(58)【調査した分野】(Int.Cl.,DB名)
第1接続層中に導電粒子が一定の間隔をあけて規則的に配列しており、隣接する導電粒子の間の中央領域の第1接続層厚が、導電粒子近傍の第1接続層厚よりも薄くなっている請求項1〜5のいずれかに記載の異方性導電フィルム。
【発明を実施するための形態】
【0023】
以下、本発明の異方性導電フィルムを詳細に説明する。
【0024】
<<異方性導電フィルム>>
図1Aに示すように、本発明の異方性導電フィルム100は、第1接続層1が、主として絶縁性樹脂からなる第2接続層2と第3接続層3とに挟持された3層構造を有する。この第1接続層1は、絶縁性樹脂層10の第2接続層2側の平面方向に導電粒子4が単層で配列されている構造を有する。この場合、導電粒子4は、平面方向に最密充填されていてもよいが、導電粒子4が平面方向に一定の間隔をあけて規則的に(例えば、正方格子状に)配列されていることが好ましい。また、隣接する導電粒子4間の中央領域の絶縁性樹脂層厚t1が、導電粒子4の近傍の絶縁性樹脂層厚t2よりも薄くなっている構造を有する。絶縁性樹脂層厚t1が絶縁性樹脂層厚t2よりも薄くなっていると、異方性導電接続の際、接続すべき端子間に存在せずに利用されなかった導電粒子4は、
図1Bに示すように、異方性導電接続の際の加熱加圧により導電粒子4間の絶縁性樹脂層が溶断して導電粒子4を被覆して被覆層1dを形成することができるため、ショートの発生を抑制することができる。
【0025】
ここで、隣接する導電粒子4間の中央領域とは、
図1Aに示すように、隣接する導電粒子間距離Lの中間点Pを中心として±L/4以内の領域である。また、導電粒子近傍とは、第1接続層1の層厚方向で導電粒子4に接する線分付近の位置を意味する。
【0026】
なお、絶縁性樹脂層厚t1と絶縁性樹脂層厚t2とは、更に、以下の関係を有することが好ましい。これは、t1がt2に対し薄すぎると導電粒子4が流動し易くなって粒子捕捉効率が低下する傾向があり、また、t2の厚さに近づきすぎると、本発明の効果が得られに難くなる傾向があるからである。
【0028】
また、絶縁性樹脂層厚t1の絶対厚としては、薄すぎると第1接続層1を形成し難くなることが懸念されるので、好ましくは0.5μm以上である。他方、絶縁性樹脂層厚t2の絶対厚としては、厚すぎると絶縁性樹脂層10が異方性導電接続の際に接続領域から排除され難くなって導通不良が生ずることが懸念されるので、好ましくは6μm以下である。
【0029】
なお、
図1Cに示すように、導電粒子を含む樹脂層の厚みが平面方向で大きく変動し、その結果、当該樹脂層が分断されるように存在している場合には、導電粒子4間の絶縁性樹脂層厚が実質的に0となってもよい。実質的に0とは導電粒子を含む絶縁性樹脂層が個々に独立して存在している状態を意味する。このような場合には、上述の式の適用はできないので、良好な接続信頼性、良好な絶縁性、及び良好な粒子捕捉効率を実現するためには、導電粒子4の中心を通る垂線と絶縁性樹脂層厚が最も薄い位置との最短距離L
1、L
2、L
3、L
4・・を制御することで好ましく行うことができる。即ち、この最短距離L
1、L
2、L
3、L
4・・・が長くなると、第1接続層1の樹脂量が相対的に増大し、生産性が向上し、導電粒子4の流動を抑制できる。他方、この最短距離L
1、L
2、L
3、L
4・・・が短くなると、第1接続層1の樹脂量が相対的に減少し、粒子間距離を容易に制御することができる。換言すれば、導電粒子の位置合わせの精度を向上させることができる。好ましい距離L
1、L
2、L
3、L
4・・・は、導電粒子4の粒子径の好ましくは0.5倍より大きく1.5倍未満、より好ましくは0.6〜1.2倍の範囲である。
【0030】
また、
図1Cに示すように、導電粒子4が第1接続層1に埋没していてもよい。浅く埋没するか深く埋没するかという埋没の程度は、第1接続層1の形成時の材料の粘度や、導電粒子を配列した転写型の開口の形状、大きさ等によって変化するが、特に、開口の基底径と開口径との関係で制御することができる。例えば、基底径は導電粒子径の1.1倍以上2倍未満とし、開口径を導電粒子径の1.3倍以上3倍未満とすることが好ましい。
【0031】
なお、本発明の効果を損なわない範囲で、
図1Cにおいて点線で示すように、導電粒子4′が第2接続層2に存在していてもよい。
【0032】
<第1接続層>
このような第1接続層1を構成する絶縁性樹脂層10としては、公知の絶縁性樹脂層を適宜採用することができる。例えば、アクリレート化合物と熱又は光ラジカル重合開始剤とを含む熱又は光ラジカル重合型樹脂層又はそれを熱又は光ラジカル重合させたもの、またはエポキシ化合物と熱又は光カチオン若しくはアニオン重合開始剤とを含む熱又は光カチオン若しくはアニオン重合型樹脂層又はそれを熱又は光カチオン重合若しくはアニオン重合させたものを採用することができる。
【0033】
中でも、第1接続層1を構成する絶縁性樹脂層10として、アクリレート化合物と熱ラジカル重合開始剤とを含む熱ラジカル重合型樹脂層を採用してもよいが、アクリレート化合物と光ラジカル重合開始剤とを含む光ラジカル重合型樹脂層を採用することが好ましい。これにより、光ラジカル重合型樹脂層に紫外線を照射して光ラジカル重合させて第1接続層1を形成することができる。この場合、第2接続層2の形成前に、導電粒子側から光ラジカル重合型樹脂層に紫外線を照射して光ラジカル重合させると、
図1Aに示すように、第1接続層1において、導電粒子4と第3接続層3の表面3aとの間に位置する領域1Xの硬化率を、互いに隣接する導電粒子間に位置する領域1Yの硬化率よりも低くすることができる。従って、第1接続層における硬化率の低い領域1Xの最低溶融粘度を第1接続層における硬化率の高い領域1Yの最低溶融粘度よりも小さくすることができ、異方性導電接続の際に、導電粒子4の位置ズレを防止し、粒子捕捉効率を向上させ、導電粒子4の押し込み性を向上させ、導通抵抗値を低下させ、良好な導通信頼性を実現することができる。
【0034】
ここで、硬化率は重合に寄与する官能基(例えばビニル基)の減少比率として定義される数値である。具体的には、硬化後のビニル基の存在量が硬化前の20%であれば、硬化率は80%となる。ビニル基の存在量の測定は、赤外吸収スペクトルのビニル基の特性吸収分析により行うことができる。
【0035】
このように定義される、領域1Xの硬化率は好ましくは40〜80%であり、他方、領域1Yの硬化率は好ましくは70〜100%である。
【0036】
また、レオメーターで測定した、第1接続層1の最低溶融粘度は、第2接続層2及び第3接続層3のそれぞれの最低溶融粘度よりも高いことが好ましい。具体的には[第1接続層1の最低溶融粘度(mPa・s)]/[第2接続層2又は第3接続層3の最低溶融粘度(mPa・s)]の数値が、低すぎると粒子捕捉効率が低下し、ショート発生の確率が上昇する傾向があり、高すぎると導通信頼性が低下する傾向があるので、好ましくは1〜1000、より好ましくは4〜400である。なお、それぞれの好ましい最低溶融粘度は、前者については、低すぎると粒子捕捉効率が低下する傾向があり、高すぎると導通抵抗値が大きくなる傾向があるので、好ましくは100〜100000mPa・s、より好ましくは500〜50000mPa・sである。後者については、低すぎるとリールにした際に樹脂のはみ出しが生ずる傾向があり、高すぎると導通抵抗値が高くなる傾向があるので、好ましくは0.1〜10000mPa・s、より好ましくは1〜1000mPa・sである。
【0037】
<アクリレート化合物>
第1接続層1を構成する絶縁性樹脂層10に使用するアクリレート化合物としては、従来公知のラジカル重合性アクリレートを使用することができる。例えば、単官能(メタ)アクリレート(ここで、(メタ)アクリレートにはアクリレートとメタクリレートとが包含される)、二官能以上の多官能(メタ)アクリレートを使用することができる。本発明においては、接着剤を熱硬化性とするために、アクリル系モノマーの少なくとも一部に多官能(メタ)アクリレートを使用することが好ましい。
【0038】
単官能(メタ)アクリレートとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−プロピル(メタ)アクリレート、i−プロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、i−ブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、2−メチルブチル(メタ)アクリレート、n−ペンチル(メタ)アクリレート、n−ヘキシル(メタ)アクリレート、n−ヘプチル(メタ)アクリレート、2−メチルヘキシル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、2−ブチルヘキシル(メタ)アクリレート、イソオクチル(メタ)アクリレート、イソペンチル(メタ)アクリレート、イソノニル(メタ)アクリレート、イソデシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシ(メタ)アクリレート、n−ノニル(メタ)アクリレート、n−デシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、モルホリン−4−イル(メタ)アクリレート等が挙げられる。二官能(メタ)アクリレートとしては、ビスフェノールF―EO変性ジ(メタ)アクリレート、ビスフェノールA−EO変性ジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、トリシクロデカンジメチロールジ(メタ)アクリレート、ジシクロペンタジエン(メタ)アクリレート等が挙げられる。三官能(メタ)アクリレートとしては、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンPO変性(メタ)アクリレート、イソシアヌル酸EO変性トリ(メタ)アクリレート等が挙げられる。四官能以上の(メタ)アクリレートとしては、ジペンタエリスリトールペンタ(メタ)アクリレート、ペンタエリスリトールヘキサ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラアクリレート等が挙げられる。その他に、多官能ウレタン(メタ)アクリレートも使用することができる。具体的には、M1100、M1200、M1210、M1600(以上、東亞合成(株))、AH−600、AT−600(以上、共栄社化学(株))等が挙げられる。
【0039】
第1接続層1を構成する絶縁性樹脂層10におけるアクリレート化合物の含有量は、少なすぎると第2接続層2との最低溶融粘度差をつけにくくなる傾向があり、多すぎると硬化収縮が大きくなって作業性が低下する傾向があるので、好ましくは2〜70質量%、より好ましくは10〜50質量%である。
【0040】
<光ラジカル重合開始剤>
光ラジカル重合開始剤としては、公知の光ラジカル重合開始剤の中から適宜選択して使用することができる。たとえは、アセトフェノン系光重合開始剤、ベンジルケタール系光重合開始剤、リン系光重合開始剤等が挙げられる。具体的には、アセトフェノン系光重合開始剤として、2−ヒドロキシ−2−シクロへキシルアセトフェノン(イルガキュア(IRGACURE)184、BASFジャパン(株))、α−ヒドロキシ−α,α′−ジメチルアセトフェノン(ダロキュア(DAROCUR)1173、BASFジャパン(株))、2,2−ジメトキシ−2−フェニルアセトフェノン(イルガキュア(IRGACURE)651、BASFジャパン(株))、4−(2−ヒドロキシエトキシ)フェニル(2−ヒドロキシ−2−プロピル)ケトン(ダロキュア(DAROCUR)2959、BASFジャパン(株))、2−ヒドロキシ−1−{4−[2−ヒドロキシ−2−メチル−プロピオニル]−ベンジル}フェニル}−2−メチル−プロパン−1−オン(イルガキュア(IRGACURE)127、BASFジャパン(株))等が挙げられる。ベンジルケタール系光重合開始剤として、ベンゾフェノン、フルオレノン、ジベンゾスベロン、4−アミノベンゾフェノン、4,4′−ジアミノベンゾフェノン、4−ヒドロキシベンゾフェノン、4−クロロベンゾフェノン、4,4′−ジクロロベンゾフェノン等が挙げられる。また、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタノン−1(イルガキュア(IRGACURE)369、BASFジャパン(株))も使用することができる。リン系光重合開始剤として、ビス(2,4,6−トリメチルベンゾイル)−フェニルフォスフィンオキサイド(イルガキュア(IRGACURE)819、BASFジャパン(株))、(2,4,6−トリメチルベンゾイル−ジフェニルフォスフィンオキサイド(ダロキュア(DAROCUR)TPO、BASFジャパン(株))等が挙げられる。
【0041】
光ラジカル重合開始剤の使用量は、アクリレート化合物100質量部に対し、少なすぎると、光ラジカル重合が十分に進行しない傾向があり、多すぎると剛性低下の原因となることが懸念されるので、好ましくは0.1〜25質量部、より好ましくは0.5〜15質量部である。
【0042】
<熱ラジカル重合開始剤>
また、熱ラジカル重合開始剤としては、例えば、有機過酸化物やアゾ系化合物等が挙げられるが、気泡の原因となる窒素を発生しない有機過酸化物を好ましく使用することができる。
【0043】
有機過酸化物としては、メチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイド、メチルシクロヘキサノンパーオキサイド、アセチルアセトンパーオキサイド、1,1−ビス(tert−ブチルパーオキシ)3,3,5−トリメチルシクロヘキサン、1,1−ビス(tert−ブチルパーオキシ)シクロヘキサン、1,1−ビス(tert−ヘキシルパーオキシ)3,3,5−トリメチルシクロヘキサン、1,1−ビス(tert−ヘキシルパーオキシ)シクロヘキサン、1,1−ビス(tert−ブチルパーオキシ)シクロドデカン、イソブチルパーオキサイド、過酸化ラウロイル、琥珀酸パーオキサイド、3,5,5−トリメチルヘキサノイルパーオキサイド、過酸化ベンゾイル、オクタノイルパーオキサイド、ステアロイルパーオキサイド、ジイソプロピルパーオキシジカルボネート、ジノルマルプロピルパーオキシジカルボネート、ジ−2−エチルヘキシルパーオキシジカルボネート、ジ−2−エトキシエチルパーオキシジカルボネート、ジ−2−メトキシブチルパーオキシジカルボネート、ビス−(4−tert−ブチルシクロヘキシル)パーオキシジカルボネート、(α,α−ビス−ネオデカノイルパーオキシ)ジイソプロピルベンゼン、パーオキシネオデカン酸クミルエステル、パーオキシネオデカン酸オクチルエステル、パーオキシネオデカン酸ヘキシルエステル、パーオキシネオデカン酸−tert−ブチルエステル、パーオキシピバリン酸−tert−ヘキシルエステル、パーオキシピバリン酸−tert−ブチルエステル、2,5−ジメチル−2,5−ビス(2−エチルヘキサノイルパーオキシ)ヘキサン、1,1,3,3−テトラメチルブチルパーオキシ−2−エチルヘキサノエート、パーオキシ−2−エチルヘキサン酸−tert−ヘキシルエステル、パーオキシ−2−エチルヘキサン酸−tert−ブチルエステル、パーオキシ−2−エチルヘキサン酸−tert−ブチルエステル、パーオキシ−3−メチルプロピオン酸−tert−ブチルエステル、パーオキシラウリン酸−tert−ブチルエステル、tert−ブチルパーオキシ−3,5,5−トリメチルヘキサノエート、tert−ヘキシルパーオキシイソプロピルモノカルボネート、tert−ブチルパーオキシイソプロピルカルボネート、2,5−ジメチル−2,5−ビス(ベンゾイルパーオキシ)ヘキサン、過酢酸−tert−ブチルエステル、過安息香酸−tert−ヘキシルエステル、過安息香酸−tert−ブチルエステルなどが挙げられる。有機過酸物に還元剤を添加し、レドックス系重合開始剤として使用してもよい。
【0044】
アゾ系化合物としては、1,1−アゾビス(シクロヘキサン−1−カルボニトリル)、2,2′−アゾビス(2−メチル−ブチロニトリル)、2,2′−アゾビスブチロニトリル、2,2′−アゾビス(2,4−ジメチル−バレロニトリル)、2,2′−アゾビス(2,4−ジメチル−4−メトキシバレロニトリル)、2,2′−アゾビス(2−アミジノ−プロパン)塩酸塩、2,2′−アゾビス[2−(5−メチル−2−イミダゾリン−2−イル)プロパン]塩酸塩、2,2′−アゾビス[2−(2−イミダゾリン−2−イル)プロパン]塩酸塩、2,2′−アゾビス[2−(5−メチル−2−イミダゾリン−2−イル)プロパン]、2,2′−アゾビス[2−メチル−N−(1,1−ビス(2−ヒドロキシメチル)−2−ヒドロキシエチル)プロピオンアミド]、2,2′−アゾビス[2−メチル−N−(2−ヒドロキシエチル)プロピオンアミド]、2,2′−アゾビス(2−メチル−プロピオンアミド)二水塩、4,4′−アゾビス(4−シアノ−吉草酸)、2,2′−アゾビス(2−ヒドロキシメチルプロピオニトリル)、2,2′−アゾビス(2−メチルプロピオン酸)ジメチルエステル(ジメチル2,2′−アゾビス(2−メチルプロピオネート))、シアノ−2−プロピルアゾホルムアミドなどが挙げられる。
【0045】
熱ラジカル重合開始剤の使用量は、少なすぎると硬化不良となり、多すぎると製品ライフの低下となるので、アクリレート化合物100質量部に対し、好ましくは2〜60質量部、より好ましくは5〜40質量部である。
【0046】
<エポキシ化合物>
また、第1接続層1を構成する絶縁性樹脂層10を、エポキシ化合物と熱又は光カチオン若しくはアニオン重合開始剤とを含有する熱又は光カチオン若しくはアニオン重合型樹脂層、又はそれらを熱又は光ラジカル重合させたものから構成してもよい。
【0047】
エポキシ化合物としては、分子内に2つ以上のエポキシ基を有する化合物もしくは樹脂が好ましく挙げられる。これらは液状であっても、固体状であってもよい。具体的には、ビスフェノールA、ビスフェノールF、ビスフェノールS、ヘキサヒドロビスフェノールA、テトラメチルビスフェノールA、ジアリルビスフェノールA、ハイドロキノン、カテコール、レゾルシン、クレゾール、テトラブロモビスフェノールA、トリヒドロキシビフェニル、ベンゾフェノン、ビスレゾルシノール、ビスフェノールヘキサフルオロアセトン、テトラメチルビスフェノールA、テトラメチルビスフェノールF、トリス(ヒドロキシフェニル)メタン、ビキシレノール、フェノールノボラック、クレゾールノボラックなどの多価フェノールとエピクロルヒドリンとを反応させて得られるグリシジルエーテル、またはグリセリン、ネオペンチルグリコール、エチレングリコール、プロピレングリコール、チレングリコール、ヘキシレングリコール、ポリエチレングリコール、ポリプロピレングリコールなどの脂肪族多価アルコールとエピクロルヒドリンとを反応させて得られるポリグリシジルエーテル;p−オキシ安息香酸、β−オキシナフトエ酸のようなヒドロキシカルボン酸とエピクロルヒドリンとを反応させて得られるグリシジルエーテルエステル、あるいはフタル酸、メチルフタル酸、イソフタル酸、テレフタル酸、テトラハイドロフタル酸、ヘキサハイドロフタル酸、エンドメチレンテトラハイドロフタル酸、エンドメチレンヘキサハイドロフタル酸、トリメリット酸、重合脂肪酸のようなポリカルボン酸から得られるポリグリシジルエステル;アミノフェノール、アミノアルキルフェノールから得られるグリシジルアミノグリシジルエーテル;アミノ安息香酸から得られるグリシジルアミノグリシジルエステル;アニリン、トルイジン、トリブロムアニリン、キシリレンジアミン、ジアミノシクロヘキサン、ビスアミノメチルシクロヘキサン、4,4′−ジアミノジフェニルメタン、4,4′−ジアミノジフェニルスルホンなどから得られるグリシジルアミン;エポキシ化ポリオレフィン等の公知のエポキシ樹脂類が挙げられる。また、3、4−エポキシシクロヘキセニルメチル−3′,4′−エポキシシクロヘキセンカルボキシレート等の脂環式エポキシ化合物も使用することができる。
【0048】
<熱カチオン重合開始剤>
熱カチオン重合開始剤としては、エポキシ化合物の熱カチオン重合開始剤として公知のものを採用することができ、例えば、熱により、カチオン重合型化合物をカチオン重合させ得る酸を発生するものであり、公知のヨードニウム塩、スルホニウム塩、ホスホニウム塩、フェロセン類等を用いることができ、温度に対して良好な潜在性を示す芳香族スルホニウム塩を好ましく使用することができる。熱カチオン系重合開始剤の好ましい例としては、ジフェニルヨードニウムヘキサフルオロアンチモネート、ジフェニルヨードニウムヘキサフルオロホスフェート、ジフェニルヨードニウムヘキサフルオロボレート、トリフェニルスルフォニウムヘキサフルオロアンチモネート、トリフェニルスルフォニウムヘキサフルオロホスフェート、トリフェニルスルフォニウムヘキサフルオロボレートが挙げられる。具体的には、(株)ADEKA製SP−150、SP−170、CP−66、CP−77;日本曹達(株)製のCI−2855、CI−2639;三新化学工業(株)製のサンエイドSI−60、SI−80;ユニオンカーバイド社製のCYRACURE−UVI−6990、UVI−6974等が挙げられる。
【0049】
熱カチオン重合開始剤の配合量は、少なすぎると熱カチオン重合が十分に進行しない傾向があり、多すぎると剛性低下の原因となることが懸念されるので、エポキシ化合物100質量部に対し、好ましくは0.1〜25質量部、より好ましくは0.5〜15質量部である。
【0050】
<熱アニオン重合開始剤>
熱アニオン重合開始剤としては、エポキシ化合物の熱アニオン重合開始剤として公知のものを採用することができ、例えば、熱により、アニオン重合性化合物をアニオン重合させ得る塩基を発生するものであり、公知の脂肪族アミン系化合物、芳香族アミン系化合物、二級又は三級アミン系化合物、イミダゾール系化合物、ポリメルカプタン系化合物、三フッ化ホウ素−アミン錯体、ジシアンジアミド、有機酸ヒドラジッド等を用いることができ、温度に対して良好な潜在性を示すカプセル化イミダゾール系化合物を好ましく使用することができる。具体的には、旭化成イーマテリアルズ(株)製ノバキュアHX3941HP等が挙げられる。
【0051】
熱アニオン重合開始剤の配合量は、少なすぎても硬化不良となる傾向があり、多すぎても製品ライフが低下する傾向があるので、エポキシ化合物100質量部に対し、好ましくは2〜60質量部、より好ましくは5〜40質量部である。
【0052】
<光カチオン重合開始剤及び光アニオン重合開始剤>
エポキシ化合物用の光カチオン重合開始剤又は光アニオン重合開始剤としては、公知のものを適宜使用することができる。
【0053】
<導電粒子>
第1接続層1を構成する導電粒子4としては、従来公知の異方性導電フィルムに用いられているものの中から適宜選択して使用することができる。例えばニッケル、コバルト、銀、銅、金、パラジウムなどの金属粒子、金属被覆樹脂粒子などが挙げられる。2種以上を併用することもできる。
【0054】
導電粒子4の平均粒径としては、小さすぎると配線高さのばらつきに対応できず、導通抵抗が上昇する傾向があり、大きすぎるとショートの発生原因となる傾向があるので、好ましくは1〜10μm、より好ましくは2〜6μmである。平均粒径は、一般的な粒度分布測定装置により測定することができる。
【0055】
このような導電粒子4の第1接続層1中の存在量は、少なすぎると粒子捕捉効率が低下して異方性導電接続が難しくなり、多すぎるとショートの発生が懸念されるので、好ましくは1平方mm当たり50〜40000個、より好ましくは200〜20000個である。
【0056】
<第1接続層におけるその他の成分>
第1接続層1には、必要に応じて、フェノキシ樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ウレタン樹脂、ブタジエン樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリオレフィン樹脂などの膜形成樹脂を併用することができる。
【0057】
第1接続層1を構成する絶縁性樹脂層10が、アクリレート化合物と光ラジカル重合開始剤からなる光ラジカル重合型樹脂層を光ラジカル重合させたものである場合、絶縁性樹脂層10に、更にエポキシ化合物と熱カチオン重合開始剤とを含有させることが好ましい。この場合、後述するように、第2接続層2並びに第3接続層3もエポキシ化合物と熱カチオン重合開始剤とを含有する熱カチオン重合型樹脂層とすることが好ましい。これにより、層間剥離強度を向上させることができる。
【0058】
第1接続層1においては、
図1Aに示すように、導電粒子4は、第2接続層2に食い込んでいる(換言すれば、導電粒子4が第1接続層1の表面に露出している)ことが好ましい。導電粒子4がすべて第1接続層1に埋没していると、絶縁性樹脂層10の排除不足により導通抵抗が低下することが懸念されるからである。食い込みの程度は、小さすぎると粒子捕捉効率が低下する傾向があり、大きすぎると導通抵抗が上昇する傾向があるので、好ましくは導電粒子4の平均粒子径の10〜90%、より好ましくは20〜80%である。
【0059】
第1接続層1の形成は、開口が形成された型の開口内に導電粒子4を配置し、開口21が形成された型の表面に、剥離フィルム上に形成された第1接続層1となる絶縁性樹脂層10を対向させ、開口底部の隅にまで絶縁性樹脂が入り込まない程度に、必要に応じて加熱しながら加圧することにより行うことができる。
【0060】
<第2接続層及び第3接続層>
第2接続層2及び第3接続層3は、いずれも主として絶縁性樹脂から形成されるものである。絶縁性樹脂としては、公知の絶縁性樹脂の中から、適宜選択して使用することができる。第1接続層1の絶縁性樹脂層10と同様な材質から形成することができる。
【0061】
第2接続層2は、第1接続層1の導電粒子4側に位置するものであり、通常、ICチップのバンプ等の高い位置精度でアライメントが必要な端子側に配される層である。他方、第3接続層3は、通常、ガラス基板のベタ電極などの相対的に高いアライメント精度が要求されない端子側に配されるものである。
【0062】
第2接続層2の層厚は、薄すぎると樹脂充填不足による導通不良が生ずることが懸念され、厚すぎると圧着時に樹脂のはみ出しが生じ、圧着装置を汚染することが懸念されるので、好ましくは5〜20μm、より好ましくは8〜15μmである。他方、第3接続層3の層厚は、薄すぎると第2電子部品に仮貼りする際の貼付け不良が生ずることが懸念され、厚すぎると導通抵抗値が大きくなる傾向があるので、好ましくは0.5〜6μm、より好ましくは1〜5μmである。
【0063】
<<異方性導電フィルムの製造方法>>
次に、本発明の異方性導電フィルムの製造方法の一例を説明する。この製造方法は、以下の工程(A)〜(D)を有する。以下工程毎に説明する。
【0064】
<工程(A)>
図2Aに示すように、開口21が形成された転写型20の開口21内に導電粒子4を配置し、
図2Bに示すように、開口21が形成された転写型20の表面に、剥離フィルム22上に形成された絶縁性樹脂層10を対向させる。
【0065】
転写型20としては、例えば、シリコン、各種セラミックス、ガラス、ステンレススチールなどの金属等の無機材料や、各種樹脂等の有機材料などに対し、フォトリソグラフ法等の公知の開口形成方法によって開口を形成したものである。このような転写型20は、板状、ロール状等の形状をとることができる。
【0066】
転写型20の開口21は、その内部に導電粒子4を収容するものである。開口21の形状としては、円柱状、四角錐等の多角柱状、四角錐等の角錐状等を例示することができる。
【0067】
開口21の配列としては、格子状、千鳥状等の規則的な配列とすることが好ましい。
【0068】
なお、転写型20の開口21の径と深さは、レーザー顕微鏡で測定することができる。
【0069】
転写型20の開口21内に導電粒子4を収容する手法としては、特に限定されるものではなく、公知の手法を採用することができる。例えば、乾燥した導電粒子粉末またはこれを溶媒中に分散させた分散液を転写型20の開口形成面上に散布または塗布した後、ブラシやブレードなどを用いて開口形成面の表面をワイプすればよい。
【0070】
開口21の深さに対する導電粒子4の平均粒径の比(=導電粒子の平均粒径/開口の深さ)は、転写性向上と導電粒子保持性とのバランスから、好ましくは0.4〜3.0、より好ましくは0.5〜1.5である。
【0071】
また、開口21の径の導電粒子4の平均粒径に対する比(=開口の径/導電粒子の平均粒径)は、導電粒子の収容のしやすさ、絶縁性樹脂の押し込みやすさ等のバランスから、好ましくは1.1〜2.0、より好ましくは1.3〜1.8である。
【0072】
なお、開口21の径よりもその基底側が径が小さい場合には、基底径は導電粒子径の1.1倍以上2倍未満とし、開口径を導電粒子径の1.3倍以上3倍未満とすることが好ましい。
【0073】
<工程(B)>
次に、
図3Aに示すように、剥離フィルム22側から絶縁性樹脂層10に対して圧力をかけ、開口21内に絶縁性樹脂を押し込んで絶縁性樹脂層10の表面に導電粒子4を埋め込むように転着させる。これにより、
図3Bに示すような、絶縁性樹脂層10の平面方向に導電粒子4が単層で配列された構造であって、隣接する導電粒子4間の中央領域の絶縁性樹脂層厚が、導電粒子近傍の絶縁性樹脂層厚よりも薄くなっている第1接続層1を形成する。この場合、隣接する導電粒子4間で絶縁性樹脂層厚が実施的に0となってもよい(
図1C参照)。実質的に0になると、接続後の個々の導電粒子の独立性が高まり、接続時に導電粒子が互いに連結することを防止し易くなる。
【0074】
<工程(C)>
次に、
図4に示すように、第1接続層1の導電粒子4側表面に、主として絶縁性樹脂からなる第2接続層2を形成する。これにより、第1接続層と第2接続層の境界が起伏した状態、換言すればその形状が波型ないしは凹凸型となる。このように、フィルム内に存在する層に起伏のある形状を適用することで、接合時の主にバンプに対しての接触面積を増加させる確率を高めることができ、その結果、接着強度の向上が期待できる。
【0075】
<工程(D)>
次に、剥離フィルム22を取り除いたのち、第2接続層2と反対側の第1接続層1の表面に、主として絶縁性樹脂からなる第3接続層3を形成する。これにより、
図5に示す異方性導電フィルム100が得られる。
【0076】
なお、工程(B)と工程(C)との間に、
図3Cに示すように、第1接続層1に対し、導電粒子4側から紫外線UVを照射することが好ましい。これにより、導電粒子4を第1接続層1に固定化でき、しかも、導電粒子4の下方の第1接続層1の硬化率をその周囲に比べ相対的に低くすることができ、異方性導電接続の際の導電粒子の押し込み性を向上させることができる。
【0077】
<<異方性導電フィルムの製造方法>>
また、本発明の異方性導電フィルムの別の製造方法の例を説明する。この製造方法は、剥離フィルム22に代えて第3接続層3を使用する態様であり、以下の工程(a)〜(c)を有する。以下工程毎に説明する。
【0078】
<工程(a)>
図6Aに示すように、開口21が形成された転写型20の開口21内に導電粒子4を配置し、
図6Bに示すように、開口21が形成された転写型20の表面に、予め第3接続層3が貼り合わされた絶縁性樹脂層10を対向させる。
【0079】
<工程(b)>
次に、
図7Aに示すように、第3接続層3側から絶縁性樹脂層10に対して圧力をかけ、開口21内に絶縁性樹脂を押し込んで絶縁性樹脂層10の表面に導電粒子4を転着させる。これにより、
図7Bに示すような、絶縁性樹脂層10の平面方向に導電粒子4が単層で配列された構造であって、隣接する導電粒子4間の中央領域の絶縁性樹脂層厚が、導電粒子近傍の絶縁性樹脂層厚よりも薄くなっている第1接続層1を形成する。この場合、隣接する導電粒子4間で絶縁性樹脂層厚が実施的に0となってもよい(
図1C参照)。実質的に0になると、接続後の個々の導電粒子の独立性が高まり、接続時に導電粒子が互いに連結することを防止し易くなる。
【0080】
<工程(c)>
次に、第1接続層1の導電粒子4側表面に、主として絶縁性樹脂からなる第2接続層2を形成する。これにより、
図8に示す異方性導電フィルム100が得られる。
【0081】
なお、工程(b)と工程(c)との間に、
図7Cに示すように、第1接続層1に対し、導電粒子4側から紫外線UVを照射することが好ましい。これにより、導電粒子4を第1接続層1に固定化でき、しかも、導電粒子4の下方の第1接続層1の硬化率をその周囲に比べ相対的に低くすることができ、異方性導電接続の際の導電粒子の押し込み性を向上させることができる。
【0082】
ところで、
図8に示す異方性導電フィルムにおいては、導電粒子4は第1接続層1に主に包含されている。この場合、一つの導電粒子についてみたときに、それを包み込んでいる第1接続層1の領域は第2接続層2側に凸形状となっており、従って、その領域の第2接続層側の幅よりも、第3接続層側の幅が広くなっている。この幅の広い側における導電粒子4の厚み方向端部(粒子の下側端部)と第2接続層2までの水平方向の最短距離pが、接続時の導電粒子の安定性に寄与する。即ち、pは固定部分の台座に相当する役割を有する。換言すれば、導電粒子近傍の樹脂が山型になることは、これに包含されている粒子をその内部に留めさせ、孤立化させる。これは、押圧によって導電粒子が圧縮される際、その導電粒子を包み込んでいる第1接続層の裾野部分の存在によって平面方向への導電粒子の流動は相対的に抑制される確率が高まるからである。この効果は、既に説明したように、導電粒子間中央領域に第1接続層の厚みが存在しなくても、本質的には同様の効果を示す。これは、上記したように粒子流動の抑制はその近傍樹脂の形状で担うためであり、その端部が閉鎖的であるか、わずかに開放的であるかには、本質的な差異はないためである。このため、導電粒子間の連結を防止するという効果としては、結果として略同一の発現が期待できる。以上のことから、pは山型の裾野までに相当する長さ、つまり作用効果が期待できるまでの長さを表す。この場合、導電粒子の厚み方向端部と第2接続層2までの水平方向の最短距離pは、好ましくは導電粒子径の0.5〜1.5倍、より好ましくは0.55〜1.25倍となる。
【0083】
<<異方性導電フィルムの用途>>
このようにして得られた異方性導電フィルムは、ICチップ、ICモジュールなどの第1電子部品と、フレキシブル基板、ガラス基板などの第2電子部品とを熱又は光により異方性導電接続する際に好ましく適用することができる。このようにして得られる接続構造体も本発明の一部である。この場合、配線基板などの第2電子部品に対し、異方性導電フィルムをその第3接続層側から仮貼りし、仮貼りされた異方性導電フィルムに対し、ICチップなどの第1電子部品を搭載し、第1電子部品側から熱圧着することが、接続信頼性を高める点から好ましい。また、光硬化を利用して接続することもできる。
【実施例】
【0084】
以下、本発明を実施例により具体的に説明する。
【0085】
実施例1〜10
表1又は表2に記載された配合に従って、アクリレート及び光ラジカル重合開始剤等を酢酸エチル又はトルエンにて固形分が50質量%となるように混合液を調製した。この混合液を、厚さ50μmのポリエチレンテレフタレートフィルム(PETフィルム)に、乾燥厚が5μmとなるように塗布し、80℃のオーブン中で5分間乾燥することにより、第1接続層となる光ラジカル重合型の絶縁性樹脂層を形成した。
【0086】
次に、直径5.5μmで深さ4.5μmの円柱状の開口が縦横9μmピッチで設けられているステンレススチール製の転写型を用意し、各開口に平均粒径4μmの導電粒子(Ni/Auメッキ樹脂粒子、AUL704、積水化学工業(株))を一つずつ収容した。この転写型の開口形成面に対し、第1接続層用の絶縁性樹脂層を対向させ、剥離フィルム側から、60℃で0.5MPaという条件で加圧することにより導電粒子を絶縁性樹脂層に押し込んだ。これにより、隣接する導電粒子間の中央領域の絶縁性樹脂層厚が、導電粒子近傍の絶縁性樹脂層厚よりも薄くなっている絶縁性樹脂層を形成した。
【0087】
次に、この導電粒子側から光ラジカル重合型の絶縁性樹脂層に対し、波長365nm、積算光量4000mJ/cm
2の紫外線を照射することにより、表面に導電粒子が固定された第1接続層を形成した。
【0088】
熱硬化性樹脂及び潜在性硬化剤等を酢酸エチル又はトルエンにて固形分が50質量%となるように混合液を調製した。この混合液を、厚さ50μmのPETフィルムに、乾燥厚が12μmとなるように塗布し、80℃のオーブン中で5分間乾燥することにより、第2接続層とを形成した。同様の操作により乾燥厚3μmの第3接続層を形成した。
【0089】
このようにして得られた第1接続層に、第2接続層を、導電粒子が内側となるように、60℃、0.5MPaという条件でラミネートし、続いて反対面に第3接続層を同様にラミネートすることにより異方性導電フィルムを得た。
【0090】
なお、実施例7〜10については、導電粒子間の第1接続層の厚みが実質的に0となるように異方性導電フィルムを作成した。具体的には、第1接続層用の絶縁性樹脂層を対向させ、剥離フィルム側から、60℃で0.5MPaという条件で加圧した後、60℃で1.0MPaという条件で再加圧すること以外は、実施例1と同様の条件で異方性導電フィルムを作成した。
【0091】
比較例1
表1に記載された配合に従って、実施例1と同様に第1接続層の前駆層である光ラジカル重合型の絶縁性樹脂層を形成した。
【0092】
次に、直径5.5μmで深さ4.5μmの円柱状の開口が縦横9μmピッチで設けられているステンレススチール製の転写型を用意し、各開口に平均粒径4μmの導電粒子(Ni/Auメッキ樹脂粒子、AUL704、積水化学工業(株))を一つずつ収容した。この転写型の開口形成面に対し、第1接続層用の絶縁性樹脂層を対向させ、剥離フィルム側から、40℃で0.1MPaという相対的に弱い条件で加圧することにより導電粒子を絶縁性樹脂層表面に転写した。導電粒子が転写されたこのフィルムを取り出し、導電粒子を絶縁性樹脂層中に、樹脂層の表面が平坦となるように完全に押し込んだ。
【0093】
次に、導電粒子が埋め込まれた光ラジカル重合型の絶縁性樹脂層に対し、波長365nm、積算光量4000mJ/cm
2の紫外線を照射することにより平坦な第1接続層を形成した。
【0094】
この第1接続層に対し、実施例1と同様に作成した12μm厚の第2接続層と3μm厚の第3接続層とをラミネートすることにより異方性導電フィルムを得た。
【0095】
比較例2
表1の第1接続層用の樹脂組成物に実施例1で使用したものと同じ導電粒子を1平方mm当たり20000個となるように均一に分散した混合物から、厚さ6μmの導電粒子含有樹脂フィルムを作成した。このフィルムに対し、実施例1と同様に作成した厚さ12μmの第2接続層を、60℃で0.5MPaという条件で貼り付けることにより2層構造の異方性導電フィルムを作成した。
【0096】
<評価>
得られた異方性導電フィルムにおける導電粒子間の平面方向均等配列について、平面均等配列が形成されている場合にはその適用があり(有)とし、それ以外を適用なし(無)とする。また、導電粒子近傍の絶縁性樹脂層厚について、導電粒子間の中間領域の絶縁性樹脂層厚(層厚0も含む)よりも大きい場合には、導電粒子近傍の絶縁性樹脂層厚の増大があり(有)とし、それ以外の場合をなし(無)とした。その結果を表1又は表2に示す。なお、異方性導電フィルムの構成層数も併せて示す。
【0097】
得られた異方性導電フィルムを用いて、0.5×1.8×20.0mmの大きさのICチップ(バンプサイズ30×85μm:バンプ高さ15μm、バンプピッチ50μm)を、0.5×50×30mmの大きさのコーニング社製のガラス配線基板(1737F)に180℃、80MPa、5秒という条件で実装して接続構造サンプル体を得た。この接続構造サンプル体の接続部の断面を電子顕微鏡で観察したところ、
図1Aに示したように、導電粒子の周囲に絶縁性樹脂層が存在していることが確認できた。
【0098】
得られた接続構造サンプル体について、以下に説明するように、「最低溶融粘度」、「粒子捕捉効率」、「導通信頼性」及び「絶縁性」を試験評価した。得られた結果を表1又は表2に示す。
【0099】
「最低溶融粘度」
接続構造サンプル体を構成する第1接続層及び第2接続層のそれぞれの最低溶融粘度を、回転式レオメータ(TA Instruments社)を用い、昇温速度10℃/分;測定圧力5g一定;使用測定プレート直径8mmという条件で測定した。
【0100】
「粒子捕捉効率」
“加熱・加圧前の接続構造サンプル体のバンプ上に存在する理論粒子量”に対する“加熱・加圧後(実際の実装後)の接続構造サンプル体のバンプ上で実際に捕捉されている粒子量”の割合を以下の数式に従って求めた。実用上、50%以上であることが望ましい。
【0101】
【数2】
【0102】
「導通信頼性」
接続構造サンプル体を、85℃、85%RHの高温高湿環境下に放置し、初期と500時間経過後の導通抵抗値を測定した。実用上、500時間経過後でも抵抗値10Ω以下であることが望ましい。
【0103】
「絶縁性」
7.5μmスペースの櫛歯TEGパターンのショート発生率を求めた。実用上、100ppm以下であることが望ましい。
【0104】
【表1】
【0105】
【表2】
【0106】
表1から分かるように、実施例1〜6の異方性導電フィルムについては、粒子捕捉効率、導通信頼性、絶縁性の各評価項目についてはいずれも実用上好ましい結果を示した。なお、実施例1〜4の結果から、第1、第2、第3接続層がいずれも同じ硬化系であると、それらの層同士が反応するので、導電粒子の押し込み性が若干低下して導通抵抗値が上昇する傾向があることがわかる。また、第1接続層がカチオン重合系であると、ラジカル重合系よりも耐熱性が改善されるので、やはり導電粒子の押し込み性が若干低下して導通抵抗値が上昇する傾向があることがわかる。
【0107】
それに対し、比較例1の異方性導電フィルムについては、第1接続層において、隣接する導電粒子間の中央領域の絶縁性樹脂層厚が、導電粒子近傍の絶縁性樹脂層厚よりも薄くなっていないので、導通信頼性が大きく低下してしまった。従来の2層構造の比較例2の異方性導電フィルムについては、粒子捕捉効率が大きく低下し、絶縁性にも問題があった。
【0108】
また、表2からわかるように、実施例7〜10の異方性導電フィルムは、導電粒子間中央部の厚みがゼロであるため導電粒子の独立性が高まり、粒子捕捉効率、導通信頼性、絶縁性の各評価項目についてはいずれも実用上好ましい結果を示した。