特許第6837759号(P6837759)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 三菱日立パワーシステムズ株式会社の特許一覧

<>
  • 特許6837759-流動床ボイラ 図000002
  • 特許6837759-流動床ボイラ 図000003
  • 特許6837759-流動床ボイラ 図000004
  • 特許6837759-流動床ボイラ 図000005
  • 特許6837759-流動床ボイラ 図000006
  • 特許6837759-流動床ボイラ 図000007
  • 特許6837759-流動床ボイラ 図000008
  • 特許6837759-流動床ボイラ 図000009
  • 特許6837759-流動床ボイラ 図000010
  • 特許6837759-流動床ボイラ 図000011
  • 特許6837759-流動床ボイラ 図000012
  • 特許6837759-流動床ボイラ 図000013
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6837759
(24)【登録日】2021年2月15日
(45)【発行日】2021年3月3日
(54)【発明の名称】流動床ボイラ
(51)【国際特許分類】
   F23C 10/22 20060101AFI20210222BHJP
   F23G 5/30 20060101ALI20210222BHJP
   F23L 7/00 20060101ALI20210222BHJP
【FI】
   F23C10/22ZAB
   F23G5/30 A
   F23L7/00 C
   F23G5/30 C
【請求項の数】10
【全頁数】20
(21)【出願番号】特願2016-107347(P2016-107347)
(22)【出願日】2016年5月30日
(65)【公開番号】特開2017-215059(P2017-215059A)
(43)【公開日】2017年12月7日
【審査請求日】2019年5月9日
【前置審査】
(73)【特許権者】
【識別番号】514030104
【氏名又は名称】三菱パワー株式会社
(74)【代理人】
【識別番号】110000785
【氏名又は名称】誠真IP特許業務法人
(72)【発明者】
【氏名】永冨 学
(72)【発明者】
【氏名】兵頭 潤
【審査官】 岩▲崎▼ 則昌
(56)【参考文献】
【文献】 米国特許出願公開第2014/0305357(US,A1)
【文献】 実開昭52−114574(JP,U)
【文献】 実開昭61−198813(JP,U)
【文献】 特開2001−336728(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F23C 10/22
F23G 5/30
F23L 7/00
(57)【特許請求の範囲】
【請求項1】
流動化ガスが供給されることで内部に流動層を形成する燃焼室と、
前記燃焼室の内部と外部とを連通するように前記燃焼室の壁面に形成された開口である燃料供給口と、
前記燃料供給口に一端が接続され、前記燃料供給口から前記燃焼室の内部に燃料を供給するための燃料シュート路であって、前記燃料シュート路の底面の勾配が前記燃料供給口との接続部において前記燃焼室に向かって水平または水平に対して下方を向いている燃料シュート路と、
前記燃焼室の前記壁面における前記燃料供給口の下方に設けられ、前記燃焼室に向かって水平または水平に対して上方に向けて搬送用気体を噴射する室内噴射部と、を備え、
前記燃料シュート路の底面には、前記燃料の落下方向に沿って所定の範囲にわたって延在する落下方向凸部が形成され、
前記落下方向凸部は、横断面形状において、頂部から両側に向かって下方に傾斜するように構成されることを特徴とする流動床ボイラ。
【請求項2】
前記搬送用気体は、前記流動床ボイラにおいて生成された蒸気であることを特徴とする請求項1に記載の流動床ボイラ。
【請求項3】
前記室内噴射部は、水平方向に隣接して前記壁面に配列された複数の噴射口からなることを特徴とする請求項1または2に記載の流動床ボイラ。
【請求項4】
前記室内噴射部は、
水平方向に隣接して前記壁面に配列された複数の噴射口からなる上段噴射口群と、
前記上段噴射口群の下方において水平方向に隣接して前記壁面に配列された複数の噴射口からなる下段噴射口群と、からなり、
前記上段噴射口群を構成する前記噴射口の各々は、第1噴射速度で前記搬送用気体を噴射するように構成されており、
前記下段噴射口群を構成する前記噴射口の各々は、前記第1噴射速度よりも速い噴射速度である第2噴射速度で前記搬送用気体を噴射するように構成されていることを特徴とする請求項1または2に記載の流動床ボイラ。
【請求項5】
前記複数の噴射口の各々は、互いに隣接する前記噴射口から噴射される前記搬送用気体の噴出範囲が、水平面上において互いに重なりを有するように構成されることを特徴とする請求項3または4に記載の流動床ボイラ。
【請求項6】
前記複数の噴射口の各々からの前記搬送用気体の噴射速度を周期的に変化させる噴射制御装置と、をさらに備えることを特徴とする請求項3〜5のいずれか1項に記載の流動床ボイラ。
【請求項7】
前記燃料シュート路の底面には、前記燃料シュート路の底面と直交する方向、または直交する方向よりも下方に向けて混合用気体を噴射する路内噴射口が形成されていることを特徴とする請求項1〜6のいずれか1項に記載の流動床ボイラ。
【請求項8】
前記燃料シュート路の底面に突出部が形成されていることを特徴とする請求項1〜7のいずれか1項に記載の流動床ボイラ。
【請求項9】
前記落下方向凸部は、前記燃料シュート路の底面を基準として、前記燃料の落下方向の下方に向かって次第に前記落下方向凸部の高さが高くなるように構成されることを特徴とする請求項1〜8の何れか1項に記載の流動床ボイラ。
【請求項10】
流動化ガスが供給されることで内部に流動層を形成する燃焼室と、
前記燃焼室の壁面に設けられた燃料供給口と、
前記燃料供給口に接続され、前記燃料供給口を介して前記燃焼室の内部に燃料を供給するための燃料シュート路であって、前記燃料シュート路の底面の勾配が前記燃料供給口との接続部において前記燃焼室に向かって水平または水平に対して下方を向いている燃料シュート路と、
前記燃焼室の前記壁面における前記燃料供給口の下方に設けられ、前記燃焼室に向かって水平または水平に対して上方に向けて搬送用気体を噴射する室内噴射部と、を備え、
前記燃料シュート路の底面には、前記燃料の落下方向に沿って所定の範囲にわたって延在する落下方向凸部が形成され、
前記落下方向凸部は、横断面形状において、頂部から両側に向かって下方に傾斜するように構成されることを特徴とする流動床ボイラ。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は流動床ボイラに関し、特に、燃料シュート方式により燃焼室へ燃料を供給する燃料供給装置の改良に関する。
【背景技術】
【0002】
近年、化石燃料の代替としてリサイクル燃料を用いた環境適合性に優れた流動床ボイラが広く用いられている。例えば、気泡型流動床ボイラは、燃焼室の底に充填した流動材(硅砂)を、その下方から高圧の流動化ガスを吹き込むことにより流動状態にして流動層(流動床)を形成し、この流動層に投入された燃料を瞬時に乾燥、焼却するものである。また、リサイクル燃料は、木材チップなどの木質バイオマスや、廃タイヤ、スラッジ、RPF(Refuse Paper and Plastic Fuel)などであり、化石燃料と比べると、水分が比較的多く、形状、大きさ、重さなども不揃であるといった違いがある。
【0003】
ところで、流動床ボイラの燃焼室への燃料供給は、燃料シュート方式、スプレッダ方式など様々な方式により行われるが、これらの燃料供給方式のいずれでも、燃焼室内に形成される流動層の全体に燃料を均一に供給するための工夫がなされている(特許文献1)。これは、流動層の全体における燃料投入量のバラツキが、そのまま燃焼ガスの温度等の変動や、燃焼ガス中の酸素(O)濃度のバラツキにつながり、ダイオキシン、NOx等の有害ガスを発生させる原因になるからである。特に、O濃度が低下した場合には、一酸化炭素(CO)が多量に発生し、CO濃度との相関が高いダイオキシンを発生させる原因ともなる。具体的には、燃料シュート方式では、分配器によって燃焼室の壁面の複数箇所から燃料を供給する。例えば、特許文献1では、燃焼室の燃料供給口に向けて燃料を搬送する搬送管の燃料供給口付近に分散板を設け、この分散板上に形成された多数の仕切壁による多数の分流路に燃料が均等に分流されるように構成している。また、スプレッダ方式では、回転羽根(ロータ)によって流動層における燃料の到達位置(飛距離)を変化させることで、流動層全体に対する燃料の均一な供給を図っている。その他、特許文献2のように、流動層の上方から燃焼室内に臨み燃料を供給する燃料供給管の先端を、一定の周期にて所望の方向に揺動動作させ得るように構成するものもある。
【0004】
また、上記の特許文献1の燃料は石炭であるが、リサイクル燃料を用いた流動床ボイラとして、例えば特許文献3〜4がある。特許文献3では、従来のスプレッダのロータでは均等供給しにくい汚泥のような高含水残渣物の流動層への分散供給を可能とするために、スプレッダのロータの外周に、同じ凹凸形状のブレードをロータの円周方向に所定のピッチで複数個設けることが開示されている。特許文献4には、燃焼室の壁面の燃料供給口から流動層に向かって壁面から突出して設けられた構造体により、木材チップや廃プラスチックなどの密度が小さい燃料が、流動層から吹き出る上向きの空気により巻き上げられることを防止し、流動材と燃料とを確実に混合させることが開示されている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開昭59−173626号公報
【特許文献2】実開昭59−139743号公報
【特許文献3】特開平02−213609号公報
【特許文献4】特開2004−85064号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
上述のように様々な流動層への燃料供給方式が存在するなか、例えば、スプレッダ方式は石炭燃料には適しているが、リサイクル燃料を用いる場合には、水分の多さや不揃いな大きさなどに起因した燃料の詰まりが懸念される。一方で、燃料シュート方式は、そのような多様な燃料への適応や、設備の簡素化の面で最も適しているが、重力落下による供給方式のため、スプレッダ方式と比較すると、流動層全体に対し燃料を均一に供給することは難しい。
この点の解決を図るために、特許文献1のように、分流路が形成された分散板を燃料シュート路に設ける方法が考えられるが、スプレッダ方式と同様、上述のリサイクル燃料の性状に起因して、燃料が分流路に詰まることが懸念される。また、燃料シュート路の数を増やした場合は、流動層全体に対する燃料の均一な供給が可能になる一方で、燃料シュート路及び各燃料シュート路にそれぞれ接続されたコンベア等、燃料の供給搬送設備の設備費が大幅に増加することから、燃料シュート路の数は極力少ないことが望まれる。
【0007】
上述の事情に鑑みて、本発明の少なくとも一実施形態は、燃料シュート方式において、流動層全体に対する燃料のより均一な供給を図ると共に、製造、運用等のコストの低減が可能な流動床ボイラを提供することを目的とする。
【課題を解決するための手段】
【0008】
(1)本発明の少なくとも一実施形態に係る流動床ボイラは、
流動化ガスが供給されることで内部に流動層を形成する燃焼室と、
前記燃焼室の壁面に設けられた燃料供給口と、
前記燃料供給口に接続され、前記燃料供給口を介して前記燃焼室の内部に燃料を供給するための燃料シュート路であって、前記燃料シュート路の底面の勾配が前記燃料供給口との接続部において前記燃焼室に向かって水平または水平に対して下方を向いている燃料シュート路と、
前記燃焼室の前記壁面における前記燃料供給口の下方に設けられ、前記燃焼室に向かって水平または水平に対して上方に向けて搬送用気体を噴射する室内噴射部と、を備える。
【0009】
上記(1)の構成によれば、流動床ボイラの壁面における燃料供給口の下方には、搬送用気体を燃焼室に向けて噴射する室内噴射部が設けられており、燃料シュート路を介して燃料供給口から燃焼室に供給された燃料は、室内噴射部から噴射される搬送用気体上に落下する。この際、搬送用気体は、遠方に向けて燃料を搬送するために、燃料の落下を後押しするような下方ではなく、水平または水平より上方に向けて噴射される。このため、重量や大きさなどが不揃いな燃料(リサイクル燃料)は、燃料の大きさや重さなどに応じた飛距離だけ室内噴射部から噴射される搬送用気体に運ばれて、流動層へ落下する。これにより、燃料を流動層全体にわたり、より均一に供給することができる。これによって、流動層における燃料のより均一な燃焼を実現することができ、NOxやCOの発生を抑制することができる。また、流動層全体に対する燃料の均一な供給を図る場合、例えば、燃料シュート路を燃焼室の壁面に複数設置するよりも、室内噴射部の設置の方が低コストであり、燃料シュート路及び各燃料シュート路に接続されたコンベアや燃料シュート路へ燃料を分配するための分配部といった燃料の供給搬送設備の規模を小さくすることができるため、流動床ボイラの製造や運用(メンテナンス)に要するコストを大幅に低減することもできる。
【0010】
(2)幾つかの実施形態では、上記(1)の構成において、
前記搬送用気体は、前記流動床ボイラにおいて生成された蒸気である。
上記(2)の構成によれば、流動床ボイラの蒸気(自己蒸気)は燃焼室における燃焼反応に寄与しないため、燃料を搬送する途中で燃焼し消失することがない。このため、室内噴射部から空気を噴射するよりも確実に、流動層全体にわたって燃料を分散させて供給することができる。
【0011】
(3)幾つかの実施形態では、上記(1)〜(2)の構成において、
前記室内噴射部は、水平方向に隣接して前記壁面に配列された複数の噴射口からなる。
上記(3)の構成によれば、燃焼室の壁面には、燃料供給口の下方に複数の噴射口が水平方向に隣接して配列される。これによって、燃料供給口の下方に、噴射による勢いを有した搬送用気体が存在する状態をより広範囲にわたって形成することができるため、より確実に、燃料供給口から飛び出してくる燃料を搬送用気体上に落下させ、搬送することができる。
【0012】
(4)幾つかの実施形態では、上記(1)または(2)の構成において、
前記室内噴射部は、
水平方向に隣接して前記壁面に配列された複数の噴射口からなる上段噴射口群と、
前記上段噴射口群の下方において水平方向に隣接して前記壁面に配列された複数の噴射口からなる下段噴射口群と、からなり、
前記上段噴射口群を構成する前記噴射口の各々は、第1噴射速度で前記搬送用気体を噴射するように構成されており、
前記下段噴射口群を構成する前記噴射口の各々は、前記第1噴射速度よりも速い噴射速度力である第2噴射速度で前記搬送用気体を噴射するように構成されている。
上記(4)の構成によれば、下段噴射口群を構成する各々の噴射口からの搬送用気体の噴射速度(第2噴射速度)は、上段噴射口群を構成する各々の噴射口からの搬送用気体の噴射速度(第1噴射速度)よりも強い。このように、垂直方向において上段より下段の噴射速度を速くすることで、室内噴射部によって流動層全体にわたって燃料を分散させて供給することができる。
【0013】
(5)幾つかの実施形態では、上記(3)〜(4)の構成において、
前記複数の噴射口の各々は、互いに隣接する前記噴射口から噴射される前記搬送用気体の噴出範囲が、水平面上において互いに重なりを有するように構成される。
上記(5)の構成によれば、複数の噴射口の各々から噴出される搬送用気体の間に生じる隙間を減じ、搬送用気体が存在する状態をより広範囲に形成することができるため、より確実に、燃料供給口から飛び出してくる燃料を搬送用気体上に落下させ、搬送することができる。
【0014】
(6)幾つかの実施形態では、上記(3)〜(5)の構成において、
前記複数の噴射口の各々からの前記搬送用気体の噴射力を周期的に変化させる噴射速度制御装置と、をさらに備える。
上記(6)の構成によれば、噴射力が大きい時には、噴射力が小さい時に比べて、より遠くへ燃料を搬送することができ、このような噴射力の周期的な変化に伴って、燃料供給口からの燃料の飛距離を変化させることができる。これによって、流動層全体にわたって燃料をより良く分散させて供給することができる。
【0015】
(7)幾つかの実施形態では、上記(1)〜(6)の構成において、
前記燃料シュート路の底面には、前記燃料シュート路の底面と直交する方向、または直交する方向よりも下方に向けて混合用気体を噴射する路内噴射口が形成されている。
上記(7)の構成によれば、路内噴射口から噴射される混合用気体によって塊状の燃料を崩すことができ、燃料シュート路の内部(空間)で燃料を四散(分散)させることができる。このように燃料シュート路の内部で塊状態が解消され四散された燃料は、搬送用気体によって搬送されやすくなるため、流動層全体にわたって燃料をより良く分散させて供給することができる。
【0016】
(8)幾つかの実施形態では、上記(1)〜(7)の構成において、
前記燃料シュート路の底面に突出部が形成されている。
上記(8)の構成によれば、燃料シュート路を落下する際に、突出部を通過することによる弾みで塊状の燃料を崩すことができ、燃料シュート路の内部(空間)で燃料を四散(分散)させることができる。このように燃料シュート路の内部で塊状態が解消され四散された燃料は、搬送用気体によって搬送されやすくなるため、流動層全体にわたって燃料をより良く分散させて供給することができる。
【0017】
(9)幾つかの実施形態では、上記(1)〜(8)の構成において、
前記燃料シュート路の底面には、前記燃料の落下方向に沿って所定の範囲にわたって延在する落下方向凸部が形成され、
前記落下方向凸部は、横断面形状において、頂部から両側に向かって下方に傾斜する。
上記(9)の構成によれば、落下方向凸部は頂部と、頂部から両側に向かって下方に傾斜する傾斜部とを有している。燃料シュート路を直進してきた燃料は、落下方向凸部の傾斜部を通過することにより、傾斜部の傾斜によって落下方向に対して左右方向にも力を受ける。これによって、燃料供給口から燃焼室に燃料が飛び出した際に、左右に広がるように燃料を分散させることができ、流動層全体にわたって燃料をより良く分散させて供給することができる。また、燃料供給口から燃料が左右に広がるように飛び出すことにより、燃料シュート路の数を低減することができる。
【0018】
(10)幾つかの実施形態では、上記(9)の構成において、
前記落下方向凸部は、前記所定の範囲に亘って、前記燃料の落下方向の下方に向かって次第に頂部の高さが高くなるように構成される。
上記(10)の構成によれば、落下方向凸部の燃料シュート路上流側の端と燃料シュート路の底面との接続箇所に段差を生じさせないように、落下方向凸部を燃料シュート路の底面に滑らかに接続することができ、燃料シュート路に燃料が詰まるのを防止することができる。
【発明の効果】
【0019】
本発明の少なくとも一実施形態によれば、燃料シュート方式において、流動層全体に対する燃料のより均一な供給を図ると共に、製造、運用等のコストの低減が可能な流動床ボイラが提供される。
【図面の簡単な説明】
【0020】
図1A】本発明の一実施形態に係る流動床ボイラの燃焼室を、燃料供給口の設けられた壁面に対して横から見た断面模式図であり、搬送用気体に流動化ガスを用いた実施形態を示す図である。
図1B】本発明の一実施形態に係る流動床ボイラの燃焼室を、燃料供給口の設けられた壁面に対して横から見た断面模式図であり、搬送用気体に蒸気を用いた実施形態を示す図である。
図2A】本発明の一実施形態に係る燃料供給口の設けられた燃焼室の壁面の一部を示す模式図であり、図1A図1BのA方向から見た図であり、室内噴射部は複数の噴射口により構成される。
図2B】本発明の一実施形態に係る燃料供給口の設けられた燃焼室の壁面の一部を示す模式図であり、図1A図1BのA方向から見た図であり、室内噴射部は1つの噴射口により構成される。
図3】本発明の一実施形態に係る燃焼室を室内噴出部を通る水平面で切断した断面(BB断面)の模式図であり、任意の燃料シュート路の下方を図1A図1BのB方向から見た図である。
図4A】本発明の一実施形態に係る燃料供給口の設けられた燃焼室の壁面の一部を示す模式図であり、上段噴射口群および下段噴射口群からなる複数の噴射口を示す。
図4B】本発明の一実施形態に係る燃料供給口の設けられた燃焼室の壁面の一部を示す模式図であり、上段噴射口群および下段噴射口群はそれぞれ1つの噴射口からなる。
図5】本発明の一実施形態に係る燃焼室に接続された燃料シュート路の一部の断面を示す模式図であり、接続部付近を拡大した図である。
図6】本発明の一実施形態に係る燃焼室に接続された燃料シュート路の底面の一部を上方から見た模式図である。
図7A】本発明の一実施形態に係る燃料シュート路に形成された突出部を説明するための図であり、燃料シュート路の一部の断面を燃焼室の正面から見た模式図である。
図7B】本発明の一実施形態に係る燃料シュート路に形成された突出部を説明するための図であり、燃料シュート路の一部の断面を燃焼室の正面から見た模式図である。
図8】本発明の一実施形態に係る燃料シュート路に設けられた落下方向凸部を説明するための模式図であり、(a)正面図、(b)側面図、(c)底面の平面図となる。
【発明を実施するための形態】
【0021】
以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
【0022】
図1Aは、本発明の一実施形態に係る流動床ボイラ1の燃焼室2を、燃料供給口3の設けられた壁面21に対して横から見た断面模式図であり、搬送用気体G1に流動化ガスGaを用いた実施形態を示す図である。図1Bは、本発明の一実施形態に係る流動床ボイラ1の燃焼室2を、燃料供給口3の設けられた壁面21に対して横から見た断面模式図であり、搬送用気体G1に蒸気を用いた実施形態を示す図である。図2A図2Bは、燃料供給口3が設けられた燃焼室2の壁面21の一部を示す模式図であり、図1A図1BのA方向から見た図に対応する。また、図3は、本発明の一実施形態に係る燃焼室2を、室内噴射部5を通る水平面で切断した断面(BB断面)の模式図であり、任意の燃料シュート路4の下方を図1A図1BのB方向から見た図に対応する。図1A図3の流動床ボイラ1は気泡型流動床ボイラとなっている。
【0023】
図1A図3に示されるように、流動床ボイラ1は、燃焼室2と、燃料供給口3と、燃料シュート路4と、室内噴射部5と、を備える。後述するように、流動床ボイラ1への燃料供給は燃料シュート方式で行われており、燃料シュート路4を通って燃料供給口3から燃焼室2に燃料Fが供給される。また、流動床ボイラ1では、NOxやCO、ダイオキシン類の有害ガスの発生を抑制するために、1次空気(流動化ガスGa)によって形成される流動層Lにおいて低空気比で燃料Fを燃焼させると共に、流動層Lでの燃焼により発生した排ガスを流動層Lの上方から燃焼室2へ供給される2次空気Gbにより高空気比で燃焼させる。こうして燃焼室2から排出される高温の排ガスは、燃焼室2の後段に配置された過熱器や節炭器などの伝熱管群12にて熱交換され、熱交換より回収された熱エネルギーは発電等に利用される。上記の過熱器は流動層Lに設置されても良く、過熱器において流動層Lでの燃焼による熱と熱交換される。そして、熱交換より回収された熱エネルギーは発電等に利用される。例えば、過熱器で生成された蒸気は、タービン(不図示)などに送気される。
以下、流動床ボイラ1が備える上述した構成の各々について説明する。なお、図面において、垂直方向Vの下方は重力の向きに一致し、水平方向Hは垂直方向Vと直交する水平面の方向となる。
【0024】
燃焼室2は、流動化ガスGaが供給されることで内部に流動層Lを形成する。図1A図1Bに例示されるように、燃焼室2は直立するように設置され、所定量の流動材(硅砂などの不活性粒子又は石灰石などの脱硫剤)を内部に収容する。また、燃焼室2の底部22には、流動化ガスGa(1次空気)を供給する空気ノズル(不図示)が設けられる。そして、燃焼室2の底部22から流動化ガスGaを燃焼室2の内部に吹き上げるように供給することで、流動材は所定の高さまで浮遊し、激しく動き回りながら流動層L(流動床)を形成する。なお、供給された流動化ガスGaは、底部22に設けられた不図示の風室や多孔板を経て吹き上げられても良い。
【0025】
図1A図3に示される実施形態では、燃焼室2では、流動化ガスGaにより流動層Lを還元状態(酸素が少ない状態)かつ800度(℃)〜850度(℃)などの温度に保つことでNOxの発生を抑制すると共に、流動層Lの上方から2次空気Gbを供給することで流動層Lの上方に形成した800度以上の温度領域によりCOを除去し、有害物質の発生を抑制している。また、流動化ガスGaは1次空気供給管13を介して燃焼室2に供給されている。2次空気Gbは、1次空気供給管13から分岐された2次空気供給管14によって、燃焼室2の壁面21に設けられた2次空気導入ノズル15に供給され、2次空気導入ノズル15から燃焼室2の内部に供給されている。なお、図1A図1Bには1つの2次空気導入ノズル15が図示されているが、複数の2次空気導入ノズル15が燃焼室の壁面(壁面21や対向壁面23など)に設けられることで、オーバーファイアエア(OFA)やアディショナルエア(AA)として2次空気Gbが供給されても良い。
【0026】
燃料供給口3は、燃焼室2の壁面21に設けられる。換言すれば、燃料供給口3は、燃焼室2の内部と外部とを連通するように壁面21に形成された開口である。燃料供給口3は、燃焼室2の内部に形成される流動層Lの上面より1〜2m程度などの上方に設けられており、この燃料供給口3から燃焼室2の内部に燃料Fが供給される。流動床ボイラ1の燃料Fは、木材チップなどの木質バイオマスや、廃タイヤ、スラッジ、RPF(Refuse Paper and Plastic Fuel)などからなる(リサイクル燃料)。燃料供給口3から燃焼室2に供給された燃料Fは、流動層Lの中で流動材と激しく衝突を繰り返し、効果的に燃焼する。図1A図3に示される実施形態では、燃料供給口3は、後述するように円筒状の燃料シュート路4を接続するために楕円形となっており、楕円の長軸が垂直方向Vに沿うように燃焼室2の壁面21に設けられている(図2A図2B参照)。
【0027】
燃料シュート路4は、燃料供給口3に接続され、燃料供給口3を介して燃焼室2の内部に燃料Fを供給するための通路である。図1A図3に示されるように、燃料シュート路4は内部に空洞を有することで燃料Fの通路を形成する。また、図1A図3に示されるように、燃料シュート路4の底面41の勾配が燃料供給口3との接続部31において燃焼室2に向かって水平または水平に対して下方を向いている。詳述すると、燃料シュート路4は燃料供給口3の縁部と接続される接続部分(接続部31)から、水平方向Hに対して所定の設置角度θsで上方に向けて直線状に延びるよう、燃焼室2の壁面21に接続されている。これによって、燃料シュート路4は、水平方向Hに対して勾配を有しており、この燃料シュート路4の底面41の勾配は燃料供給口3との接続部31において燃焼室2に向かって、水平に対して下方を向くようになっている。換言すれば、図1A図1Bのような側面視において、燃料シュート路4の底面41に沿った延長線41eを燃焼室2の内部に向けて引いた場合に、この延長線41eが水平方向Hに対して下方を向いている。このように、燃料シュート路4が燃焼室2の壁面21に斜めに傾斜させて設置されることで、図示しない燃料シュート路4の上流側の投入口から投入された燃料Fは、図1A図1Bの矢印(落下方向Fd)で示されるように、燃料シュート路4の内部を滑り落ちるように重力により落下し、下流側の燃料供給口3から燃焼室2の内部に供給される。燃料シュート路4の設置角度θsは、燃料Fの性状や形状等を考慮して、燃料シュート路4を燃料Fが詰まることなく落下する角度となる。図1A図3に示される実施形態では、燃料シュート路4は円筒状の形状を有しており、燃料シュート路4の底面41の断面は円弧状となっており、上記の延長線41eは、燃料シュート路4の断面円弧状の底面41の下端41b(垂直方向Vの最も下方に位置する端部)に沿って引かれることになる。また、燃料シュート路4の一端は、設置角度θsで燃料供給口3と連通するように接続するために、設置角度θsで斜めに切断した形状となるため、楕円形に加工されている。
【0028】
室内噴射部5は、流動層Lの上方において、燃焼室2の壁面21における燃料供給口3の下方に設けられ、燃焼室2に向かって水平または水平に対して上方に向けて搬送用気体G1を噴射する。換言すれば、室内噴射部5は、燃焼室2の内部と外部とを連通するように壁面21に形成された開口であり、燃料供給口3から燃焼室2の内部に飛び出すように落下してくる燃料Fを燃料供給口3からより離れた位置に搬送する(より遠方に飛ばす)ために搬送用気体G1を噴射する。さらに、搬送用気体G1の噴射の向きを水平または水平に対して上方に向けることで、搬送用気体G1によって燃料Fの落下を後押しするようなことなく、燃料Fをより遠方に搬送することを可能としている。詳述すると、図1A図1Bに示されるように、燃料Fは、燃料シュート路4を落下して燃料供給口3から飛び出した方向で流動層Lに向けて重力落下する。この際、流動層Lの上方では搬送用気体G1が噴射されているため、流動層Lに到達する前に、室内噴射部5から噴射される搬送用気体G1の噴出範囲R(後述)に先に到達する。これによって、燃料Fは、搬送用気体G1がない場合の流動層Lの落下地点よりもさらに遠方に、搬送用気体G1の噴射方向沿って飛ばされることになり、流動層Lにおける燃料Fの落下地点が搬送用気体G1によって変化されることになる。
【0029】
図1A図3に示される実施形態では、燃料供給口3が設けられた壁面21の対向壁面23付近まで燃料Fを飛ばすことが可能となるように、噴射の向きや噴射力を調整している。これによって、対向壁面23に燃料シュート路4を設ける必要がなくなる。このため、上記の対向壁面23に燃料シュート路4を設けていない(図1A図1B参照)。また、搬送用気体G1は、流動化ガスGaを燃焼室2に供給するための1次空気供給管13と室内噴射部5とを気体搬送管52を介して接続することで用意されている(図1A参照)。
【0030】
また、図1A図3に示される実施形態では、図2A図3に示されるように、室内噴射部5は、複数の噴射口5aにより構成されている。また、図2Aに示されるように、複数の噴射口5aが、水平方向Hに隣接して燃焼室2の壁面21に配列されている(図2A図3の例示では3つ)。より詳細には、図3の例示では、複数の噴射口5aは、楕円状の燃料供給口3の短軸の端から端の下方の範囲内に設けられており、燃料供給口3の下方の全域を搬送用気体G1の噴出範囲Rがカバーするように図っている。また、各々の噴射口5aには、搬送用気体G1を供給するための気体搬送管52が接続されている。図3の例示では、途中まで1本であった気体搬送管52は、燃焼室2に設けられた噴射口5aの数だけ途中から分岐され、全ての噴射口5aにそれぞれ接続されている。そして、搬送用気体G1は、気体搬送管52を通って噴射口5aまで流れた後に、各々の噴射口5aから噴出されるよう構成されている。このように複数の噴射口5aから搬送用気体G1が噴射されることで、燃料シュート路4の下方に噴射による勢いを有した搬送用気体G1が存在する状態を広範囲にわたって形成することができるため、より確実に燃料供給口3から飛び出してくる燃料Fを搬送用気体G1上に落下させ、搬送することができる。なお、噴射口5aの数は1以上であれば良い。例えば、噴射口5aの数が1つである場合には、図2Bに示されるように、室内噴射部5は、1つの噴射口5aからの搬送用気体G1の噴出範囲Rが燃料供給口3の下方の全域をカバーするように設けられても良い。
【0031】
また、図1A図3に示される実施形態では、室内噴射部5を構成する1以上の噴射口5aは、それぞれノズル(室内噴射ノズル51)の吹き出し口により構成されており、気体搬送管52から供給される搬送用気体G1を室内噴射ノズル51から燃焼室2に噴射するよう構成されている。そして、室内噴射ノズル51の形状や設置角度等により、搬送用気体G1の噴射方向や、噴射量、噴射速度が調整されている。他の幾つかの実施形態では、室内噴射ノズル51を設けることなく、噴射口5aから搬送用気体G1が水平等に噴射されても良い。噴射口5aの水平方向Hに対する噴射角度については、0度〜45度の範囲の何れかの角度に設定されても良く、上記の45度は、単純なモデルにおける理論上もっとも遠方に飛ばすことの可能な角度として例示した値となる。これによって、特に気泡型流動床ボイラにおいて、上記の噴射角度を大きくし過ぎることにより、燃料供給口3から供給される大小様々な燃料のうちの比較的小さな燃料を搬送用気体G1によって吹き上げてしまうといった状況の発生を防止することで、燃焼効率の低下を防止することができる。
【0032】
また、室内噴射部5からの搬送用気体G1の噴射量や噴射速度は、室内噴射ノズル51の有無にかかわらず、他の方法により調整しても良い。例えば、気体搬送管52にダンパ55(バルブ)を設け、ダンパ55の開度により調整しても良い。気体搬送管52に、搬送用気体G1を室内噴射部5に向けて送風する送風機(不図示)を設け、送風機の出力を調整しても良い。あるいは、流動床ボイラ1は、室内噴射部5(複数の噴射口5aの各々)からの搬送用気体G1の噴射を制御可能な噴射制御装置56をさらに備えても良い(図3参照)。例えば、噴射制御装置56が、上記のダンパ55や送風機(不図示)などの室内噴射部5からの噴射量や噴射速度を調整可能な機器に接続され(図3ではダンパ55)、ダンパ55の開度や送風機(不図示)の出力などを例えば周期的に変化させても良い。噴射速度が大きい時には、噴射速度が小さい時に比べて、より遠くへ燃料を搬送することができ、噴射速度の周期的な変化に伴って、燃料供給口3からの燃料Fの飛距離を変化させることができる。また、噴射量が多い時には、噴射量が少ない時に比べて、より多くの燃料を搬送することができ、噴射量の周期的な変化に伴って、燃料供給口3からの燃料Fの搬送量を変化させることができる。あるいは、これらを複数組み合わせることにより、室内噴射部5の搬送用気体G1の噴射量や噴射速度の調整を行っても良い。
【0033】
なお、図1A図3には、1つの燃料シュート路4が示されているが、燃焼室2に接続される燃料シュート路4の数は1以上であっても良い。燃料シュート路4を複数設ける場合には、燃焼室2の壁面21に複数の燃料供給口3が設けられ、その各々に対して燃料シュート路4がそれぞれ接続されることになる。また、燃料供給口3および燃料シュート路4が設けられる壁面21は1つに限られず、対向する2つの面であったり、隣り合う2つの面であったり、全ての面に設けるなどしても良い。燃料シュート路4の1つの壁面21に設置可能な数は、燃焼室2の大きさにも依存する。例えば、図1A図3に示される実施形態では、流動床ボイラ1は、燃焼室2の1つの壁面21に4つの燃料供給口3が、垂直方向Vの同じ位置に、水平方向Hで等間隔に設けられており、各々の燃料供給口3に燃料シュート路4がそれぞれ接続されている。また、4つの燃料供給口3の各々の下方には、1以上の室内噴射部5がそれぞれ設けられており、これによって、流動層全体にわたって燃料Fをより広範囲に分散させて供給することが可能となる。
【0034】
上記の構成によれば、流動床ボイラ1の壁面21における燃料供給口3の下方には、搬送用気体G1を燃焼室2に向けて噴射する室内噴射部5が設けられており、燃料シュート路4を介して燃料供給口3から燃焼室2に供給された燃料Fは、室内噴射部5から噴射される搬送用気体G1上に落下する。この際、搬送用気体G1は、燃料Fの落下を後押しするような下方ではなく、遠方に向けて燃料Fを搬送するために水平または水平より上方に向けて噴射される。このため、重量や大きさなどが不揃いな燃料F(リサイクル燃料)は、燃料Fの大きさや重さなどに応じた飛距離だけ室内噴射部5から噴射される搬送用気体G1に運ばれて、流動層Lへ落下することになる。このように、室内噴射部5によって流動層全体にわたってより広範囲に燃料Fを分散させて供給することができ、流動層全体に対する燃料のより均一な供給を図ることができる。これによって、流動層Lにおける燃料Fのより均一な燃焼を実現することができ、NOxやCOの発生を抑制することができる。また、流動層全体に対する燃料の均一な供給を図る場合、例えば、燃料シュート路4を燃焼室2の壁面21に複数設置するよりも、室内噴射部5の設置の方が低コストであり、燃料シュート路4及び各燃料シュート路4に接続されたコンベアや燃料シュート路へ燃料Fを分配するための分配部といった燃料の供給搬送設備の規模を小さくすることができるため、流動床ボイラ1の製造や運用(メンテナンス)に要するコストを大幅に低減することもできる。
【0035】
また、図1A図3に示される実施形態では、上述したように、搬送用気体G1は、1次空気供給管13から気体搬送管52を分岐させることにより用意している(図1A参照)。他の幾つかの実施形態では、気体搬送管52から分岐された2次空気供給管14から、気体搬送管52を分岐させることにより、2次空気Gbの一部を搬送用気体G1として用いても良い。このように、流動化ガスGaや2次空気Gbを搬送用気体G1として利用することで、比較的容易に搬送用気体G1を準備することができる。
【0036】
その他の幾つかの実施形態では、図1Bに示されるように、搬送用気体G1は、流動床ボイラ1において生成された蒸気(自己蒸気)となっている。すなわち、燃焼室2における燃料Fの燃焼により生じた排ガスが、流動床ボイラ1が備える過熱器で熱交換されることで、蒸気が生成される。このように、流動床ボイラ1が自身で生成した蒸気を、伝熱管群12から配管を分岐させて気体搬送管52に接続することで、自己蒸気を搬送用気体G1として利用する。図1Bに示される実施形態では、気体搬送管52は、燃焼室2の後段に配置された伝熱管群12から配管が分岐されている。この構成によれば、流動床ボイラ1の蒸気は燃焼室2における燃焼反応に寄与しないため、燃料Fを運搬する途中で燃焼し消失することがない。このため、室内噴射部5から空気を噴射するよりも確実に、流動層全体にわたって燃料Fを分散させて供給することができる。
【0037】
また、図1A図3に示される実施形態では、図2Aに示されるように、室内噴射部5を構成する複数の噴射口5aは、水平方向Hに一列に配列されている。他の幾つかの実施形態では、図4A図4Bに示されるように、燃焼室2の壁面21において燃料供給口3の下方に設けられる室内噴射部5は、水平方向Hに配列された1以上の噴射口5aを1段として、垂直方向Vに沿って設けられる複数の段数からなっても良い。図4A図4Bは、それぞれ、本発明の一実施形態に係る燃料供給口3の設けられた燃焼室2の壁面21の一部を示す模式図であり、上段噴射口群54aおよび下段噴射口群54bからなる室内噴射部5を示す。図4Aに示されるように、室内噴射部5は、水平方向Hに隣接して燃焼室2の壁面21に配列された複数の噴射口5aからなる上段噴射口群54aと、上段噴射口群54aの下方において水平方向Hに隣接して燃焼室2の壁面21に配列された複数の噴射口5aからなる下段噴射口群54bと、からなっても良い。あるいは、図4Bに示されるように、室内噴射部5は、上段噴射口群54aおよび下段噴射口群54bはそれぞれ1つの噴射口5aからなっても良い。また、上段噴射口群54aを構成する1以上の噴射口5aの各々は、第1噴射速度で搬送用気体G1を噴射するように構成されており、下段噴射口群54bを構成する1以上の噴射口5aの各々は、第1噴射速度よりも速い噴射速度である第2噴射速度で搬送用気体G1を噴射するように構成されても良い。
【0038】
図4Aに示される実施形態では、上段噴射口群54aおよび下段噴射口群54bは、それぞれ3つの噴射口5aから構成されており、全体として、合計で6つの噴射口5aが燃焼室2の壁面21に設けられている。また、上段噴射口群54aおよび下段噴射口群54bは、各々の群に属する噴射口5a同士は、垂直方向Vの同じ位置において、水平方向Hで直線状に並ぶように配列されている。ただし、上段噴射口群54aおよび下段噴射口群54bの配置はこの実施形態には限定されず、例えば、上段噴射口群54aおよび下段噴射口群54bは、各々の群に属する噴射口5a同士は、垂直方向Vの同じ位置において、水平方向Hで直線状に並んでいなくても良く、水平方向にずらされて配列されても良い。また、室内噴射部5は、3以上の複数の段からなっても良い。
【0039】
上記の構成によれば、下段噴射口群54bを構成する各々の噴射口5aからの搬送用気体G1の噴射速度(第2噴射速度)は、上段噴射口群を構成する各々の噴射口5aからの搬送用気体の噴射速度(第1噴射速度)よりも速い。このように、垂直方向において上段より下段の噴射力を大きくすることで、室内噴射部5によって流動層全体にわたって燃料を分散させて供給することができる。なお、他の幾つかの実施形態では、第1噴射速度と第2噴射速度とは同じでも良いし、第1噴射速度よりも第2噴射速度が遅くても良く、これらの場合であっても、搬送用気体G1によって、流動層全体にわたって燃料Fを分散させて供給することができる。
【0040】
また、幾つかの実施形態では、図3に示されるように、上述した室内噴射部5を構成する複数の噴射口5aの各々は、互いに隣接する噴射口5aから噴射される搬送用気体G1の噴出範囲Rが水平面上において互いに重なりを有するように構成される。通常、搬送用気体G1は、噴射口5aから所定の噴射方向に噴射されると、噴射方向の上下左右に広がりながら、また、噴射口5aからの距離に従って勢いを失いながら噴射方向に進んでいく。ここでは噴出範囲Rは、噴射口5aから噴射された際の勢いが完全に消失していない範囲を示す。図1A図3に示される実施形態では、図3に示されるように、燃焼室2の壁面21には、3つの室内噴射ノズル51(51a〜51c)によって、3つの噴射口5aが水平方向Hに沿って等間隔に配列して設けられており、隣接する室内噴射ノズル51(51a〜51c)同士(隣接する噴射口5a同士)の噴出範囲R(Ra〜Rc)が少なくとも一部分において重なっている。具体的には、第1室内噴射ノズル51aの噴出範囲Raは、第1室内噴射ノズル51a(壁面21)から離れた先端側の噴射方向の右端において、隣接する第2室内噴射ノズル51bの噴出範囲Rbの先端側の左端と重なっており、重複部分Poが形成されている。また、第2室内噴射ノズル51bの噴出範囲Rbは、第2室内噴射ノズル51bの先端側の噴射方向の右端において、隣接する第3室内噴射ノズル51cの噴出範囲Rcの先端側の左端と重なっており、重複部分Poが形成されている。
【0041】
逆に、隣接する2つの室内噴射ノズル51の間(51aと51bとの間、51bと51cとの間)には、噴出範囲Rの重複部分Poよりも壁面21側において隙間Sが形成される。この隙間Sは、隣接する噴出範囲R同士の重なりが大きくなるのに従って狭くなる。隙間Sが狭くなるに従って隙間Sに落下する燃料Fの割合は当然少なくなり、搬送用気体G1が吹き付けられることなくそのまま流動層Lに落下する燃料Fの割合を少なくすることになる。
【0042】
上記の構成によれば、複数の室内噴射ノズル51の各々から噴出される搬送用気体G1の間に生じる隙間Sを減じることができ、室内噴射部5(噴射口5a)から搬送用気体G1が噴射される噴出範囲R内に、燃料供給口3から飛び出してくる燃料Fをより確実に落下させることができる。
【0043】
次に、上述した構成における燃料シュート路4に関する他の幾つかの実施形態について説明する。図5は、本発明の一実施形態に係る燃焼室2に接続された燃料シュート路4の一部の断面を示す模式図であり、接続部31付近を拡大した図である。図6は、本発明の一実施形態に係る燃焼室2に接続された燃料シュート路4の底面41の一部を上方から見た模式図である。図7A図7Bは、それぞれ、本発明の一実施形態に係る燃料シュート路4に形成された突出部7を説明するための模式図であり、燃料シュート路4の一部の断面を燃焼室2の正面から見た図である。また、図8は、本発明の一実施形態に係る燃料シュート路4に設けられた落下方向凸部8を説明するための模式図であり、(a)正面図、(b)側面図、(c)底面の平面図となる。以下に説明する実施形態は、いずれも、燃料シュート路4の内部(空間)に燃料Fを四散(分散)させるための構成となる。
【0044】
幾つかの実施形態では、図5に示されるように、燃料シュート路4の底面41には、燃料シュート路4の底面41と直交する方向、または直交する方向よりも下方に向けて混合用気体G2を噴射する路内噴射口6が形成されている。混合用気体G2の噴射は、燃料シュート路4の内部を通過する燃料Fに吹き付けられることで、燃料供給口3に燃料Fが到達する前に燃料Fの塊を崩し、燃料シュート路4の内部で燃料Fを四散(分散)させた状態にすることを目的とする。燃料Fは、混合用気体G2が吹きつけられることで、その衝撃や、燃料シュート路4の壁や周囲の他の燃料Fに衝突することで崩され、四散する。混合用気体G2は、例えば、流動化ガスGaや2次空気Gb、搬送用気体G1などを利用しても良く、流動化ガスGaを供給する1次空気供給管13や、搬送用気体G1を供給する気体搬送管52、2次空気Gbを供給する2次空気供給管14などの少なくとも1つから配管63を分岐させることで、混合用気体G2を路内噴射口6に供給しても良い。
【0045】
図5に示される実施形態では、燃料シュート路4の底面41には、ノズル(路内噴射ノズル61)が設けられており、混合用気体G2を路内噴射ノズル61から燃料シュート路4の内部に噴射するよう構成されている。また、燃料シュート路4は、上述したように、燃焼室2の壁面21に対して所定の設置角度θsで斜め上方に傾斜して設けられるが、図5に示されるように側面視において、路内噴射ノズル61は、燃料シュート路4の底面41の法線N(直交する方向)の方向、もしくは法線Nに対して所定の角度θ1だけ下方に向けられている。このように、路内噴射口6からの噴射角度が、燃料シュート路4の底面41の法線Nに対して上方を向けられないことで、燃料シュート路4を落下してくる燃料Fの勢いを減じることなくその目的を達するように構成されている。
【0046】
また、図5に示される実施形態では、図5に示されるように、複数の路内噴射口6(図5では路内噴射ノズル61)が、円筒状の燃料シュート路4の底面41の下端41bにおいて、燃料シュート路4の長手方向(燃料Fの落下方向Fd)に沿って間隔を開けて配置されている。また、複数の路内噴射口6の各々は、混合用気体G2を同じ噴射角度で噴射するよう構成されている。ただし、この実施形態には限定されず、他の幾つかの実施形態では、複数の路内噴射口6の各々の噴射の角度θ1は全て同じでなくても良い。なお、路内噴射口6の数は1以上であれば良い。
【0047】
また、図6の(a)〜(b)に示されるように、複数の路内噴射口6の少なくとも1つは、燃料シュート路4の短手方向(通路の幅方向)に配置されても良い。具体的には、図6(a)では、2つの路内噴射口6が、通路の中央(断面が円弧状の場合には下端41b)を挟んで幅方向に並んで配置されている。図6(b)では、通路の中央を挟んで幅方向に並んだ一対の路内噴射口6が、燃料シュート路4の長手方向に2つ配置されると共に、この2つの一対の路内噴射口6の間には、1つの路内噴射口6が配置されている。この場合には、燃料シュート路4の底面41の中央を進む燃料Fと、中央から幅方向に離れた位置を進む燃料Fとで、吹き付けられる混合用気体G2の量を異ならせることができる。また、図6(c)では、1つ路内噴射口6の形状を通路の幅方向で変えることにより、図6(b)と同様に、幅方向の位置における噴射速度を調整している。図6(c)では、路内噴射口6は、通路の中央から幅方向に向かって開口が大きくなるようになっており、中央で最も噴射速度が速くなるように構成されている。なお、図6(a)〜図6(c)に示される構成をセットとして、これらのセットが、燃料シュート路4の長手方向(燃料Fの落下方向Fd)に沿って等間隔などの間隔を開けて設けられても良い。
【0048】
上記の構成によれば、路内噴射口6から噴射される混合用気体G2によって燃料Fの塊を崩すことができ、燃料シュート路4の内部(空間)に燃料Fを四散(分散)させることができる。また、このように燃料シュート路4の内部で四散された燃料Fが、燃料供給口3から燃焼室2の内部に供給され、搬送用気体G1によって搬送されることで、流動層全体にわたって燃料Fを分散させて供給することができる。
【0049】
他の幾つかの実施形態では、図7A図7Bに示されるように、燃料シュート路4の底面41に突出部7が形成されている。この突出部7は、燃料Fの落下方向Fdに対して交差する方向に沿って延在する。換言すれば、燃料シュート路4の底面41を落下方向Fdを横断するように延在する。図7A図7Bに示される実施形態では、燃料Fは、円筒状の燃料シュート路4の長手方向(燃料Fの落下方向Fd)に沿って燃料シュート路4を燃料供給口3に向けて落下するが、燃料シュート路4の底面41には、長手方向に沿って設けられた突出部7として形成されている。このため、燃料Fは、燃料シュート路4の突出部7を通過する際には、突出部7と衝突により向きを様々に変えるとともに、燃料シュート路4の底面41をバウンドしながら落下する可能性が高くなる。図7Aに示される実施形態では、突出部7は、複数の凹凸状の起伏7aの山の部分(凸状の部分)により形成されている。図7Bに示される実施形態では、突出部7は、複数の板状部材7bが間隔を設けて燃料シュート路4の底面41から突出することで形成されており、この板状部材7bは、水平に対して下方を向くように燃料シュート路4の底面41に形成される。なお、突出部7を構成する上記の起伏7aや板状部材7bは1以上であれば良いし、突出部7は、燃料シュート路4の底面41の少なくとも一部に設ければ良い。これによって、燃料Fの塊を崩すことができ、燃料シュート路4の内部(空間)に燃料Fを四散(分散)させることができる。また、このように燃料シュート路4内で四散された燃料が、燃料供給口3から燃焼室2内に供給され、搬送用気体G1によって搬送されることで、流動層全体にわたって燃料Fを分散させて供給することができる。
【0050】
その他の幾つかの実施形態では、図7A図7Bに示されるように、上述した路内噴射口6および突出部7を燃料シュート路4の底面41に一緒に形成しても良い。図7A図7Bに示される実施形態では、燃料シュート路4の底面41において、路内噴射口6が設けられた位置に突出部7も一緒に設けられている。なお、図7Aでは、路内噴射口6は、突出部7を形成する複数の起伏7aの複数の谷の部分(凹状の部分)の一部に設けられているが、全ての谷の部分にそれぞれ設けられても良いし、あるいは、突出部7の複数の山の部分の少なくとも一部に設けられても良い。図7Bでは、路内噴射口6から噴射される混合用気体G2によって燃料Fの塊を崩すことを阻害することがないように、板状部材7bが設けられていない部分に路内噴射口6は設けられている。また、路内噴射口6は、燃料シュート路4の底面41において突出部7が設けられていない部分に設けられても良い。同じ位置に設けられる場合には、燃料シュート路4の底面41に、長手方向に沿って設けられた突出部7に対して、複数の路内噴射口6を長手方向に沿って所定の間隔で設けても良い。
【0051】
その他の幾つかの実施形態では、図8に示されるように、燃料シュート路4の底面41には、燃料Fの落下方向Fdに沿って所定の範囲Psにわたって延在する落下方向凸部8が形成される。この落下方向凸部8は、図8(a)に示されるように、横断面形状において、燃料シュート路4の中央に位置する頂部81と、頂部81から両側に向かって下方に傾斜する傾斜部82と、を有する。図8に示される実施形態では、落下方向凸部8は板状の分散板によって形成されており、図8(a)に示されるように、横断面形状において分散板が凸状(くの字状)の形状になるように、2枚の板状の部材が角度を持って固定され、あるいは、1枚の板状の部材が折り曲げられるなどして形成される。また、円筒状の燃料シュート路4の横断面形状は円形をしており、その円心から垂直方向の下方に上記の凸状の分散板の頂部81が形成されると共に、傾斜部82は、頂部81と燃料シュート路4の底面41とを連結している。図8(a)では、落下方向凸部8は横断面形状において、くの字状の形状を有しているが、これには限定されず、他の実施形態では、落下方向凸部8の横断面形状は、円弧状でも良いし、頂部81で平坦となる部分を有しても良い。なお、落下方向凸部8は、燃料シュート路4の底面41を通路の内部に向けて押しつぶすように加工することにより形成されても良い。
【0052】
また、落下方向凸部8は、燃料シュート路4と燃料供給口3との接続部31から燃料シュート路4の長手方向に沿った所定の範囲Psまで設けられている(図8(b)(c)参照)。図8に示される実施形態では、図8(b)に示されるように、所定の範囲Psに亘って、燃料シュート路4の底面41を基準として、燃料Fの落下方向Fdの下方に向かって次第に落下方向凸部8の高さTが高くなるように構成される。図8(b)に示される実施形態では、落下方向凸部8は、燃料供給口3と燃料シュート路4との接続部31と、この接続部31から所定の範囲Ps離れた位置との間に設けられている。ここで、上記の落下方向凸部8の高さTは、燃料シュート路4の底面41の下端41bを基準として、この下端41bから頂部81までの、燃料シュート路4の底面41の下端41bにおける法線方向に沿った距離となっている。換言すれば、図8(b)に示されるように、側面視において、落下方向凸部8の高さTは、燃料シュート路4の底面41との最も上流側の接続位置Cから燃料供給口3(接続部31)に向かっていくにつれて、次第に高くなり、接続部31側の端で最大となっている。なお、同様に、燃料シュート路4の底面41の下端41bと、傾斜部82と燃料シュート路4の底面41との接続位置C、との距離も大きくなっている。これによって、落下方向凸部8は、燃料供給口3から燃料シュート路4の長手方向に所定の範囲Ps離れた端(燃料シュート路4の上流側の端)で生じる段差がないように、あるいは小さくなるように滑らかに燃料シュート路4の底面41と接続されており、燃料シュート路4に燃料Fが詰まる事態の防止を図っている。より詳細には、図8(c)に示されるように、燃料シュート路4を燃料供給口3側に向かうに従い、燃料シュート路4の円弧状の底面41と傾斜部82との接続位置Cは、頂部81から燃料シュート路4の短手方向(燃料Fの落下方向Fdに対して交差する方向)に離れている。
【0053】
また、落下方向凸部8の傾斜部82の燃料Fが通過する面(燃料通過面)は、平面状あるいは曲面上に形成されているが、例えば、傾斜部82の燃料通過面において、燃料Fの落下をガイドするために、燃料シュート路4の長手方向に沿って隔壁を設けると、水分が比較的多く、形状、大きさ、重さなども不揃いなリサイクル燃料などの燃料Fが隔壁間に詰まる可能性がある。その点、本実施形態では、落下方向凸部8の傾斜部82には隔壁等を形成しないことで、燃料シュート路4に燃料Fが詰まることのないようにしている。
【0054】
上記の構成によれば、落下方向凸部8は頂部81と傾斜部82とを有している。また、燃料シュート路4を直進してきた燃料Fは、落下方向凸部8の傾斜部82を通過することにより、傾斜によって落下方向Fdに対して左右となる横方向に力を受ける。これによって、燃料供給口3から燃焼室2に燃料Fが飛び出した際に、左右に広がるように燃料Fを分散させることができ、流動層全体にわたって燃料Fをより良く分散させて供給することができる。また、燃料供給口3から燃料Fが左右に広がるように飛び出すことにより、燃料シュート路4の数をさらに低減することができる。
【0055】
本発明は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。
例えば、流動床ボイラ1として気泡型流動床ボイラを用いて説明したが、本発明はこれに限定されるものではなく、例えば循環型流動床ボイラにも適用することができる。
また、上述の説明では、燃料シュート路4は円筒状の形状を有するものとして説明したが、これには限定されず、内部に空洞を有していれば、その断面が楕円や多角形などの他の形状となるような形状をしていても良い。
【符号の説明】
【0056】
1 流動床ボイラ
12 伝熱管群
13 1次空気供給管
14 2次空気供給管
15 2次空気導入ノズル
2 燃焼室
21 壁面
22 底部
23 対向壁面
3 燃料供給口
31 接続部
4 燃料シュート路
41 燃料シュート路の底面
41b 燃料シュート路の底面の下端
41e 延長線
5 室内噴射部
51 室内噴射ノズル
51a 第1室内噴射ノズル
51b 第2室内噴射ノズル
51c 第3室内噴射ノズル
52 気体搬送管
54a 上段噴射口群
54b 下段噴射口群
55 ダンパ
56 噴射制御装置
6 路内噴射口
61 路内噴射ノズル
63 配管
7 突出部
8 落下方向凸部
81 頂部
82 傾斜部
C 燃料シュート路の底面と傾斜部との接続位置
F 燃料
G1 搬送用気体
G2 混合用気体
Ga 流動化ガス(1次空気)
Gb 2次空気
L 流動層
N 法線
Po 重複部分
Ps 所定の範囲
R 噴出範囲
S 隙間
H 水平方向
V 垂直方向
Fd 落下方向
θs 燃料シュート路の設置角度
θ1 噴射角度
図1A
図1B
図2A
図2B
図3
図4A
図4B
図5
図6
図7A
図7B
図8