特許第6837077号(P6837077)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ アメリカ合衆国の特許一覧

特許6837077改善されたグリセロール吸着のための吸着剤設計
<>
  • 特許6837077-改善されたグリセロール吸着のための吸着剤設計 図000007
  • 特許6837077-改善されたグリセロール吸着のための吸着剤設計 図000008
  • 特許6837077-改善されたグリセロール吸着のための吸着剤設計 図000009
  • 特許6837077-改善されたグリセロール吸着のための吸着剤設計 図000010
  • 特許6837077-改善されたグリセロール吸着のための吸着剤設計 図000011
  • 特許6837077-改善されたグリセロール吸着のための吸着剤設計 図000012
  • 特許6837077-改善されたグリセロール吸着のための吸着剤設計 図000013
  • 特許6837077-改善されたグリセロール吸着のための吸着剤設計 図000014
  • 特許6837077-改善されたグリセロール吸着のための吸着剤設計 図000015
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6837077
(24)【登録日】2021年2月10日
(45)【発行日】2021年3月3日
(54)【発明の名称】改善されたグリセロール吸着のための吸着剤設計
(51)【国際特許分類】
   C10L 1/02 20060101AFI20210222BHJP
   B01J 20/26 20060101ALI20210222BHJP
   C07C 69/33 20060101ALN20210222BHJP
【FI】
   C10L1/02
   B01J20/26 G
   B01J20/26 J
   !C07C69/33
【請求項の数】10
【全頁数】19
(21)【出願番号】特願2018-551387(P2018-551387)
(86)(22)【出願日】2017年3月29日
(65)【公表番号】特表2019-518088(P2019-518088A)
(43)【公表日】2019年6月27日
(86)【国際出願番号】US2017024760
(87)【国際公開番号】WO2017172925
(87)【国際公開日】20171005
【審査請求日】2020年2月4日
(31)【優先権主張番号】62/314,577
(32)【優先日】2016年3月29日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】517305931
【氏名又は名称】アメリカ合衆国
(74)【代理人】
【識別番号】110000109
【氏名又は名称】特許業務法人特許事務所サイクス
(72)【発明者】
【氏名】メルデ ブライアン
(72)【発明者】
【氏名】ホワイト ブランディ ジェイ
(72)【発明者】
【氏名】ムーア マーティン エイチ
【審査官】 森 健一
(56)【参考文献】
【文献】 特開2006−028270(JP,A)
【文献】 米国特許出願公開第2013/0053591(US,A1)
【文献】 特開2013−230954(JP,A)
【文献】 特開2008−127218(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C10L 1/00− 1/32
B01J 20/00−20/28
C11C 3/00− 3/14
(57)【特許請求の範囲】
【請求項1】
・フェニルおよびスルホネートの部分を含むメソポーラス有機シリカ吸着剤を、汚染物質を含むバイオディーゼルと接触し;次いで、
・バイオディーゼルを吸着剤から分離することにより、バイオディーゼル中の汚染物質のフラクションが吸着剤に吸着され、そして、したがってバイオディーゼルから除去される、
ことを含み、
前記メソポーラス有機シリカ吸着剤が、ビス(トリメトキシシリルエチル)ベンゼンに由来する部分構造を含む、バイオディーゼルから汚染物質を除去する方法。
【請求項2】
前記メソポーラス有機シリカ吸着剤が下記3〜6のいずれかの構造を含む、請求項1に記載の方法。
【化1】
【請求項3】
前記メソポーラス有機シリカ吸着剤が、
メシチレンをビス(トリメトキシシリルエチル)ベンゼン、および任意で1,2-ビス(トリメトキシシリル)エタンと、加熱して反応させ足場を生成すること、
任意で、前記足場に追加のフェニル基をグラフトすること、
前記足場またはグラフトされた前記足場をスルホン化すること、および
ナトリウム交換を行なうこと
を含む方法で製造される、請求項1または2に記載の方法。
【請求項4】
メシチレンをビス(トリメトキシシリルエチル)ベンゼンのみと反応させる、請求項3に記載の方法。
【請求項5】
メシチレンをビス(トリメトキシシリルエチル)ベンゼンおよび1,2-ビス(トリメトキシシリル)エタンの両方と反応させる、請求項3に記載の方法。
【請求項6】
前記足場が追加のフェニル基でグラフトされる、請求項3〜5のいずれか一項に記載の方法。
【請求項7】
前記汚染物質が、グリセロールである、請求項1〜6のいずれか一項に記載の方法。
【請求項8】
吸着剤が、グリセロールの少なくとも50%を吸着するのに有効である、請求項7に記載の方法。
【請求項9】
前記汚染物質が、界面活性剤である、請求項1〜6のいずれか一項に記載の方法。
【請求項10】
吸着剤が、前記界面活性剤の少なくとも50%を吸着するのに有効である、請求項9に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願への相互参照
この出願は、2017年3月29日に出願された米国仮出願第62/314,577号の利益を主張し、その全体が参照により本明細書に組み込まれる。
【背景技術】
【0002】
バイオディーゼルは、動物性脂肪、植物油、または廃食用油の、アルコールとのエステル交換によって生成され、所望のバイオディーゼル燃料を副産物としてのグリセロールと共に製造する。
バイオディーゼルの経済的実行可能性(viability)の評価に焦点を当てた研究が数多くなされてきた(文献2〜5)。
50〜70%のコストを含むバージン原料(virgin feedstocks)を使用すると、生産コストは、石油系ディーゼル油の1.5倍の約0.5米ドル/Lである(文献3,4)。
原料コストは、廃食用油および同様の製品を使用して、低減することができるが、これらの材料は、合成の複雑さを増大させ、そして、多くの場合、汚染物質の存在を増す(文献5)。
再生可能なエネルギー源を提供することに加えて、バイオディーゼルは、関連する環境負荷低減のために、代替燃料として魅力的で、これらの燃料の使用は、大気汚染物質の排出を減少させる(文献6)。
液体および固体廃棄物と一緒に、水を調達すると、この代替燃料源の環境へのインパクトにも影響するが、製造コストの10%までを含む(文献3おおび4)。
例として、バイオディーゼルの精製のための複数の洗浄ステップは、使用可能なバイオ燃料の1ガロン毎に、数ガロンの廃水を生成することができる。
バイオディーゼルの汚染物質には、グリセロール、アルコール、遊離脂肪酸、界面活性剤、および残留触媒が含まれる。グリセロールは、バイオディーゼル中の汚染物質であるが、バイオディーゼルの製造コストを相殺するのを助けるために、回収し、そして、精製することができる(文献4)。
【0003】
汚染物質(グリセロールを含む)は、水洗浄の代替または部分的な代替物として、乾式洗浄媒体の使用によって、バイオディーゼルから除去することができる。
現在、バイオディーゼルの洗浄に乾式洗浄媒体を使用することは、小規模な運転および愛好家に限られている。
水洗浄に比べて、乾式洗浄媒体を使用すると、過剰な廃水の生成を回避しながら、生産時間を短縮し、そして、スペースを少なくすることができる。
BD ZorbXおよびDudaLite(DW−R10(登録商標))イオン交換樹脂は、この目的に使用されるタイプの材料の商業的な例である。
BD ZorbXは、界面活性剤、グリセロール、および触媒を含む、様々な汚染物質を吸着することを意図した硬材(hardwood)からのセルロース繊維の混合物であり、Eco2Pure(商標)も同様の素材である。
DW−R10は、バルクのグリセロール除去後の研磨工程を意図しており、そして、界面活性剤、グリセロール、触媒および水を除去すると主張されている。Drionex、ピュウロライト(Purolite(登録商標)) PD206、およびマグネソル(Magnesol) D−SOLは、同様の用途のために意図されている。
【0004】
別の吸着材料が必要である。
【簡単な説明】
【0005】
硫酸化された吸着剤は、複雑な混合物からターゲットを捕捉することができる。
本明細書に記載されるのは、燃料調製物中の望ましくない汚染物質の除去を目的とする吸着剤である。
特に、この努力の下に、開発された吸着剤は、燃料調製物からのグリセロールおよび界面活性剤の除去に使用することが意図されている。
それらの用途は、たとえば、
(1)乾式洗浄研磨媒体として、
(2)精製プロセスのために、または、
(3)燃料品質の評価のための分析プロセスの一部として、
であり得る。
【0006】
一つの実施形態では、バイオディーゼルから汚染物質(グリセロールおよび/または界面活性剤など)を除去する方法は、
フェニルおよびスルホネート部分を含む、メソポーラス有機シリカ収着剤を、汚染物質を含有するバイオディーゼルと接触させ;
次に、バイオディーゼルを吸着剤から分離し、
それによって、バイオディーゼル中の汚染物質の一部が、吸着剤によって吸着され、そして、かくして、バイオディーゼルから除去されることを含む。
【図面の簡単な説明】
【0007】
図1図1は、吸着剤組成物に関連する様々な構造を示す。この明細書において、材料の変形例は、吸着剤の足場(scaffold)(ボックス領域)と合成後処理中に添加された基の両方を示す。
【0008】
図2図2Aは、いくつかのスルホン化された吸着剤についての、窒素の収着分析を示す。そして、図2Bは、同じ吸着剤の細孔の直径分布を示す。各図2Aにおいて、曲線は、下から上の順序で表示される:S65−Ph、S85−Ph、E25−Ph、およびE50−Ph。図2Bにおいて、S65−Phは、2つの長いダッシュと短いダッシュを有する線で表され、S85−Phは、1つの長いダッシュと2つの短いダッシュを有する線で表され、E25−Phは広い間隔の中間のダッシュを有する線によって示され、そして、E50−Phは、間隔の狭いより小さなダッシュを有する線で示される。
【0009】
図3図3Aは、追加のスルホン化がされた吸着剤についての、窒素吸着分析を示す:上のパネルはED11−Ph1;下部パネルの上部曲線はED11および下部曲線はED11−Ph2である。図3Bは、同じ吸着剤の細孔直径の分布を示す。ラベルは以下のとおり。ED11(2つの長いダッシュと1つの短いダッシュ)、ED11−Ph1(2つの短いダッシュと1つの長いダッシュ)、およびED11−Ph2(中間のダッシュ)。
【0010】
図4図4A、4B、4Cおよび4Dは、さらにスルホン化された収着剤についての窒素収着分析(AおよびB)および細孔径分布(CおよびD)を示す。図4Aおよび図4Cにおいて、曲線は、上から下へ向かって、D13a、D13cおよびD13−Phを表す。図4Bでは、上の曲線はD13−Ph2であり、そして、下の曲線はD13−Phである。図4Dでは、D13−Ph2は、2つの長いダッシュと1つの短いダッシュ(より重い重量)を持ち、D13−Phは2つの長いダッシュと1つの短いダッシュ(より軽い重量)を有する。
【0011】
図5図5Aおよび図5Bは、スルホン化された樹脂に対する、それぞれ、窒素吸着分析および細孔径分布を示す。これらのそれぞれにおいて、上の曲線はPDVB−2であり、そして、下の曲線はPDVB−3である。
【0012】
図6図6は、吸着剤によるグリセロール結合を示す。実験には、271μMのグリセロール水(10ミリリットル)からなる溶液を、吸着剤30ミリグラムと共に使用した。
【0013】
図7図7Aおよび7Bは、E25−Phについて(狭い間隔の短いダッシュ)、S85−Ph(2つの長いダッシュと1つの短いダッシュ)、ED11−Ph1の(広い間隔の中間のダッシュ)、D13−Ph(その間にスペースを有する、2つの短いダッシュ間に1つ長いダッシュのトリプレット)、PDVB−2(長短ダッシュを交互)についての、(A)等価な吸着剤の質量の使用について提示された、および(B)等価な吸着剤表面積について計算された、グリセロール結合等温線(binding isotherm)を示す。
【0014】
図8図8は、吸着剤による、不純物が混じったバイオディーゼルからの、グリセロールの結合を示す。実験は、バイオディーゼル(10ミリリットル)中の250μMのグリセロールからなる溶液を、30ミリグラムの吸着剤と使用した。
【0015】
図9図9は、水(点線棒)および不純物が混じったバイオディーゼル(格子棒)からの、ED11−Ph1(種々の吸着剤質量(varied sorbent mass))による、Triton X−100(250 iM )の結合を示す。
【0016】
相対位置による線および曲線の上記識別に関して、これは、X軸の中間点におけるそれらの相対的位置に関する。
【発明の詳細な説明】
【0017】
定義
本発明を詳細に説明する前に、明細書中で使用される用語は、特定の実施形態を説明する目的のためであり、必ずしも限定するものではないことを理解すべきである。
本明細書に記載されているものと同様、改変された、または等価な、多くの方法、構造および材料が、過度の実験なしに、本発明の実施において使用され得るが、好ましい方法、構造および材料が本明細書に記載される。
本発明の記載および特許請求の範囲において、以下に示す定義に従って、以下の用語が使用される。
【0018】
本明細書および添付の特許請求の範囲で使用される、単数形「a」、「an」および「the」は、内容が、明確に、他を指示しない限り、複数の対象を排除するものではない。
【0019】
本明細書で使用される場合、「および/または」という用語は、関連する列挙された項目の1つまたは複数の任意のおよびすべての組み合わせを含む。
【0020】
本明細書で使用する場合、記載の数値または範囲と併せて使用される場合、用語「約」は、述べられているのと、±10%の範囲内に、述べられた値または範囲よりも幾分多いまたは幾分少ないものを表す。
【0021】
概要
この努力の下で開発された吸着剤は、燃料調製物から、グリセロールおよび界面活性剤の除去に使用することが意図されている。
それらの用途は、たとえば、
(1)乾式洗浄研磨媒体として、
(2)精製プロセスに対して、または
(3)燃料品質の評価のための分析プロセスの一部として
であり得る。
【0022】
階層的ナノポーラス足場(Hierarchical nanoporous scaffolds)は、現在入手可能な市販の乾式洗浄媒体の代替物を提供する。
考慮される材料は、ハイブリッドの無機−有機材料(文献7〜17)で、ここで、無機および有機部分が、架橋ポリシルセスキオキサン前駆体の使用によって、分子規模で混合される(文献18)。
これらの材料は、鋳型のメソポア構造を有する大きなマクロ孔(macropores)を、提供する(文献7、12、17、19)。
メソポーラス有機シリカ吸着剤については多くの用途が報告されているが、これらの階層構造を使用することにより、さらなる用途が促進されることができる。マクロスケールの特徴は、拡散の制限を軽減し、そして、メソポア容積(mesopore volumes)へのアクセスを向上させる(文献20および21)。
このタイプの材料は、ニトロ高エネルギー(nitroenergetic)および有機リンの標的の捕捉のために使用されてきた(文献20および22)。
現在の研究の材料は、グリセロールの吸着のために開発されたもので、燃料タンクでの析出(fuel tank deposits)、インジェクターの腐食、およびアルデヒドの高排出をもたらす可能性がある。
材料は、グリセロールとの水素結合相互作用を促進するために、細孔壁の組成を変えて合成され、次いで、スルホン化される。
この材料のスルホン化は、上記の乾式洗浄媒体のいくつかに存在するものと同様の機能性を提供するが、足場(scaffold)上および足場(scaffold)内および種々の構造に隣接するスルホン酸基の取り込みは、足場(scaffold)仕立てによる性能の有意な改善の道を提供する。
【0023】
説明と操作
収着材料の合成
E25−PhおよびE50−Ph:足場(scaffold)材料は、以前の報告書に記載されているように合成した(文献21および23)。
プルロニックP123(3.8g)およびメシチレン(E25)0.5gまたはメシチレン(E50)1.0gを、熱(〜65℃)および磁気撹拌しながら、0.1M HNOの12.14グラムに溶解した。
攪拌混合物を、室温に冷却してから、4.24gの1,2−ビス(トリメトキシシリル)エタンを滴下した。混合物を撹拌して均質化し(〜1分)、そして、培養管に移した。
チューブを密封し、そして、一晩、オーブン中でインキュベートした。
チューブを開封し、そして、白色のモノリティクゲル(monolithic gels)を、60℃で2日間、次いで、80℃で2日間、加熱した。
ブロックコポリマー(プルロニックP123)を、1M HCl−エタノール中で、一晩還流することによって、乾燥した材料から抽出された。
真空濾過により固体を回収した。このプロセスをさらに2回繰り返した。
回収した固体を、エタノールと水で十分に洗浄し、そして、110℃で乾燥した。
【0024】
フェニル基でのグラフト化は、真空中、>100℃で、追加の乾燥ステップから始まる、単純な公開されている手順に従った(文献24)。吸着剤(1.0g)を、50ミリリットルのトルエン中の5ミリリットルのフェニルトリエトキシシランと共に24時間還流した。
グラフトされた材料は、重力濾過により集められ、十分にエタノールで洗浄し、そして110℃で、乾燥した。
スルホン化は、1日間、75℃で、HSO25ミリリットル中で、フェニルグラフト化材料を磁気的に攪拌することにより、前述のように達成した(文献25)。
酸性混合物を、次いで、HOの≧200ミリリットルに添加した。
固体を重力濾過により集め、HOで洗浄し、そして、110℃で乾燥した。
スルホン化した材料を、1日間、室温で、1M NaCl溶液50ミリリットル中、磁気的に攪拌し、続いて、重力濾過による回収、HOでの洗浄、および110℃で乾燥した。
【0025】
ED11−Ph1、ED11−Ph2、およびED11:ベース足場(scaffold)は、前述のように合成した(文献26)。
プルロニックP123(3.8g)およびメシチレン(1.0g)を、熱(〜65℃)および磁気撹拌しながら、0.1M HNO15.0gの中に溶解させた。
次いで、撹拌混合物を室温に冷却した。
1,2−ビス(トリメトキシシリル)エタン(2.12g)とビス(トリメトキシシリルエチル)ベンゼン(2.94g)のシラン混合物を滴下し、そして、混合物を撹拌して均質化した(〜1分間)。混合物を、培養チューブに移し、チューブを密封し、そして、一晩、60℃で、オーブン中で、インキュベートした。
チューブを開封し、そして、白色のモノリテックゲルを、2日間、60℃、続いて、2日間、80℃で加熱した。
ブロック共重合体を、エタノール中、1MのHCl中で一晩還流することによって、乾燥した材料から抽出した。
真空濾過により固体を回収した。このプロセスをさらに2回繰り返した。
回収した固体を、エタノールおよび水で十分に洗浄し、次いで、110℃で乾燥させた。ED11−Ph1およびED11−Ph2のグラフト化、スルホン化およびナトリウム交換は、上記のプロトコルを用いて完了した。ED11−Ph1およびED11−Ph2は、同様に言及しているが、別々に合成された材料を指す。スルホン化工程は、材料特性の変化を生じさせる。
ED11は、スルホン化およびナトリウム交換の前に、フェニル基でグラフトされなかった。
【0026】
S65−PhおよびS85−Ph:足場(scaffold)材料は、以前に公開された手順に基づいて合成された(文献27および28)。
プルロニックP123(4.0g)および0.65グラム(S65)または0.85グラム(S85)メシチレンを、熱(〜65℃)および磁気撹拌しながら、1.0M HNO12.0gの中に溶解させた。
混合物を室温に冷却してから、5.15gのテトラメチルオルソシリケートを滴下し、そして、混合物を攪拌して均質化した(〜1分)。
混合物を、培養チューブに移し、密封し、そして、一晩、60℃で、インキュベートした。チューブを開封し、そして、白色モノリティクゲルを、60℃で6日間加熱した。
材料は、周囲雰囲気下で焼成した(calcined):温度は1℃/分で、650℃まで上昇させ、そして、5時間保持した。
グラフト用と同様に表面を調整するために、材料を、1M HCl中で、1日間還流し、他の材料についての溶媒抽出プロセスと同様にした。
それは、その後、真空濾過により集められ、エタノールおよびHOで洗浄し、そして、110℃で乾燥した。
これらの吸着剤のための、グラフト化、スルホン化、およびナトリウム交換は、上記のプロトコルを使用して完了した。
【0027】
D13−Ph、D13a、D13b、D13c、および、D13−Ph2:
足場(scaffold)材料は、プルロニック(Pluronic)P123(3.8g)およびメシチレン(1.8g)を、16.0gの0.1M HNOに、熱(〜65℃)および磁気撹拌しながら、溶解することによって合成した。
混合物を室温に冷却してから、ビス(トリメトキシシリルエチル)ベンゼン(5.87g)を滴下し、そして、混合物を撹拌して均質化した(〜1分)。
混合物を、培養チューブに移し、しっかり密封し、そして、一晩、60℃で、オーブン中でインキュベートした。試験管を開封し、そして、白いモノリティクゲルを、60℃で2日間、そして、80℃で2日間加熱した。
ブロックコポリマーを、乾燥した物質から、エタノール中の1M HCl中で一晩還流して抽出した。真空濾過により固体を回収した。
このプロセスをさらに2回繰り返した。
回収した固体を、エタノールおよび水で十分に洗浄し、次いで110℃で乾燥させた。D13−Phのグラフト化、スルホン化およびナトリウム交換は、上記のプロトコルを使用して完成させた。
D13a、D13b、およびD13cは、スルホン化およびナトリウム交換に先立って、フェニル基でグラフトしなかった。記号a、bおよびcは、同様に引用するが、別々に合成された材料を指す。
特に、D13bは、希釈されていない酸より、むしろ、50%のHSOを用いてスルホン化した。
D13−pH2は、D13−Phと同じ種類の材料であるが、D13bが処理された方法で、50%HSOを用いてスルホン化された。
【0028】
PDVB−2およびPDVB−3:
ジビニルベンゼン(DVB)樹脂は、Libuse Hankovaらの、手順から改良された手順を使用して、テフロン内張りオートクレーブ反応器(23ミリリットルの容量)で合成した。
「メソポーラスポリ(ジビニルベンゼン)の合成における、Coporogenとしての水の役割」、Journal of Applied Polymer Science、2014年、DOI:10.1002/app.41198は、この教示のために、参照により本明細書に組み込まれる。
PDVB−2については、DVB(1.5g;Aldrich社テクニカルグレード、80%)を、テトラヒドロフラン(15ミリリットル)、水(0.75ミリリットル)および2、2’−アゾビス(2−メチルプロピオニトリル)(0.0375グラム、Aldrich社、98%)に添加した。
反応器を、100℃で、48時間加熱した。室温に冷却した後、反応器を開け、そして、樹脂を、室温で、一晩乾燥させ、続いて100℃で完全に乾燥させた。
PDVB−3は、省略されたPDVB−2合成に使用された、水 コポリジェン(Coporogen)を除いて、同一に、合成された。
粉砕樹脂を、ヘキサン(20ミリリットル)に添加して、湿潤スラリーを生成し、そして、硫酸(25ミリリットル)をスルホン化工程のために添加した。
混合物を、75℃で、1日間加熱した後、水(300ミリリットル)を加えた。スルホン化材料を減圧濾過によって集め、そして、水で完全に洗浄した後、100℃で乾燥させた。物質を、1M NaCl(50ミリリットル)中、室温で、1日間撹拌することによって、ナトリウム交換を完了させた。次いで、樹脂を水で洗浄し、真空濾過によって集め、そして、100℃で乾燥させた。
【0029】
吸着剤の特性
ポリ−(スチレン−コ−ジビニルベンゼン)樹脂のスルホン化は、樹脂材料による、グリセロールとの水素結合の増加、および、それゆえ、樹脂材料によるグリセロールの除去について、記載されてきた(文献29)。
この領域における以前の研究は、標的吸着上の、足場(scaffold)または樹脂の形態の影響を考慮しなかった。スルホネート基に極めて近接した化学構造は、これらの基とグリセロールとの相互作用に影響を与える可能性が高いため、細孔壁組成が変化した、一連の多孔質有機ケイ酸塩材料が合成された。
多くの事例が考慮された;S65/S85およびE25/E50は、ベース吸着剤上でスルホン化のための部位を提供しない。
ED11およびD13は、架橋基の少なくとも一部を含むフェニル環を提供する。
この範囲の物質については、直接的に物質のスルホン化(ED11およびD13)または追加のフェニル基のグラフト化に続くスルホン化が完了した。図1に提供された概略図は、得られた材料の変化を示す。
【0030】
表1は、これらの材料の形態学的特徴の概要を示す。
【0031】
図1は、タイプ1〜6により、本明細書に記載の吸着剤の様々な種類の化学構造を示す。
1型材料(図1)は、シリケート足場(scaffold)上に、ナトリウム交換、スルホン化フェニル基ペンダントを提供する。窒素収着分析は、メソポーラス材料に特徴的な、タイプIV等温線(isotherms)を示す(図2A)。
シリケート足場(scaffold)は、2Dの六角形に詰め込まれた円筒状のメソ孔を有する規則的なメソ構造である。2つの材料の細孔径は、合成に含まれるメシチレン膨潤剤の量によって影響される(文献27および28)。
タイプ2の材料は、エタン架橋オルガノシリケート吸着剤上、に同じペンダント官能基を提供する。
ベースE50足場(scaffold)は、無秩序ミクロ孔およびメソ細孔(図2B)の組み合わせを提供する。
E25吸着剤のIV型窒素吸着等温線(isotherms)は、S65−PhおよびS85−Phのものと同様である。
【0032】
ED11に基づくタイプ3材料は、E50およびE25足場(scaffold)のエタン架橋基の50%がジエチルベンゼン基で置換されている。
これは、グラフト化されたフェニル基に加えて、細孔壁内のフェニレン基の直接スルホン化の可能性を提供した。
タイプ4の吸着剤は、グラフト化されたフェニル部分を有さない、ナトリウム交換スルホン化ED11である。
希釈されていないHSOによるスルホン化されたほとんどの生成物は、比較的非多孔性の物質を示す、II型窒素吸着等温線(isotherms)を示す(たとえば、図3のED11−Ph2)。
【0033】
D13をベースとする、タイプ5および6の吸着剤は、それらの足場(scaffold)壁中のジエチルベンゼン架橋基の濃度が最も高い。タイプ5の吸着剤はまた、グラフト化されたペンダントフェニル部分も含む。
希釈されていないHSOを用いた官能化は、メソ構造の崩壊をもたらす(図4)。
D13bを、50%HSOで処理して、メソ構造を保存した(図4)。
窒素等温線(isotherms)は、その吸着と脱着枝(desorption branches)との間に、かなりのヒステリシスを示し、メソ孔構造における「ボトルネック(“bottle−necks”)」を示している。
多孔性のスルホン化された、ポリジビニルベンゼン樹脂PDVB−2およびPDVB−3の、窒素吸着等温線(isotherms)は、比較のために提供された(図5)。
【0034】
水溶液からのグリセロール結合
バッチタイプの実験を使用して、吸着剤変異体による水からのグリセロールの結合の等温線(isotherms)を生成した。
種々の濃度のグリセロール溶液を用いて、様々な吸着剤塊を、一晩インキュベートした後、溶液中に残っているグリセロールを測定することによって分析を完了した。
グリセロールの分析は、ASTM D6584−13に記載された方法に基づいた(文献30)。
サンプルおよび対照溶液はすべて水性であった。KD Scientific Centrifan PE−T(モデル78−0070)を用いて、5ミリリットルアリコートから水を除去した。
ピリジン(2ミリリットル)中のN−メチル−n−(トリメチルシリル)トリフルオロアセトアミド(MSTFA;1.2ミリリットル)のストック溶液を調製した。
この溶液(160μL)を、乾燥試料に加え、続いて20分間インキュベートした。
次いで、ヘプタン(1.6ミリリットル)を加え、そして、GC分析のために、サンプルをオートサンプラーバイアルに移した。
GC−MS分析は、Restex Rtx−5(30mX0.25ミリメートル IDx0.25μm df)のクロスボンド 5%のジフェニル 95% ジメチルポリシロキサンカラムを用い、AOC−20オートインジェクタを備えた島津GCMS−QP2010を用いて行った。
200℃のGC注入温度は、69.4キロパスカルで、3.6ミリリットル/分の流速で、1:1スプリット比で使用した。オーブンの勾配は、50℃(1分のホールド時間)から180℃まで、15℃/分で、そして、次いで、300℃まで、20℃/分で上昇させ、そこで、5分間保持した。
【0035】
図7は、結合等温線(isotherms)のいくつかの例を提供する。
これらのタイプの吸着剤による標的結合は、LangmuirおよびLangmuir−Freundlich方程式によって表されるような現象論的モデルによって以前に記載されている(文献20,26および31)。
グリセロール結合データについては、Langmuir−Freundlich方程式を使用した:
【0036】
ここで、qは、単位収着剤表面積当たりの結合標的量であり、Lは遊離配位子であり、kは親和性係数であり、nは均質性係数であり、そして、Aは全表面積である。
通常使用される飽和容量はqである。
図7Aおよび図7Bは、典型的なグリセロール結合等温線(isotherms)を示し、そして、表2は、種々の材料のために計算されたパラメータのまとめを提供する。
【0037】
バイオディーゼルからのグリセロール捕捉
水溶液からグリセロールを捕捉するために使用された材料のいくつかもまた、社内で調製されたバイオディーゼルに基づく溶液中で評価された。
この溶液は、広く利用可能な小ロット生産プロトコルの適合によって調製された。
食品等級のキャノーラ油(1L)をホットプレート上で50℃に加温した。
別の容器に、メタノール(355ミリリットル)と水酸化ナトリウム(3.5g)を混合した。
この混合物を、加温した油にゆっくり加え、そして、結果物を2時間(50℃)攪拌した。
反応した溶液を、分液漏斗に移し、そして、沈降させて底部のグリセロールを排出させた。
回転エバポレータを用いて、最終溶液から残留メタノールを除去し、そして、pHが、中性であることが確認した。
既知の濃度のグリセロールを、吸着剤評価のためにこの調製物に添加し、そして、対照を、水溶液からのグリセロール結合について上述したプロトコールの改変を用いて分析した。
試料調製のために、溶液含有吸着剤を濾過して吸着剤を除去した(必要に応じて)。
100μLのアリコートを、100μLのMSTFAに添加した。
この溶液をよく混合し、そして、室温で20分間インキュベートした後、ヘプタン(8ミリリットル)を加えた。
結果を、水溶液からのグリセロール結合について上記したGC−MSプロトコルによる分析のために自動サンプルバイアルに移した。
【0038】
図8は、開発された吸着剤のいくつか、並びに、市販のBD ZorbX Dry Wash Mediaおよび、DudaLite Dry Wash Resin DW−R10とによるバイオディーゼル調製物からのグリセロールの捕捉のデータを示す。この図はまた、商用媒体のナトリウム交換バージョンのデータも示す。
タイプ6の吸着剤は、タイプ3の吸着剤と同様に、商業的吸着剤を劇的に行う。
【0039】
他の標的の捕捉
グリセロールの除去を提供することに加え、ここで説明した吸着剤は、バイオディーゼルの生産と分析に潜在的な関心のある他の標的の捕捉を提供する。
Triton X−100を、界面活性剤のモデルとして使用した。
表3は、水溶液中でのバッチ実験から得られたデータセットのLangmuir−Freundlich適合のパラメータを提供する。
不純物が混じったされたバイオディーゼルサンプル(spiked biodiesel samples)からのTriton X−100の結合もまた、評価された。
図9に示すように、バイオディーゼルからの標的の捕捉は、水溶液からの捕捉と同様であった。
【0040】
預言的な用途
吸収剤は、たとえば、吸着剤を含む容器にバイオディーゼルを導入し、容器から洗浄されたバイオディーゼルを除去することによって、数分から数時間から数日またはそれ以上の長さにわたる様々な時間の間、バイオディーゼルまたは他の液体と接触させることができる。
接触は、連続的、カラムまたはバッチタイプの適用を可能にする、様々な形式で起こり得る。
これらの形式の接触は、圧力を加えた重力駆動プロセスとして起こり得るか、または真空の適用によって駆動され得る。
接触は、攪拌および/または超音波処理のような機械的攪拌を含む撹拌の有無にかかわらず可能である。
接触は、周囲温度または他の温度、たとえば、周囲温度と液体の引火点との間の高温で行うことができる。
1つ以上の異なるタイプの吸着剤を使用することができる。
接触後、吸着剤は、濾過、遠心分離、または当技術分野で公知の他の技術によって分離することができる。
他の実施形態では、固定された吸着剤の上、たとえば、カラム内に、液体(バイオディーゼルなど)を通すことによって、分離を助けることができる。
使用されたものは、洗浄され(たとえば、アルコールおよび/または水性溶液)に溶解し、そして、再使用され、必要に応じて、グリセロールは、再回収する。
【0041】
結論
ここに記載されたタイプの試薬は、バイオディーゼル精製プロセスにおける乾式洗浄媒体の改善の可能性を提供する。
吸着剤構造内のスルホネート基の分布および濃度を制御する、このアプローチは、これらのタイプの吸着剤の開発に利用されている従来のアプローチよりも大きな利点を提供する。これらの材料は、バイオディーゼルの分析においてさらなる可能性を提供する。同様の吸着剤は、標的の濃度および精製をもたらす、固相抽出のために適用されている。
【0042】
バイオディーゼルの精製に必要な水を減らすための現在の努力は、安価な、しばしば使い捨ての媒体に焦点を当てている。ここに記載されている利点は、性能特性が改善された媒体の可能性と、材料の再利用方法を提供する。
これらの特性はまた、固相抽出吸着剤としてのそれらの使用によって、バイオディーゼル分析に適用される分析方法を強化する可能性をも齎す。
【0043】
本明細書で言及される全ての文書は、その文献が引用された、特定の材料および方法を開示および説明する目的のために、参考として組みこまれる。
【0044】
本発明は、好ましいその実施形態に関連して説明してきたが、具体的に記載されていない、追加、削除、修正、および置換が、本発明の精神および範囲から逸脱することなく、なされ得ることが当業者によって理解される。
本明細書で使用される用語は、「手段」という用語がそれと関連して明示的に使用されない限り、「手段プラス機能」の語句として解釈されるべきではない。
【0045】
参考文献
(1) Masoumifard, N.; Arnal, P. M.; Kaliaguine, S.; Kleitz, F. Chemsuschem 2015, 8, 2093-2105.
(2) Bender, M. Bioresource Technology 1999, 70, 81-87.
(3) Zhang, Y.; Dube, M. A.; McLean, D. D.; Kates, M. Bioresource Technology 2003, 90, 229-240.
(4) You, Y. D.; Shie, J. L.; Chang, C. Y.; Huang, S. H.; Pai, C. Y.; Yu, Y. H.; Chang, C. F. H. Energy & Fuels 2008, 22, 182-189.
(5) Araujo, V.; Hamacher, S.; Scavarda, L. F. Bioresource Technology 2010, 101, 4415-4422.
(6) Kulkarni, M. G.; Dalai, A. K. Industrial & Engineering Chemistry Research 2006, 45, 2901-2913.
(7) Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T.-W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenker, J. L. J Am Chem Soc 1992, 114, 10834-10843.
(8) Burleigh, M. C.; Markowitz, M. A.; Spector, M. S.; Gaber, B. P. Environ Sci Technol 2002, 36, 2515-2518.
(9) Hatton, B.; Landskron, K.; Whitnall, W.; Perovic, D.; Ozin, G. A. Accounts Chem Res 2005, 38, 305-312.
(10) Hoffmann, F.; Cornelius, M.; Morell, J.; Froba, M. Angew Chem Int Edit 2006, 45, 3216-3251.
(11) Jayasundera, S.; Burleigh, M. C.; Zeinali, M.; Spector, M. S.; Miller, J. B.; Yan, W. F.; Dai, S.; Markowitz, M. A. J Phys Chem B 2005, 109, 9198-9201.
(12) Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Nature 1992, 359, 710-712.
(13) Li, C.; Yang, J.; Shi, X.; Liu, J.; Yang, Q. Micropor Mesopor Mat 2007, 98, 220-226.
(14) Li, C. M.; Liu, J.; Shi, X.; Yang, J.; Yang, Q. H. J Phys Chem C 2007, 111, 10948-10954.
(15) Margolese, D.; Melero, J. A.; Christiansen, S. C.; Chmelka, B. F.; Stucky, G. D. Chem. Mater. 2000, 12, 2448-2459.
(16) Melde, B. J.; Holland, B. T.; Blanford, C. F.; Stein, A. Chem Mater 1999, 11, 3302-3308.
(17) Zhao, X. S.; Lu, G. Q. J. Phys. Chem. B 1998, 102, 1556-1561.
(18) Loy, D. A.; Shea, K. J. Chem Rev 1995, 95, 1431-1442.
(19) Huo, Q. S.; Margolese, D. I.; Stucky, G. D. Chem Mater 1996, 8, 1147-1160.
(20) Johnson, B. J.; Melde, B. J.; Charles, P. T.; Dinderman, M. A.; Malanoski, A. P.; Leska, I. A.; Qadri, S. A. Talanta 2010, 81, 1454-1460.
(21) Nakanishi, K.; Kobayashi, Y.; Amatani, T.; Hirao, K.; Kodaira, T. Chem Mater 2004, 16, 3652-3658.
(22) Melde, B. J.; Johnson, B. J.; Dinderman, M. A.; Deschamps, J. R. Microporous and Mesoporous Materials 2010, 130, 180-188.
(23) Johnson, B. J.; Melde, B. J.; Peterson, G. W.; Schindler, B. J.; Jones, P. Chemical Engineering Science 2012, 68, 376-382.
(24) Dou, B. J.; Hu, Q.; Li, J. J.; Qiao, S. Z.; Hao, Z. P. Journal of Hazardous Materials 2011, 186, 1615-1624.
(25) Dube, D.; Rat, M.; Beland, F.; Kaliaguine, S. Microporous and Mesoporous Materials 2008, 111, 596-603.
(26) Johnson, B. J.; Malanoski, A. P.; Leska, I. A.; Melde, B. J.; Taft, J. R.; Dinderman, M. A.; Deschamps, J. R. Microporous and Mesoporous Materials 2014, 195, 154-160.
(27) Nakanishi, K.; Amatani, T.; Yano, S.; Kodaria, T. Chem Mater 2008, 20, 1108-1115.
(28) Johnson, B. J.; Leska, I. A.; Melde, B. J.; Siefert, R. L.; Malanoski, A. P.; Moore, M. H.; Taft, J. R.; Deschamps, J. R. Materials 2013, 6, 1403-1419.
(29) Chen, B.; Wang, W. S.; Liu, X.; Xue, W. M.; Ma, X. X.; Chen, G. L.; Yu, Q. S.; Li, R. Industrial & Engineering Chemistry Research 2012, 51, 12933-12939.
(30) International, A.: West Conshohocken, PA, 2013.
(31) Johnson, B. J.; Melde, B. J.; Charles, P. T.; Cardona, D. C.; Dinderman, M. A.; Malanoski, A. P.; Qadri, S. B. Langmuir 2008, 24, 9024-9029.
図1
図2
図3
図4
図5
図6
図7
図8
図9