【課題を解決するための手段】
【0007】
(1)少なくとも一実施形態に係るモス型液化ガス貯蔵タンクの断熱構造は、
タンク外壁の表面を覆う保護カバーを備えるモス型液化ガス貯蔵タンクの断熱構造であって、
前記断熱構造は、
前記タンク外壁と前記保護カバーとの間に設けられ、前記タンク外壁及び前記保護カバーとの間に隙間を有して配置された少なくとも1枚の輻射熱反射板を備える。
ここで、「輻射熱反射板」とは、太陽光などの輻射熱を反射する板状体を言う。
上記(1)の構成によれば、タンク外壁及び保護カバーとの間に隙間を有して配置された少なくとも1枚の輻射熱反射板を備えることで、太陽光などの輻射熱を抑制できるため、タンク内への入熱量を抑制できる。また、輻射熱反射板は断熱材と異なり板厚を必要とせず薄厚化できるため、圧縮荷重に対して自在に変形して圧縮荷重を吸収可能であると共に、設置スペースを多く取らないので、タンクの大型化を回避でき、かつタンク外壁と保護カバーとの間にデッドスペースが形成されるのを回避できる。
これによって、対流の発生を抑制できるため、対流の形成による断熱性能の低下を抑制できる。従って、BOGの発生率を低下できる。
【0008】
(2)一実施形態では、前記(1)の構成において、
前記輻射熱反射板は、互いに並列に配置された複数の輻射熱反射板を含み、
前記複数の輻射熱反射板の各々の間に隙間が形成される。
上記(2)の構成によれば、保護カバーとタンク外壁との間に、互いに並列に配置された複数の輻射熱反射板を設け、複数の輻射熱反射板の各々の間に隙間を形成することで、輻射熱の反射率を高めることができる。輻射熱反射板の枚数を多くするほど、反射率を高めタンク内への入熱を低減できる。即ち、輻射熱反射板の枚数をN枚とすると、各輻射熱反射板の反射率が同一であれば、タンクへの入熱量は、輻射熱反射板が設置されていない場合と比べて、1/(1+N)まで低減できる。
【0009】
(3)一実施形態では、前記(2)の構成において、
前記断熱構造は、前記保護カバーの内側面から前記タンク外壁側へ突設された補強リブを備え、
前記輻射熱反射板は、前記補強リブに固定される。
上記(3)の構成によれば、上記補強リブを備えることで、保護カバーの強度を増加できると共に、輻射熱反射板を補強リブに固定することで、輻射熱反射板の保護カバーへの取付けが容易になる。
【0010】
(4)一実施形態では、前記(3)の構成において、
前記補強リブは、前記保護カバーの内側面から前記タンク外壁側へ突出する補強リブ本体と、前記補強リブ本体の先端部から前記タンク外壁の表面に沿って延在する支持部とを含み、
前記輻射熱反射板は前記支持部と前記保護カバーとの間の形成される空間に配置され、かつ前記支持部に固定される。
上記(4)の構成によれば、輻射熱反射板は上記支持部と保護カバーとの間の形成される空間に配置されるため、保護カバーとタンク外壁との間に形成される空間にデッドスペースを生じない。従って、タンクの大型化を回避できると共に、上記空気の対流が形成されるのを抑制できるため、対流形成による断熱性能の低下を抑制できる。
【0011】
(5)一実施形態では、前記(4)の構成において、
前記断熱構造は、前記輻射熱反射板と前記支持部との間、又は前記複数の輻射熱反射板の間の各々に介装されるスペーサを備える。
上記(5)の構成によれば、上記スペーサを備えることで、輻射熱反射板と補強リブとの間又は輻射熱反射板同士の間で所望の隙間を形成でき、これによって、各輻射熱反射板は輻射熱反射効果を発揮できる。
【0012】
(6)一実施形態では、前記(2)〜(5)の何れかの構成において、
前記複数の輻射熱反射板の間に形成される前記隙間は、対流発生限界以下の隙間である。
上記(6)の構成によれば、複数の輻射熱反射板間に形成される隙間が対流発生限界以下の隙間であるため、保護カバーとタンク外壁との間の空間において空気の対流発生を効果的に抑制できる。これによって、対流の形成による断熱性能の低下を抑制できる。従って、BOGの発生率を低下できる。
【0013】
(7)一実施形態では、前記(1)〜(6)の何れかの構成において、
前記保護カバー又は前記輻射熱反射板に遮熱性被膜が形成される。
上記(7)の構成によれば、保護カバー又は輻射熱反射板に遮熱性被膜が形成されることで、タンク内への入熱量をさらに抑制できる。
【0014】
(8)少なくとも一実施形態に係る液化ガス運搬船は、
前記(1)〜(7)の何れかの構成を有するモス型液化ガス貯蔵タンクの断熱構造を備えるモス型液化ガス貯蔵タンクが設けられる。
上記(8)の構成によれば、上記液化ガス貯蔵タンクの断熱構造を備える液化ガス運搬船は、保護カバーとタンク外壁との間にこれらと隙間を有して上記輻射熱反射板を備えることで、液化ガス貯蔵タンク内への入熱を抑制できる。また、保護カバーとタンク外壁間のスペースの増加をまねかないので、容積や船幅が限られた液化ガス運搬船でも配置の自由度を広げることができる。また、液化ガス貯蔵タンクの重量増加を抑制できるため、液化ガス運搬船の運行性能の悪化を抑制できる。
【0015】
(9)少なくとも一実施形態に係るモス型液化ガス貯蔵タンクの断熱構造の施工方法は、
タンク外壁の表面を覆う保護カバーを備えるモス型液化ガス貯蔵タンクの断熱構造の施工方法であって、
前記タンク外壁に取り付けられる前の前記保護カバーに対して、前記保護カバーの内側面との間に隙間を有して少なくとも1枚の輻射熱反射板を固定する輻射熱反射板固定ステップと、
前記輻射熱反射板が固定された前記保護カバーを前記タンク外壁に取り付けると共に、前記輻射熱反射板と前記タンク外壁との間に隙間を形成する保護カバー取付けステップと、
を備える。
【0016】
上記(9)の方法によれば、上記輻射熱反射板固定ステップにおいて、前記タンク外壁に取り付けられる前の前記保護カバーに対して、前記保護カバーの内側面との間に隙間を有して少なくとも1枚の輻射熱反射板を固定するため、保護カバーへの輻射熱反射板の固定作業を地上の作業場で行うことができる。
これによって、輻射熱反射板の固定作業が容易になると共に、上記保護カバー取付けステップにおいて、輻射熱反射板がない保護カバーの取付けと同様の施工方法で、輻射熱反射板付き保護カバーをタンク外壁に取り付けることができる。従って、従来の液化ガス貯蔵タンクと比べて施工工数をほぼ同等に抑えることができる。
【0017】
こうして施工されたモス型液化ガス貯蔵タンクは、タンク外壁と保護カバーとの間に、これらに対して隙間を有して輻射熱反射板を備えることで、太陽光などの輻射熱を抑制でき、従って、タンク内への入熱量を抑制できる。また、輻射熱反射板は断熱材のように板厚を必要とせず薄厚化できるため、設置スペースを多く取らず、かつ圧縮荷重に対して自在に変形して吸収可能である。さらに、輻射熱反射板は薄厚化できるため設置スペースを多く取らないので、保護カバーとタンク外壁との間にデッドスペースが形成されるのを回避できる。また、デッドスペースをなくすことで、対流の発生を抑制でき、これによって、断熱性能の低下を抑制できる。従って、BOGの発生率を低下できる。