電池には、太陽電池内の損失を抑えるための2つの設計利用されている。第1の設計は、集光型システム(concentrator system)で典型的に使用
されるポイント拡散(point diffusions)である(例えば、「An Optimization Study of
Point-Contact Concentrator Solar Cells」、R.A. Sinton and R.M.Swanson、IEEE Photovoltaic Specialist Conference、1201〜1208頁を参照されたい)。第2の設
計は、典型的にはワンサン(非集光型)用途に使用される(例えば、「7000 High-efficiency Cells for a Dream」、P. J. Verlinden、R. M. Swanson及びR. A. Crane、Progres
in PhotoVoltaics、第2巻、1994年、143〜152頁を参照されたい)。
【0015】
集光型システムは、大きな面積に照射される太陽エネルギーを捕捉するための光学機器を使用し、太陽電池が配置されているより小さな面積へとエネルギーを集束させる。図3(a)及び3(b)は、R. A. Sinton及びR. M. Swansonによる引用文献からのものであ
り、それぞれ、集光型システムにおいて使用される太陽電池の例の断面図及び斜視図を示す。このようなポイント拡散式の太陽電池における典型的なウェハ厚みは、約150ミクロンある。ポイント拡散式の背面結合(back junction)設計は、集光型システム内で使
用されて、多数電荷キャリア及び小数電荷キャリアの移動距離を短く保ちながら、拡散に関連するオージェ再結合を低減させる。集光光の下、太陽電池は高い注入レベルで動作し、拡散部内で優勢なキャリア再結合機構はオージェ再結合である。性能を最適化するには、N型拡散及びP型拡散の両領域のサイズ、ひいてはオージェ再結合が最小化されるポイント拡散式の設計が利用されるのが好ましい。ベース及びエミッタ拡散領域が小さいサイズであれば(例えば約10ミクロン)、再結合損失は減少する。しかし、多数電荷キャリア及び小数電荷キャリアの移動距離を小さくするために、拡散領域間の距離を小さく維持することも重要である。ポイント拡散式の設計で用いられるような10ミクロンオーダーの拡散領域では、スループットが比較的低くなり、低コストの太陽電池の製造とは相容れない高価な装置を必要とすることにも留意されたい。
【0016】
ストリップ拡散式の太陽電池は、「ワンサン(one-sun)」若しくは「平板型」システ
ムとも呼ばれる非集中型の用途で使用される。ストリップ拡散式の背面結合設計は、非集中型の用途で使用されて、多数電荷キャリア及び小数電荷キャリアの移動距離を短く保ちながら、表面再結合を低減させる。ワンサン背面結合型太陽電池における優勢な再結合機構は、シリコン界面再結合、つまり表面再結合である。ストリップ設計では、太陽電池の
背面全体にN型拡散領域又はP型拡散領域が設けられており、これにより、再結合が低減される。少数電荷キャリア及び多数電荷キャリアの移動距離は、整合公差が許す限り金属指のピッチをできるだけ小さく維持することによって、小さくすることができる。
【0017】
図4に、ストリップ拡散部を有する太陽電池400の例を概略的に示す。太陽電池400では、N型拡散領域403及びP型拡散領域402は、N型シリコンウェハ401上の太陽電池400の背面に形成されたストリップ状の長方形の拡散領域である。太陽電池400の背面においても、金属グリッド406はN型拡散領域403(この例ではベース拡散領域)に接触し、メタルグリッド405はP型拡散領域402(この例ではエミッタ拡散領域)に接触している。
【0018】
商用のワンサン用途のためのストリップ拡散式の背面結合型太陽電池は、スクリーン印刷のような比較的低コストのパターニング技術を利用して製造されている(例えば、「The Choice of silicon wafer for the production of low-cost rear-contact solar cells」、K. McIntosh、M. Cudzinovic、D. Smith、W. Mulligan及びR Swanson、Proceedings of WCPEC-3、日本国大阪、2003年5月11〜18日を参照)。この印刷技術は、費用効率はより高いが、フォトリソグラフィよりも解像度及び整合の正確さがずっと低くなり、その結果、ピッチはウェハ厚みよりも著しく大きくなる。このような電池の性能は、少数電荷キャリア及び多数電荷キャリアの両キャリアの横方向輸送損失によって制限されてしまう。
【0019】
このような低コストのパターニング技術では、ストリップパターンの設計には、少数電荷キャリアの横方向輸送損失と多数電荷キャリアの横方向輸送損失との間での妥協が求められる。電池の設計者は、(a)少数電荷キャリアの横方向輸送による少数電荷キャリア再結合、及び(b)多数電荷キャリアの横方向輸送損失による直列抵抗損失をバランスするように、指ピッチ(finger pitch)を選択しなくてはならない。そのため、典型的には、エミッタ拡散ストリップ(例えばP型拡散領域402)を、ベース拡散ストリップ(例えばN型拡散領域403)よりも大きく製作し、それにより、ほとんどの太陽電池上で、少数電荷キャリアの一次元の垂直方向の流れが可能となる。設計者がピッチを大きくしようとした場合、少数電荷キャリア拡散損失は、少数電荷キャリア輸送はほとんどが垂直方向に起こるので減少するが、多数電荷キャリアの横方向移動距離も増大し、その結果、抵抗損失が増大する。設計者がピッチを小さくしようとした場合、抵抗損失は減少するが、少数電荷キャリアのための有効な移動距離が増大し、その結果、少数電荷キャリアの再結合損失も増大する。
【0020】
本発明の態様によって、ベース拡散領域の面積がより小さい背面結合太陽電池構造を利用することによって、二次元の不都合な影響が減少する。以下の例では、ベース拡散領域は「ドット状(dotted)」であり、各領域がドットの形状(例えば、円、楕円)を有する。このドット状の拡散領域は、本発明の利点を損なうことがなければ他の形状を有していてもよい。
【0021】
図5に、本発明の一態様による太陽電池500を概略的に示す。太陽電池500は、ワンサン(つまり非集中型)の用途で使用されるように構成されている。この太陽電池500は、ドット状のベース拡散領域503の形態をしている低減された面積を有するベース拡散領域を備えている。図5の例では、ベース拡散領域503はN型拡散領域からなっており、連続するエミッタ拡散領域502はP型拡散領域からなっており、両拡散領域は、N型シリコンウェハ501上に形成されている。金属グリッド506は、ベース拡散領域503(例えば2つ以上のベース拡散領域)に電気的に結合されており、金属グリッド505は、連続するエミッタ拡散領域502に電気的に結合されている。図5に示す金属グリッド506の1つは、ベース拡散領域503の非長方形の形状(この例ではドット)が
見えるように、透明に描かれている。金属グリッド505及び506は、掌状に互いに入り組んでいて(inter-digitaged)よい。外部電気回路は、金属グリッド505及び50
6に結合されており、太陽電池500からの電流を受容する。太陽電池500は、背面電極型太陽電池であって、拡散領域502及び503並びに金属グリッド506及び505は、太陽電池500の背面に形成されている。ウェハ501の、拡散領域503及び502とは反対側の表面は、太陽電池500の前面であり、通常の動作中には太陽の方を向いている。
【0022】
図5に示すように、ドット状のベース拡散設計は、太陽電池500の背面の表面の大部分を覆っているブランケット背面エミッタ拡散領域502と、周期的なベース拡散領域503のドットとを有する。つまり、ストリップ状設計でベース拡散領域及びエミッタ拡散領域を交互にストリップ状に並べる代わりに、ドット状ベース拡散設計は、連続的なエミッタ拡散領域を有し、このエミッタ拡散領域によって占有されていない太陽電池の背面の領域に、複数のベース拡散領域が形成されている。連続するエミッタ拡散領域502は、2つ以上の個々の拡散領域503を取り囲んでいる。互いに入り組んだ金属グリッド506及び505は、拡散領域を各端子に接続している、つまり、P型拡散領域502を正極端子に、N型拡散領域503を負極端子に接続している。この設計の1つの利点は、少数電荷キャリアの輸送のほとんどが垂直方向(つまり一次元)になっていて、再結合損失が低減することである。少数電荷キャリアの損失が、実質的に低減すると、少数電荷キャリアと多数電荷キャリアとの横方向輸送の設計上の妥協点が、より小さいピッチへ、また等しい指サイズへと大きくシフトする。これによって、設計において、多数電荷キャリアの横方向輸送に関連する直列抵抗も低減する。基板としてより寿命の低いシリコンを使用した場合には、少数電荷キャリア損失の低減がとりわけ重要となることにも留意されたい。これによって、より安価で低品質のシリコン(例えば、多結晶又は低グレードのCZシリコン)を使用た、高効率の背面結合型太陽電池の製造の可能性が広がる。
【0023】
図5の例では、ベース拡散領域503は散在しており、連続するエミッタ拡散領域502によって囲まれており、ベース拡散領域503の金属グリッド506は、エミッタ拡散領域上にわたって延伸している。金属グリッド506が、下層のエミッタ拡散領域502から電気的に絶縁され、短絡損失の導入が確実に防止されているように注意しなくてはならない。これは、負極グリッドとエミッタ拡散部との間に無欠陥の絶縁体層を設けることによって達成できる。この絶縁体に形成された開口部によって、ベース拡散領域503と金属グリッド506との間での接触が可能となる。
【0024】
図6(a)及び6(b)にそれぞれ、本発明の態様による太陽電池500Aの概略的な斜視図及び上面図を示す。太陽電池500Aは、図5に示す太陽電池500の特定の態様である。よって、構成要素501、502、503、505及び506は、図5を参照して前述したものと同じである。図6(a)の例では、絶縁体層504が、金属グリッドと拡散領域との間に形成され、電気的な短絡を防止する。コンタクトホール508によって、金属グリッド506と下層のベース拡散領域503との電気的な接触が可能となる。同様に、コンタクトホール507は、金属グリッド505と下層のエミッタ拡散領域502との電気的接触を可能にする。図6(b)に、太陽電池500Aの上面図を示す。図6(b)の例では、コンタクトホール508は、ベース拡散領域503より小さい。コンタクトホール507は、金属グリッド505から、連続するエミッタ拡散領域502へと、単純に下方向へ延伸している。
【0025】
図7(a)及び7(b)にそれぞれ、本発明の態様による太陽電池500Bの概略的な斜視図及び上面図を示す。太陽電池500Bは、図6(a)及び6(b)に示す太陽電池500Aの特定の態様である。したがって、要素501、502、503、5055及び506は、図5を参照して前述したものと同じであり、要素504、507及び508は
図6(a)及び6(b)を参照して前述したものと同じである。太陽電池500Bは、本質的には太陽電池500Aと同じであるが、絶縁体層504と金属グリッド506との間に絶縁体層701が追加されている。この絶縁体層701は、エミッタ領域502の部分の上に延びており、金属グリッド505とエミッタ領域502との間の電気的絶縁体の追加的な層を提供している。絶縁体層701は、絶縁体層504がピンホールを有し得る場合、又は金属グリッド506にエミッタ拡散領域502への短絡を招くような欠陥を有し得る場合に有利である。図7(b)は、太陽電池500Bの上面図を示す。図7(b)の例では、絶縁体層701は、金属グリッド506の下で面積が制限されている。絶縁体層701は、用途に応じて、金属グリッド505の下に形成されていてもよい。
【0026】
設計の基準(つまり、パターニング技術によって可能となる最小の整合公差及び構造のサイズ)によって、ストリップ状拡散設計及びドット状拡散設計の両方においてベース拡散領域のサイズが決定付けられる。例えば、200ミクロンのコンタクト開口部及び200ミクロンの層間公差を可能にするパターニング技術によって、ベース拡散領域は、約600ミクロンに、つまり標準の設計では600ミクロンのストリップ幅、ドット状設計では600ミクロンの直径に決定付けられる。ドット状設計によって、ベース拡散領域の被覆率が低減され、一方でベース拡散領域間の距離を等しく保つようにした場合、多数電荷キャリアの横方向流れに関連する直列抵抗損失が増大することなく、少数電荷キャリアの再結合損失は低減する。別態様で、ドット状拡散領域のピッチを小さくし、一方でベース被覆率を同一に保つようにした場合、ベース拡散領域上の少数電荷キャリアの横方向流れに関連する少数電荷キャリア再結合を増大させることなく、直列抵抗損失が低減する。上記2つの境界間の最適な構成は、特定の太陽電池によっって決まる。いかなる場合でも、ドット状拡散設計によって、ワンサン用途で使用されるストリップ状拡散設計又は集光型の用途で使用されるポイント拡散式設計より高い効率が得られる。
【0027】
ドット状ベース拡散設計の性能は、自己整合接触を利用することによってさらに向上させることができる。自己整合接触は、使用される絶縁体層にあるコンタクトホールを使用してベース拡散領域をパターン化し、ベース拡散金属グリッド(例えば金属グリッド506)を連続するエミッタ拡散領域から電気的に絶縁するものである。自己整合接触プロセスによって、ベース拡散領域のサイズを小さくしてコンタクトホールのサイズとすることができる。例えば、上述の同じ設計基準を使用して、ベース拡散領域の直径を、600ミクロンから200ミクロンへ低減することができる。ベース拡散領域のサイズが、ウェハの厚みに近づくと、少数電荷キャリアの横方向輸送が低下し、少数電荷キャリアは、ほとんど垂直方向に輸送される。
【0028】
図8(a)及び8(b)に、本発明の態様による太陽電池500Cの斜視図及び上面図をそれぞれ概略的に示す。太陽電池500Cは、図6(a)及び(b)に示した太陽電池500Aの特定の態様である。太陽電池500Cは、ここで「503A」と番号が付与されている各ベース拡散領域がコンタクトホール508を使用してパターン化されている点を除いて、太陽電池500Aと同じである。つまり、太陽電池500Cにおいては、絶縁体層内のコンタクトホール508(「504A」と番号付与されている)は、ベース拡散領域503Aをパターニングするために使用される。これによって、コンタクトホール508と同じ直径を有する拡散領域503Aが得られる(図8(b)も参照)。太陽電池500A及び500Cの、それ以外の他の構成要素は全て同じである。
【0029】
図9(a)〜9(e)に、本発明の態様によって製造される太陽電池500B(図7(a)及び7(b)も参照)の断面図を示す。以下のステップは、従来の半導体製造技術を利用して行うことができる。
【0030】
図9(a)には、ドープされた二酸化シリコン層901が、基板の表面上に形成されて
いる。層901は、エミッタの極性でドープされている。この例では、基板がN型シリコンウェハ501であり、二酸化シリコン層901は、ホウ素(例えばBSG)のようなP型ドーパントでドープされている。以下にさらに詳細に示すが、層901のドーパントは、その後、ウェハ501へと推進され、連続するエミッタ拡散領域を形成する。酸化物層901内の開口部903は、ドープされた別の酸化物層(図9(b)の層902)のためのスペースを確保するもので、連続するエミッタ拡散領域によって取り囲まれた散在したドット状拡散領域を形成する際に使用される。したがって、図9(a)の例における開口903は、ドット状パターンを有する。
【0031】
図9(b)では、ドープされた二酸化シリコン層902が、層901上及びウェハ501の露出した部分(つまり開口903)上に形成されている。層902は、ベース拡散領域の極性でドープされている。この例では、基板は、N型シリコンウェハ501であり、層902は、リンのようなN型ドーパント(例えばPSG)でドープされている。
【0032】
図9(c)では、酸化物層901及び902のドーパントは、高温拡散プロセスを使用してウェハ501へと推進される。これによって、ウェハ501に、連続するエミッタ拡散領域502及び複数のベース拡散領域503が形成される(図7(a)及び7(b)も参照)。エミッタ拡散領域502は、層901からウェハ501へのP型ドーパントの拡散によって形成される。ベース拡散領域502は、層902の一部から開口903へのN型ドーパントの拡散によって形成される(図9(a)を参照)。層901は、N型ドーパントが、層902から、エミッタ拡散領域502が形成される場所へと拡散することを防止する拡散マスクとして働く。ドープ層901及び902は、共に、拡散プロセス後には、絶縁体層504として働く。
【0033】
図9(d)では、絶縁体層701は、ベース拡散領域503及びエミッタ拡散領域502の部分上に配置された絶縁体層504の部分上に形成される。絶縁体層701は、好ましくは、スクリーン印刷、インクジェット印刷又は他の安価な印刷技術によって形成される。したがって、絶縁体層701は、ポリイミド又は他のスクリーン印刷又はインクジェット印刷によって形成することができる絶縁体を含むことができる。絶縁体層701内にはコンタクトホール508が画定され、これにより、続いて形成された金属グリッド506が、ベース拡散領域503と電気的に接触できるようになる。
【0034】
図9(e)では、コンタクトホール508の下にある絶縁体層504の一部がエッチング除去されている。同様に、絶縁体層504の一部がエッチング除去されて、コンタクトホール507が形成されている。金属グリッド506は、絶縁体層701上に且つコンタクトホール508を通って形成され、金属グリッド506とベース拡散領域503との間に電気的接続を作り出す。金属グリッド505は、絶縁体層504上に且つコンタクトホール507を通って形成され、金属グリッド507とエミッタ拡散領域502との間に電気的接続を作り出す。
【0035】
太陽電池500B及びここに開示の他の太陽電池は、同一出願人による米国特許第6998288号明細書に開示の製造ステップを使用しても製造することができ、この文献は、参照によりその全体が援用される。本発明の利点を損なうことがなければ、ここに開示の太陽電池構造を製造するための他の製造技術も使用することができる。
【0036】
以上、本発明の特定の態様を提示したが、これらの態様は、例示を目的としたものであり
、本発明を限定するものではない。多数の追加的な態様が、本開示を読むことによって当
業者に明らかとなるであろう。
[項目1]
太陽電池の背面に形成されている、前記太陽電池内の少数電荷キャリアを収集するため
の連続するエミッタ拡散領域、
前記太陽電池の背面に形成された前記連続する拡散領域によって取り囲まれている、前
記太陽電池内の多数電荷キャリアを収集するための複数のドット状ベース拡散領域、
前記複数のドット状ベース拡散領域の少なくとも2つのドット状ベース拡散領域に電気
的に結合された第1の金属グリッド、
前記第1の金属グリッドと前記少なくとも2つのドット状ベース拡散領域との間の第1
の絶縁体層であって、前記第1の絶縁体層を貫通する少なくとも2つのコンタクトホール
を通って前記少なくとも2つのドット状ベース拡散領域に電気的に結合されている絶縁体
層、並びに
前記連続するエミッタ拡散領域に電気的に結合する第2の金属グリッドを備えており、
前記第1の金属グリッド及び前記第2の金属グリッドが、前記太陽電池の背面に形成され
ている、太陽電池。
[項目2]
前記連続するエミッタ拡散領域及び前記複数のドット状ベース拡散領域が、N型シリコ
ンウェハ内に形成されており、前記連続するエミッタ拡散領域が、P型ドープ領域を含み
、前記複数のドット状ベース拡散領域のそれぞれが、N型ドープ領域を含む、項目1に記
載の太陽電池。
[項目3]
前記連続するエミッタ拡散領域がホウ素でドープされており、前記複数のドット状ベー
ス拡散領域がリンでドープされている、項目2に記載の太陽電池。
[項目4]
前記第1の絶縁体層が、前記第2の金属グリッドと前記連続するエミッタ拡散領域との
間にあり、少なくとも別のコンタクトホールを備えており、該コンタクトホールを通って
、前記第2の金属グリッドが前記連続するエミッタ拡散領域に電気的に結合されている、
項目1に記載の太陽電池。
[項目5]
前記第1の絶縁体層を貫通する前記少なくとも2つのコンタクトホールがそれぞれ、前
記複数のドット状ベース拡散領域のドット状ベース拡散領域の直径よりも小さい直径を有
する、項目1に記載の太陽電池。
[項目6]
前記第1の金属グリッドと前記第1の絶縁体との間に第2の絶縁体をさらに備えており
、前記第1の金属グリッドが、前記第1及び第2の絶縁体層を貫通する少なくとも2つの
コンタクトホールを通って、前記少なくとも2つのドット状ベース拡散領域に電気的に結
合されている、項目1に記載の太陽電池。
[項目7]
前記複数のドット状ベース拡散領域が、太陽電池の背面に周期的に配置されている、項
目5に記載の太陽電池。
[項目8]
太陽電池の製造方法であって、
第1のドープ層を基板の第1の表面上に形成し、前記第1のドープ層が、前記基板を露
出させる複数の開口部を備えており、
前記第1のドープ層内の前記複数の開口部内に、第2のドープ層を形成し、
前記第1のドープ層から第1のドーパントを拡散させ、前記太陽電池の背面の連続する
エミッタ拡散領域を形成し、該エミッタ拡散領域が、前記太陽電池内の少数電荷キャリア
を収集するように構成されており、
前記複数の開口部内に形成された前記ドープ層から第2のドーパントを拡散させ、前記
太陽電池の背面の複数のベース拡散領域を形成し、該複数のベース拡散領域が、前記太陽
電池内の多数電荷キャリアを収集するように構成されており、
前記太陽電池の背面に第1の金属グリッドを形成し、該第1の金属グリッドが、前記エ
ミッタ拡散領域に電気的に結合されており、
前記太陽電池の背面に第2の金属グリッドを形成し、該第2の金属グリッドが、前記複
数のベース拡散領域のベース拡散領域に電気的に結合されている
ことを含む、方法。
[項目9]
前記第2のドープ層が、前記第1のドープ層上にも形成される、項目8に記載の方法。
[項目10]
前記基板がN型シリコンウェハを含む、項目8に記載の方法。
[項目11]
前記第1のドーパントがP型ドーパントを含み、前記第2のドーパントがN型ドーパン
トを含む、項目8に記載の方法。
[項目12]
前記複数の開口部のそれぞれがドット形状を有する、項目8に記載の方法。
[項目13]
前記第2の金属グリッドと前記エミッタ拡散領域との間に絶縁体層を形成し、該絶縁体
層がコンタクトホールを備えており、該コンタクトホールを通って、前記第2の金属グリ
ッドが、前記エミッタ拡散領域に電気的に結合されること
をさらに含む、項目8に記載の方法。
[項目14]
前記第1及び第2のドープ層が、二酸化シリコンを含む、項目8に記載の方法。
[項目15]
太陽電池の背面において多数電荷キャリアを収集するように構成された複数のベース拡
散領域、
前記太陽電池の背面において少数電荷キャリアを収集するように構成された、前記複数
のベース拡散領域の各ベース拡散領域の周りを取り囲んでいる連続するエミッタ拡散領域

前記複数のベース拡散領域の少なくとも1つのベース拡散領域に電気的に結合されてい
る第1の金属グリッド、並びに
前記連続するエミッタ拡散領域に電気的に結合されている第2の金属グリッド
を備えている、太陽電池。
[項目16]
前記複数のベース拡散領域がそれぞれ、非長方形の形状を有する、項目15に記載の太
陽電池。
[項目17]
前記第1の金属グリッドと前記少なくとも1つのベース拡散領域との間の第1の絶縁体
層をさらに備えており、前記第1の金属グリッドが、前記第1の絶縁体層内のコンタクト
ホールを通って、前記少なくとも1つのベース拡散領域に電気的に結合されている、項目
15に記載の太陽電池。
[項目18]
前記第1の絶縁体層と前記第1の金属グリッドとの間に第2の絶縁体層を備えており、
前記第1の金属グリッドが、前記第1及び第2の絶縁体層を貫通するコンタクトホールを
通って、前記少なくとも1つのベース拡散領域に電気的に結合されている、項目17に記
載の太陽電池。
[項目19]
前記第1及び第2の金属グリッドが、前記太陽電池の背面上に形成されている、項目1
5に記載の太陽電池。
[項目20]
前記複数のベース拡散領域及び前記連続するエミッタ拡散領域が、N型シリコンウェハ
内に形成されている、項目15に記載の太陽電池。
図1
図2
図3(a)】
図3(b)】
図4
図5
図6(a)】
図6(b)】
図7(a)】
図7(b)】
図8(a)】
図8(b)】
図9(a)】
図9(b)】
図9(c)】
図9(d)】
図9(e)】