特許第6839757号(P6839757)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日本板硝子株式会社の特許一覧

特許6839757無機物フレークを製造する方法及び無機物フレーク
<>
  • 特許6839757-無機物フレークを製造する方法及び無機物フレーク 図000004
  • 特許6839757-無機物フレークを製造する方法及び無機物フレーク 図000005
  • 特許6839757-無機物フレークを製造する方法及び無機物フレーク 図000006
  • 特許6839757-無機物フレークを製造する方法及び無機物フレーク 図000007
  • 特許6839757-無機物フレークを製造する方法及び無機物フレーク 図000008
  • 特許6839757-無機物フレークを製造する方法及び無機物フレーク 図000009
  • 特許6839757-無機物フレークを製造する方法及び無機物フレーク 図000010
  • 特許6839757-無機物フレークを製造する方法及び無機物フレーク 図000011
  • 特許6839757-無機物フレークを製造する方法及び無機物フレーク 図000012
  • 特許6839757-無機物フレークを製造する方法及び無機物フレーク 図000013
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6839757
(24)【登録日】2021年2月17日
(45)【発行日】2021年3月10日
(54)【発明の名称】無機物フレークを製造する方法及び無機物フレーク
(51)【国際特許分類】
   C03B 37/005 20060101AFI20210301BHJP
   C09C 1/62 20060101ALI20210301BHJP
【FI】
   C03B37/005
   C09C1/62
【請求項の数】8
【全頁数】11
(21)【出願番号】特願2019-513232(P2019-513232)
(86)(22)【出願日】2018年1月30日
(86)【国際出願番号】JP2018003031
(87)【国際公開番号】WO2018193684
(87)【国際公開日】20181025
【審査請求日】2019年6月11日
(31)【優先権主張番号】特願2017-84529(P2017-84529)
(32)【優先日】2017年4月21日
(33)【優先権主張国】JP
(73)【特許権者】
【識別番号】000004008
【氏名又は名称】日本板硝子株式会社
(74)【代理人】
【識別番号】100107641
【弁理士】
【氏名又は名称】鎌田 耕一
(74)【代理人】
【識別番号】100163463
【弁理士】
【氏名又は名称】西尾 光彦
(72)【発明者】
【氏名】中村 浩一郎
【審査官】 永田 史泰
(56)【参考文献】
【文献】 国際公開第2007/114442(WO,A1)
【文献】 国際公開第2010/067825(WO,A1)
【文献】 特開2000−119028(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C03B37/005
C03B19/00−19/10
C03C12/00
B03B5/00−5/74
(57)【特許請求の範囲】
【請求項1】
無機物でできた第一フレーク状粒子を含有する第一粉体を前記第一フレーク状粒子の表面の温度が前記無機物の軟化温度よりも高い温度になるように加熱して、第二フレーク状粒子及び前記第二フレーク状粒子の粒子径よりも小さい粒子径を有する球状粒子を含有する第二粉体を作製し、
流水とともに前記第二粉体を前記球状粒子の粒子径よりも大きい目開きを有する篩にかけて前記球状粒子を除去して、
無機物フレークを製造する方法。
【請求項2】
前記第一粉体の体積基準の粒子径分布における累積分布10%に相当する粒子径、メジアン径、及び累積分布90%に相当する粒子径をそれぞれd1(10)、d1(50)、及びd1(90)と表し、
当該無機物フレークの体積基準の粒子径分布における累積分布10%に相当する粒子径、メジアン径、及び累積分布90%に相当する粒子径をそれぞれd2(10)、d2(50)、及びd2(90)と表したときに、
10μm≦d1(50)≦1000μm、
10μm≦d2(50)≦1000μm、
d2(90)/d2(10)<d1(90)/d1(10)、及び
{d2(90)−d2(10)}/d2(50)<{d1(90)−d1(10)}/d1(50)の関係を満たす、
請求項1に記載の方法。
【請求項3】
1.1≦d2(90)/d2(10)≦20及び0.1≦{d2(90)−d2(10)}/d2(50)≦7の関係をさらに満たす、請求項2に記載の方法。
【請求項4】
前記第二フレーク状粒子は、丸みを持った端部を有する、請求項1〜3のいずれか1項に記載の方法。
【請求項5】
前記第二粉体を前記篩にかける前に液中に添加して所定期間攪拌する、請求項1〜4のいずれか1項に記載の方法。
【請求項6】
前記無機物は、ガラス又は鉱物である、請求項1〜5のいずれか1項に記載の方法。
【請求項7】
無機物フレーク(粒度分布において最大粒径が124.5μm以下である薄片状粒子を除く)であって、
丸みを持った端部を有するフレーク状粒子を個数基準で50%以上含有し、
当該無機物フレークの体積基準の粒子径分布における累積分布10%に相当する粒子径、メジアン径、及び累積分布90%に相当する粒子径をそれぞれd2(10)、d2(50)、及びd2(90)と表したときに、
10μm≦d2(50)≦1000μm、
1.1≦d2(90)/d2(10)≦20、及び
0.1≦{d2(90)−d2(10)}/d2(50)≦7の関係を満たす、
無機物フレーク。
【請求項8】
固定された粘着テープの粘着面に当該無機物フレークを付着させて形成された摩擦面に、0.9以下の静摩擦係数及び0.7以下の動摩擦係数の少なくともいずれか1つを付与する、請求項7に記載の無機物フレーク。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、無機物フレークを製造する方法及び無機物フレークに関する。
【背景技術】
【0002】
従来、効果顔料として使用される、ガラス又は鉱物等の無機物でできたフレークが知られている。
【0003】
例えば、特許文献1には、ガラスフレークなどの合成小片基質から生成される効果顔料が示すきらめきを、9ミクロン未満の粒度の基質粒子及び85ミクロンを超える粒度の基質粒子の量を少なくすることで向上させる技術が記載されている。特許文献1には、スクリーンを通してフレークを分級することにより、必要な粒度及び粒度分布を得ることが記載されている。なお、「ガラスフレーク」は、日本板硝子株式会社の登録商標である。
【0004】
特許文献2には、ガラス微小板又は合成マイカの微小板などの人工基材を含む効果顔料であって、所定の体積平均累積篩下分布曲線を有する効果顔料が記載されている。所定の体積平均累積篩下分布曲線は、人工基材について分級の操作を行うことによって実現されている。
【0005】
特許文献3には、合成雲母フレーク等のフレーク状基材に基づく効果顔料が記載されている。フレーク状基材は1.2〜2の円形係数を有する。フレーク状基材は、1.8以上の屈折率を有する高屈折率層によってコーティングされている。
【0006】
また、ガラス粒子等の無機物でできた粒子のエッジ部分を丸くする技術も知られている。例えば、特許文献4には、予熱した破砕ガラス粒子を所定の幅の火炎帯を通過させた後に冷却用空気中を通過させることにより、無エッジガラス粒子を製造する方法が記載されている。
【0007】
特許文献5には、破砕ガラス粒子のガラス軟化温度以上の所定の温度に昇温される加熱装置を備えた破砕ガラス粒子の丸め装置が記載されている。
【0008】
特許文献6には、原石を粉砕する際に生じた角(かど)を加熱処理で丸くしたシリカが記載されている。
【0009】
特許文献7には、ジェットミル等の装置を用いてフレーク状ガラスに衝撃を与えてフレーク状ガラスを粉砕すると同時にフレーク状ガラスのエッジ部を摩耗させる、エッジ部の角の取れたフレーク状ガラスの製造方法が記載されている。
【0010】
特許文献8には、フレーク状ガラスを、ガラスを腐食可能な液体で処理することを含む、エッジ部の角の取れたフレーク状ガラスの製造方法が記載されている。
【先行技術文献】
【特許文献】
【0011】
【特許文献1】特表2008−534753号公報
【特許文献2】特表2011−515508号公報
【特許文献3】特開2013−129831号公報
【特許文献4】特開2000−119028号公報
【特許文献5】特開2006−306642号公報
【特許文献6】特開2005−162593号公報
【特許文献7】国際公開第2010/067825号
【特許文献8】特開2010−138010号公報
【発明の概要】
【発明が解決しようとする課題】
【0012】
特許文献1及び2の記載によれば、分級を行って所定の粒度分布を有する効果顔料が製造されている。しかし、特許文献1〜3には、分級の前に原料を軟化温度以上に加熱することは記載も示唆もされていない。特許文献4及び5の技術によれば、破砕ガラス粒子が軟化温度以上に加熱されてはいるが、カレット等の破砕ガラス粒子が処理の対象であり、フレーク状のガラス粒子が処理の対象であるわけではない。特許文献6に記載の技術によれば、原石を粉砕する際に生じたシリカが処理の対象であり、フレーク状のシリカが処理の対象であるわけではない。特許文献7及び8に記載の技術は、フレーク状ガラスを処理対象とはしているが、フレーク状ガラスを軟化温度以上に加熱することは記載も示唆もされていない。
【0013】
上記の通り、特許文献1〜8には、無機物できたフレーク状粒子を含む粉体を無機物の軟化温度以上に加熱して得られた粉体にとって適切な分級操作について記載も示唆もされていない。そこで、本発明は、無機物でできたフレーク状粒子を含む粉体を無機物の軟化温度以上に加熱して得られた粉体を適切に分級して粒子径分布の狭い無機物フレークを製造できる新たな方法を提供する。また、本発明は、丸みを持った端部を有するフレーク状粒子を多く含み、狭い粒子径分布を有する無機物フレークを提供する。
【課題を解決するための手段】
【0014】
本発明は、
無機物でできた第一フレーク状粒子を含有する第一粉体を前記第一フレーク状粒子の表面の温度が前記無機物の軟化温度よりも高い温度になるように加熱して、第二フレーク状粒子及び前記第二フレーク状粒子の粒子径よりも小さい粒子径を有する球状粒子を含有する第二粉体を作製し、
流水とともに前記第二粉体を前記球状粒子の粒子径よりも大きい目開きを有する篩にかけて前記球状粒子を除去して、
無機物フレークを製造する方法を提供する。
【0015】
また、本発明は、
無機物フレークであって、
丸みを持った端部を有するフレーク状粒子を個数基準で50%以上含有し、
当該無機物フレークの体積基準の粒子径分布における累積分布10%に相当する粒子径、メジアン径、及び累積分布90%に相当する粒子径をそれぞれd2(10)、d2(50)、及びd2(90)と表したときに、
10μm≦d2(50)≦1000μm、
1.1≦d2(90)/d2(10)≦20、及び
0.1≦{d2(90)−d2(10)}/d2(50)≦7の関係を満たす、
無機物フレークを提供する。
【発明の効果】
【0016】
上記の方法によれば、丸みを持った端部を有するフレーク状粒子を多く含み、狭い粒子径分布を有する無機物フレークを製造できる。
【図面の簡単な説明】
【0017】
図1図1は、実施例及び比較例の原料粉体の体積基準の粒子径分布を示すグラフである。
図2図2は、実施例及び比較例の中間粉体の体積基準の粒子径分布を示すグラフである。
図3図3は、実施例に係る無機物フレークの体積基準の粒子径分布を示すグラフである。
図4図4は、比較例に係る最終粉体の体積基準の粒子径分布を示すグラフである。
図5図5は、中間粉体の走査型電子顕微鏡(SEM)写真である。
図6図6は、中間粉体のSEM写真である。
図7図7は、実施例に係る無機物フレークのSEM写真である。
図8図8は、実施例に係る無機物フレークのSEM写真である。
図9図9は、比較例に係る粉体のSEM写真である。
図10図10は、原料粉体のSEM写真である。
【発明を実施するための形態】
【0018】
以下、本発明の実施形態について説明する。なお、以下の説明は、本発明の一例に関するものであり、本発明はこれらによって限定されるものではない。
【0019】
本発明者は、無機物でできたフレーク状粒子を含有する粉体である原料から、丸みを持った端部を有するフレーク状粒子を多く含み、かつ、狭い粒子径分布を有する無機物フレークを製造する方法について日夜検討を行った。その結果、本発明者は、原料である粉体をフレーク状粒子の表面の温度が無機物の軟化温度よりも高い温度になるように加熱すると、原料である粉体に含有される比較的小さい粒子径の粒子が球状粒子になることを新たに見出した。狭い粒子径分布を有する無機物フレークを製造する観点から、このような球状粒子を除去するために球状粒子を含有する粉体を球状粒子の粒子径よりも大きい目開きを有する篩にかけることが考えられる。しかし、発明者は、球状粒子を含有する粉体を単にそのような篩にかけても球状粒子を適切に除去できないことを新たに見出した。そこで、本発明者は、球状粒子を適切に除去できる分級操作についてさらに検討を重ね、本発明に係る無機物フレークの製造方法を案出した。なお、本明細書において、「球状粒子」とは、SEMで観察したときに最小径Diに対する最大径Dxの比(Dx/Di)が1.5以下である粒子を意味する。
【0020】
本発明に係る無機物フレークは、典型的には、以下の工程(i)及び(ii)を含む方法によって製造される。
(i)無機物でできた第一フレーク状粒子を含有する第一粉体を第一フレーク状粒子の表面の温度が無機物の軟化温度よりも高い温度になるように加熱して、第二粉体を作製する。ここで、第二粉体は、第二フレーク状粒子及び第二フレーク状粒子の粒子径よりも小さい粒子径を有する球状粒子を含有する。
(ii)流水とともに第二粉体を球状粒子の粒子径よりも大きい目開きを有する篩にかけて球状粒子を除去する。
【0021】
第一粉体を上記のように加熱することにより、第一フレーク状粒子の表面が無機物の軟化温度よりも高い温度になり、第一フレーク状粒子の端部が軟化する。これにより、第二フレーク状粒子が丸みを持った端部を有する。また、第一粉体の加熱により、第一粉体に含まれる比較的小さい粒子径を有する粒子の全体が軟化しやすい。全体が軟化した粒子は表面張力により球状粒子になりやすい。このため、第二粉体は、第二フレーク状粒子に加えて、球状粒子を含有する。球状粒子同士の相互作用又は球状粒子と第二フレーク状粒子との相互作用により、第二粉体を単に篩にかけても球状粒子が除去されにくいと考えられる。しかし、流水が篩を通過する状態で第二粉体を篩にかけると流水とともに球状粒子の多くが篩を通過して球状粒子が除去される。その結果、丸みを持った端部を有するフレーク状粒子を多く含み、かつ、狭い粒子径分布を有する無機物フレークを製造できる。
【0022】
例えば、無機物フレークは、丸みを持った端部を有するフレーク状粒子を個数基準で50%以上含有する。これにより、無機物フレークが良好な触感を有する。
【0023】
第一粉体の体積基準の粒子径分布における累積分布10%に相当する粒子径、メジアン径、及び累積分布90%に相当する粒子径をそれぞれd1(10)、d1(50)、及びd1(90)と表す。また、無機物フレークの体積基準の粒子径分布における累積分布10%に相当する粒子径、メジアン径、及び累積分布90%に相当する粒子径をそれぞれd2(10)、d2(50)、及びd2(90)と表す。第一粉体及び無機物フレークの体積基準の粒子径分布は、例えば、レーザー回折式粒度分布測定装置によって測定できる。第一粉体及び無機物フレークにおいて、例えば以下の関係が満たされている。
10μm≦d1(50)≦1000μm
10μm≦d2(50)≦1000μm
d2(90)/d2(10)<d1(90)/d1(10)
{d2(90)−d2(10)}/d2(50)<{d(90)−d(10)}/d(50)
【0024】
上記の通り、本発明の方法により製造された無機物フレークは、第一粉体に比べて、狭い粒子径分布を有する。無機物フレークの体積基準の粒子径分布は、例えば、1.1≦d2(90)/d2(10)≦20及び0.1≦{d2(90)−d2(10)}/d2(50)≦7の関係をさらに満たしている。
【0025】
無機物フレークの厚みは、例えば、0.2μm〜1000μmである。
【0026】
上記(i)の工程における第一粉体の加熱の条件は、典型的には、比較的大きな粒子径を有する第一フレーク状粒子の全体的な形状が維持されつつ端部が軟化するように定められている。加えて、上記(i)の工程における第一粉体の加熱の条件は、第二粉体に所定の粒子径(例えば、100μm以下)の球状粒子が含まれるように、第一粉体に含まれる比較的小さい粒子径を有する粒子の全体を軟化させることができるように定められている。例えば、上記(i)の工程における第一粉体の加熱の条件は、第一フレーク状粒子の表面の温度が無機物の軟化温度よりも50℃〜250℃高い温度になるように定められている。
【0027】
上記(i)の工程における第一粉体の加熱は、例えば、バーナーによって形成された火炎に第一粉体を通過させることにより行われる。例えば、火炎が水平方向に形成されており、火炎を通過するように第一粉体を落下させる。この場合、望ましくは、火炎に第一粉体を通過させる前に、第一粉体を無機物の軟化温度よりも低い所定の温度になるように予熱する。例えば、第一粉体は無機物の軟化温度よりも20℃〜100℃低い温度になるように予熱される。例えば、バーナーによって形成された火炎によって加熱された空気に第一粉体を接触させることにより第一粉体を予熱できる。上記(i)の工程において、望ましくは、第一粉体の加熱後に、加熱された第一粉体が冷却空気によって急冷される。これにより、第二粉体に含まれる粒子の形状が適切な形状に定まりやすい。第一粉体の急冷は、例えば、火炎を通過した第一粉体が移動する空間にブロアによって冷却空気(外気)を送り込むことによって行われる。
【0028】
第一粉体において、第一フレーク状粒子をなす無機物は、所定の温度で軟化する無機物である限り特定の無機物に制限されないが、例えば、ガラス又は鉱物である。第一フレーク状粒子をなす鉱物は、例えば、マイカ又はタルクである。この場合、上記(i)の工程において、第一粉体に含有されている比較的小さい粒子径を有する粒子が球状粒子になりやすい。
【0029】
第二粉体は、例えば、球状粒子を個数基準で1%〜49%含有している。また、第二粉体に含有される球状粒子の粒子径は、例えば100μm以下である。第二粉体から球状粒子を除去することにより、狭い粒子径分布を有する無機物フレークが得られる。
【0030】
上記(ii)の工程において使用する篩は、球状粒子の粒子径よりも大きい目開きを有する。この篩は、望ましくは第二粉体に含有される第二フレーク状粒子の大部分の粒子径よりも小さい目開きを有する。篩の目開きは、例えば2μm〜1000μmである。
【0031】
上記(ii)の工程において、流水とともに球状粒子が篩を通過すると考えられる。このため、第二粉体から多くの球状粒子を除去するために、第二粉体の全体が満遍なく流水に接触することが望ましい。そこで、上記(ii)の工程において、流水の流れ方向と垂直な方向に篩を動かすことが望ましい。
【0032】
上記(ii)の工程における流水の流量は、球状粒子を除去できるとともに、第二フレーク状粒子を砕かないように定められている。例えば、上記(ii)の工程における流水の流量は、1cm3/秒〜1000cm3/秒である。
【0033】
上記(ii)の工程においてより多くの球状粒子を除去する観点から、望ましくは、第二粉体を篩にかける前に液中に添加して所定期間攪拌する。第二粉体を添加する液体は、第二粉体を変質させず、第二粉体を分散可能な液体である限り特に制限されないが、例えば、水である。また、攪拌時間は、特定の時間に制限されず、例えば0.1分間〜60分間である。
【0034】
上記(ii)の工程において、篩を通過しなかった粉体を回収することにより、本発明に係る無機物フレークが得られる。この場合、無機物フレークに付着した水分は、自然乾燥処理又は乾燥炉における乾燥処理によって除去される。なお、無機物フレークには、所定のコーティングが施されてもよい。
【0035】
本発明に係る無機物フレークは、第二フレーク状粒子の多くが丸みを持った端部を有することにより、良好な触感を発揮する。本発明に係る無機物フレークは、例えば、固定された粘着テープの粘着面に無機物フレークを付着させて形成された摩擦面に、0.9以下の静摩擦係数及び0.7以下の動摩擦係数の少なくともいずれか1つを付与する。
【0036】
実施例により、本発明をより詳細に説明する。なお、本発明は以下の実施例に限定されない。
【0037】
<実施例>
原料粉体(日本板硝子社製、製品名:ガラスフレークMTD160FY)を準備した。原料粉体に含まれるフレーク状粒子の平均厚みは0.4μmであり、原料粉体の真密度は2.7g/cm3であり、原料粉体のかさ密度は、0.03g/cm3であった。また、原料粉体をなすガラスの軟化温度Tsは870℃〜880℃であり、原料粉体をなすガラスのガラス転移温度Tgは約700℃であった。レーザー回折式粒度分布測定装置(日機装社製、製品名:マイクロトラックMT3500)を用いて原料粉体の体積基準の粒子径分布を測定した。結果を図1及び表1に示す。原料粉体のSEM写真を図10に示す。図10に示す通り、原料粉体は鋭い端部を有していた。
【0038】
775℃〜855℃(代表温度:820℃)に予熱した原料粉体を、バーナーによって形成された火炎を通過させることによって加熱処理し、その後ブロアから吹き出された冷却空気に接触させることによって急冷処理を行った。火炎を通過する際の原料粉体の粒子の表面温度は、925℃〜1125℃(代表温度:1020℃)であり、原料粉体をなすガラスの軟化温度Tsよりも高かった。このようにして、中間粉体を得た。レーザー回折式粒度分布測定装置(日機装社製、製品名:マイクロトラックMT3500)を用いて中間粉体の体積基準の粒子径分布を測定した。結果を図2及び表1に示す。また、中間粉体のSEM写真を図5及び6に示す。図5に示す通り、中間粉体は、フレーク状粒子及び球状粒子を含有していた。中間粉体は、個数基準で約20%の球状粒子を含有していた。図2のヒストグラムに示す通り、中間粉体の粒子径分布は、相対的に大きい粒子径で単一のピークを有する粒子径分布と、相対的に小さい粒子径で単一のピークを有する粒子径分布とを重ね合せたような分布を有していた。中間粉体の粒子径分布は、相対的に大きい粒子径を有するフレーク状粒子と、相対的に小さい粒子径を有する球状粒子とが混在している状態を反映していたと考えられる。図6に示す通り、中間粉体のフレーク状粒子の多くは丸みを持った端部を有していた。中間粉体のフレーク状粒子のうち、個数基準で約90%以上のフレーク状粒子が丸みを持った端部を有していた。
【0039】
室温において中間粉体を水中で30分間撹拌した。その後、水道水を流しながら中間粉体を106μmの目開きを有する篩にかけた。この期間に、篩を、水平方向に数回往復するように動かした。水道水の流量は、10cm3/秒であった。
【0040】
篩に残留した粉体を乾燥炉において100℃で30分間乾燥させ、実施例に係る無機物フレークを得た。レーザー回折式粒度分布測定装置(日機装社製、製品名:マイクロトラックMT3500)を用いて実施例に係る無機物フレークの体積基準の粒子径分布を測定した。結果を図3及び表1に示す。図3及び表1に示す通り、実施例に係る無機物フレークは狭い粒子径分布を有することが示唆された。無機物フレークのSEM写真を図7及び図8に示す。図7に示す通り、無機物フレークには、球状粒子はほとんど含まれておらず、中間粉体における球状粒子がほとんど除去されていることが示唆された。図8に示す通り、無機物フレークの粒子の多くは丸みを持った端部を有していた。
【0041】
<比較例>
水道水を流さずに乾燥した中間粉体を106μmの目開きを有する篩にかけた。篩に残留した粉体を回収して比較例に係る粉体を得た。レーザー回折式粒度分布測定装置(日機装社製、製品名:マイクロトラックMT3500)を用いて比較例に係る粉体の体積基準の粒子径分布を測定した。結果を図4及び表1に示す。比較例に係る粉体のSEM写真を図9に示す。図9に示す通り、比較例に係る粉体には、多くの球状粒子が含まれていた。
【0042】
表1に示す通り、実施例に係る無機物フレークは、比較例に係る粉体と比較すると、より小さいD90/D10の値及びより小さい(D90−D10)/D50の値を有し、より狭い粒子径分布を有していた。原料粉体における比較的小さい粒子径を有する粒子を加熱処理により球状粒子に変化させ、球状粒子を除去するための適切な分級操作を選択することによって狭い粒子径分布を有する無機物フレークを製造できることが示唆された。
【0043】
<摩擦係数の評価>
摩擦感測定装置(トリニティーラボ社製、製品名:TL201Ts)の測定ステージに両面テープを貼り、両面テープの粘着面に0.1gの実施例に係る無機物フレークを万遍なくまぶした。その後、以下の条件で実施例に係る無機物フレークが付着した両面テープの粘着面の静摩擦係数及び動摩擦係数を測定した。結果を表2に示す。
測定子:指紋タイプ
両面テープの粘着面にかけた荷重:30g
測定距離:30mm
サンプリングピッチ:1ミリ秒
測定回数:3回
【0044】
加熱処理を行っておらず、丸みを持たない(角張った)端部を有するフレーク状粒子からなる比較例に係るフレーク(D10:64μm、D50:149μm、D90:262μm)を準備した。実施例に係る無機物フレークの代わりに、比較例に係るフレークを用いた以外は同様にして、比較例に係るフレークが付着した両面テープの粘着面の静摩擦係数及び動摩擦係数を測定した。結果を表2に示す。表2に示す通り、実施例に係る無機物フレークが付着した両面テープの粘着面は、比較例に係るフレークが付着した両面テープの粘着面と比べて、低い静摩擦係数及び低い動摩擦係数を有した。このため、実施例に係る無機物フレークは、良好な触感を付与できることが示唆された。

【0045】
【表1】
【0046】
【表2】
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10