特許第6840507号(P6840507)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ パナソニック株式会社の特許一覧

特許6840507非水電解質二次電池用正極及び非水電解質二次電池
<>
  • 特許6840507-非水電解質二次電池用正極及び非水電解質二次電池 図000003
  • 特許6840507-非水電解質二次電池用正極及び非水電解質二次電池 図000004
  • 特許6840507-非水電解質二次電池用正極及び非水電解質二次電池 図000005
  • 特許6840507-非水電解質二次電池用正極及び非水電解質二次電池 図000006
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6840507
(24)【登録日】2021年2月19日
(45)【発行日】2021年3月10日
(54)【発明の名称】非水電解質二次電池用正極及び非水電解質二次電池
(51)【国際特許分類】
   H01M 4/131 20100101AFI20210301BHJP
   H01M 4/66 20060101ALI20210301BHJP
   H01M 10/0585 20100101ALI20210301BHJP
   H01M 50/543 20210101ALI20210301BHJP
【FI】
   H01M4/131
   H01M4/66 A
   H01M10/0585
   H01M2/30 B
【請求項の数】8
【全頁数】13
(21)【出願番号】特願2016-206534(P2016-206534)
(22)【出願日】2016年10月21日
(65)【公開番号】特開2017-120766(P2017-120766A)
(43)【公開日】2017年7月6日
【審査請求日】2019年8月2日
(31)【優先権主張番号】特願2015-252976(P2015-252976)
(32)【優先日】2015年12月25日
(33)【優先権主張国】JP
(73)【特許権者】
【識別番号】000005821
【氏名又は名称】パナソニック株式会社
(74)【代理人】
【識別番号】110001210
【氏名又は名称】特許業務法人YKI国際特許事務所
(72)【発明者】
【氏名】遠藤 一樹
【審査官】 浅野 裕之
(56)【参考文献】
【文献】 特開2010−257893(JP,A)
【文献】 国際公開第2014/034113(WO,A1)
【文献】 特開2013−045659(JP,A)
【文献】 国際公開第2012/005301(WO,A1)
【文献】 国際公開第2006/068143(WO,A1)
【文献】 国際公開第2002/084764(WO,A1)
【文献】 国際公開第2012/128160(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01M 4/00〜 4/62
H01M 10/00〜10/0587
H01M 50/50〜50/598
(57)【特許請求の範囲】
【請求項1】
アルミニウムを主成分として構成される金属からなる正極集電体と、
リチウム含有遷移金属酸化物を含み、前記正極集電体上に形成された正極合材層と、
前記正極集電体と前記正極合材層との間に介在する保護層と、
を備え、
前記保護層は、
無機物粒子、導電材、及び結着材を含み、前記無機物粒子を主成分として構成され、
前記正極集電体上において、前記正極合材層が形成される範囲の略全域に形成され、且つ前記正極合材層が形成されず前記正極集電体の表面が露出した露出部の少なくとも一部を覆っており、
前記無機物粒子は、比抵抗が10Ω・m以上である無機化合物を主成分とする、非水電解質二次電池用正極。
【請求項2】
前記保護層は、単位面積当たりの重量が0.1〜50g/mである、請求項1に記載の非水電解質二次電池用正極。
【請求項3】
前記保護層の厚みは、1〜20μmである、請求項1又は2に記載の非水電解質二次電池用正極。
【請求項4】
前記無機物粒子は、酸化アルミニウム、酸化チタン、酸化マンガン、及び酸化ケイ素から選択される少なくとも1種である、請求項1〜のいずれか1項に記載の非水電解質二次電池用正極。
【請求項5】
請求項1〜のいずれか1項に記載の正極と、
負極と、
前記正極と前記負極との間に介在するセパレータと、
非水電解質と、
を備え、
前記保護層は、前記セパレータを介して前記負極と対向する位置に設けられている、非水電解質二次電池。
【請求項6】
前記正極、前記負極、及び前記セパレータをそれぞれ複数含み、前記正極と前記負極が前記セパレータを介して交互に積層された積層型の電極体を備える、請求項に記載の非水電解質二次電池。
【請求項7】
前記正極は、前記正極集電体の前記正極合材層の未塗工部によって形成された正極リード部を有し、
前記保護層が前記正極リード部上に形成された、請求項に記載の非水電解質二次電池。
【請求項8】
前記保護層は、前記正極集電体上において前記負極と対向する範囲を超えて形成されている、請求項に記載の非水電解質二次電池。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、非水電解質二次電池用正極及び非水電解質二次電池に関する。
【背景技術】
【0002】
非水電解質二次電池用正極(以下、単に「正極」という)は、正極集電体と、当該集電体上に形成された正極合材層とを備える。正極は、例えば正極端子と電気的に接続されるリードとなる部分に、正極合材層が形成されず集電体表面が露出した露出部を有する。正負極間におけるリチウムイオンの円滑な移動を確保するため、正極は負極よりも小さく設計されるが、この場合、正極集電体の露出部がセパレータを介して負極と対向することになる。そして、露出部と負極の間に異物が入り込み、当該異物がセパレータを突き破ると、露出部と負極が接触して大電流が流れる低抵抗な内部短絡が発生し、大きな発熱が起こる場合がある。
【0003】
かかる低抵抗な内部短絡を防止すべく、例えば特許文献1では、正極集電体の露出部にバインダ樹脂と溶媒とを含むバインダ溶液を塗布し乾燥して形成された絶縁層を有する正極が開示されている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2013−45659号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかし、特許文献1に開示された絶縁層は、バインダ樹脂のみから構成される薄膜層であるため、上記異物混入による内部短絡の抑制効果は小さい。特に、異物の寸法が大きな場合は当該絶縁層による内部短絡の抑制効果は十分ではないと考えられる。
【0006】
加えて、非水電解質二次電池では、釘刺し等により正極合材層が形成された範囲と負極間に内部短絡が発生した場合の発熱量を小さくすることが求められているが、特許文献1の技術では当該発熱量を低減することは困難である。
【課題を解決するための手段】
【0007】
本開示の一態様である非水電解質二次電池用正極は、アルミニウムを主成分として構成される正極集電体と、リチウム含有遷移金属酸化物を含み、正極集電体上に形成された正極合材層と、正極集電体と正極合材層との間に介在する保護層とを備え、保護層は、無機物粒子、導電材、及び結着材を含み、無機物粒子を主成分として構成され、正極集電体上において、正極合材層が形成される範囲の略全域に形成され、前記正極合材層が形成されず前記正極集電体の表面が露出した露出部の少なくとも一部を覆っている。
【0008】
本開示の一態様である非水電解質二次電池は、上記正極と、負極と、正極と負極との間に介在するセパレータと、非水電解質とを備え、保護層は、セパレータを介して負極と対向する位置に設けられている。
【発明の効果】
【0009】
本開示の一態様である非水電解質二次電池用正極によれば、電池特性を損なうことなく、異物混入による正極集電体と負極との低抵抗な内部短絡の発生を高度に抑制できる。また、例えば、釘刺し等により内部短絡が発生した場合に、発熱量を抑えることができる。
【図面の簡単な説明】
【0010】
図1】実施形態の一例である非水電解質二次電池を示す斜視図である。
図2】実施形態の一例である正極の断面図である。
図3】実施形態の一例である電極体の積層構造を示す図である。
図4図3中のAA線断面図である。
【発明を実施するための形態】
【0011】
本開示の一態様である正極では、無機物粒子、導電材、及び結着材を含み、無機物粒子を主成分として構成された保護層が、正極集電体上において、正極合材層が形成される範囲の略全域に形成され、且つ正極合材層との間からはみ出して形成されている。即ち、保護層は正極集電体と正極合材層との間に介在するだけでなく、正極合材層が形成されず正極集電体の表面が露出した露出部の少なくとも一部を覆っている。保護層は、無機物粒子を主成分として構成されるため、硬くて破断し難く、また1μm以上の厚みで形成することができる。したがって、本開示の一態様である正極によれば、異物混入による正極集電体と負極との低抵抗な内部短絡の発生を高度に抑制できる。
【0012】
ところで、釘刺し等により正極合材層が形成された範囲と負極間に内部短絡が発生した場合において、正極活物質であるリチウム含有遷移金属酸化物とアルミニウム(Al)を主成分とするアルミニウム集電体とが酸化還元反応し、大きな発熱が起こる恐れがある。上記保護層は、アルミニウム集電体とリチウム含有遷移金属酸化物を隔離し、アルミニウム集電体が関与する酸化還元反応を抑制して異常発生時の発熱量を低減させる機能をさらに有する。
【0013】
上記酸化還元反応を抑制するためには、1μm以上の保護層を集電体上に形成することが好ましい。保護層の厚みを単純に増加させると、集電性が著しく低下して電池性能に支障をきたすことになるが、本発明者らは保護層に導電材を添加することで集電性を確保し、良好な電池特性を維持することに成功したのである。つまり、本開示の一態様である正極によれば、電池特性を損なうことなく、低抵抗な内部短絡の発生を高度に抑制でき、また優れた釘刺し安全性を得ることができる。
【0014】
以下、本開示に係る正極及び非水電解質二次電池の実施形態の一例について詳細に説明する。実施形態の説明で参照する図面は、模式的に記載されたものであり、図面に描画された構成要素の寸法比率などは、現物と異なる場合がある。具体的な寸法比率等は、以下の説明を参酌して判断されるべきである。本明細書において「略〜」とは、略全域を例に説明すると、全域および実質的に全域と認められる場合を含む意図である。
【0015】
図1は、実施形態の一例である非水電解質二次電池10を示す斜視図である。非水電解質二次電池10は、電極体11と、非水電解質(図示せず)とを備える。電極体11は、正極20と、負極30と、正極20と負極30との間に介在するセパレータ40とによって構成される(後述の図3参照)。電極体11は、正極20、負極30、及びセパレータ40をそれぞれ複数含み、正極20と負極30がセパレータ40を介して交互に積層された積層型の電極体である。なお、本開示の正極は巻回型の電極体に適用されてもよい。
【0016】
非水電解質二次電池10は、例えばリチウムイオン電池であって、発電要素である電極体11及び非水電解質が電池ケース14内に収容されている。電池ケース14は、一般的に略箱形状のケース本体15と、ケース本体15の開口部を塞ぐ封口体16とによって構成される。非水電解質二次電池10は、例えば角形電池である。ケース本体15及び封口体16は、アルミニウムを主成分とする金属材料から構成されることが好ましい。電池ケース14には従来公知の構造を適用できる。主成分とは、正極活物質を構成する材料のうち最も含有量が多い成分を意味する。
【0017】
封口体16上には、各正極20と電気的に接続された正極端子12と、各負極30と電気的に接続された負極端子13とが設けられている。正極端子12には、正極集電体21の表面が露出した正極リード部25(後述の図3参照)が直接、又は他の導電部材を介して接続される。負極端子13には、負極集電体31の表面が露出した負極リード部35(後述の図3参照)が直接、又は他の導電部材を介して接続される。以下では、説明の便宜上、正極端子12と負極端子13が並ぶ方向を横方向とし、横方向及び電極体11を構成する各電極の積層方向に直交する方向を縦方向とする。
【0018】
封口体16の横方向両端部には、図示しない貫通孔がそれぞれ形成されており、正極端子12及び負極端子13、又は各端子に接続された導電部材は当該各貫通孔から電池ケース14内に挿入される。正極端子12及び負極端子13は、例えば貫通孔に設置される絶縁部材17を介して封口体16にそれぞれ固定される。なお、一般的に封口体16にはガス排出機構(図示せず)が設けられている。
【0019】
以下、図2図4を参照しながら、非水電解質二次電池10の各構成要素、特に電極体11(中でも正極20)について詳説する。
【0020】
[正極]
図2は、実施形態の一例である正極20の断面図である。正極20は、アルミニウム(Al)を主成分として構成される正極集電体21と、リチウム含有遷移金属酸化物を含み、正極集電体21上に形成された正極合材層22と、正極集電体21と正極合材層22との間に介在する保護層23とを備える。正極合材層22は、正極活物質としてリチウム含有遷移金属酸化物を含み、さらに導電材及び結着材を含むことが好適である。正極合材層22は、一般的に正極集電体21の両面に形成される。正極20は、例えば保護層23が形成された正極集電体21上に正極活物質、結着材等を含む正極合材スラリーを塗布し、塗膜を乾燥させた後、圧延して正極合材層22を集電体の両面に形成することにより作製できる。なお、正極合材スラリーは正極集電体21上において正極リード部25となる領域には塗工されず、これにより正極20の一部には正極合材層22が形成されず集電体表面が露出した正極リード部25が形成される。
【0021】
正極集電体21には、例えばアルミニウム又はアルミニウム合金が用いられる。正極集電体21におけるアルミニウムの含有量は、集電体の総重量に対して50%以上であり、好ましくは70%以上、より好ましくは80%以上である。正極集電体21は、例えばアルミニウム又はアルミニウム合金からなる金属の箔であって、10〜100μm程度の厚みを有する。
【0022】
正極活物質としては、コバルト(Co)、マンガン(Mn)、ニッケル(Ni)等の遷移金属元素を含有するリチウム遷移金属酸化物が例示できる。リチウム遷移金属酸化物は、例えばLixCoO2、LixNiO2、LixMnO2、LixCoyNi1-y2、LixCoy1-yz、LixNi1-yyz、LixMn24、LixMn2-yy4、LiMPO4、Li2MPO4F(M;Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、Bのうち少なくとも1種、0<x≦1.2、0<y≦0.9、2.0≦z≦2.3)である。これらは、1種単独で用いてもよいし、複数種を混合して用いてもよい。
【0023】
正極合材層22に含まれる導電材は、合材層の電気伝導性を高めるために用いられる。導電材の例としては、カーボンブラック(CB)、アセチレンブラック(AB)、ケッチェンブラック、黒鉛等の炭素材料などが挙げられる。これらは、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
【0024】
正極合材層22に含まれる結着材は、正極活物質及び導電材間の良好な接触状態を維持し、且つ集電体表面に対する正極活物質等の結着性を高めるために用いられる。結着材の例としては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)等のフッ素系樹脂、ポリアクリロニトリル(PAN)、ポリイミド系樹脂、アクリル系樹脂、ポリオレフィン系樹脂などが挙げられる。また、これらの樹脂と、カルボキシメチルセルロース(CMC)又はその塩(CMC−Na、CMC−K、CMC-NH4等、また部分中和型の塩であってもよい)、ポリエチレンオキシド(PEO)等が併用されてもよい。これらは、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
【0025】
保護層23は、無機物粒子24、導電材、及び結着材を含み、無機物粒子24を主成分として構成される。無機物粒子24は、保護層23を構成する成分のうち最も重量が多い成分である。導電材は、保護層23の導電性を向上させる。結着材は、無機物粒子24と導電材を結着させ、集電体表面に無機物粒子24等を結着させる。保護層23は、正極集電体21上に形成され、保護層23上に正極合材層22が形成される。正極合材層22は、上述のように正極集電体21の両面に形成されるため、保護層23は、正極集電体21の両面に形成されることが好適である。
【0026】
保護層23は、正極集電体21上において、正極合材層22が形成される範囲の略全域に形成され、且つ正極合材層22との間からはみ出して形成されている。以下では、保護層23のうち、正極合材層22が形成される範囲に位置して正極集電体21と正極合材層22との間に介在する部分を第1領域23a、正極合材層22の縁からはみ出した部分を第2領域23bとする。第1領域23aと第2領域23bは途切れることなく、連続して形成される。本実施形態では、第2領域23bが正極リード部25の付け根側に形成されている。
【0027】
第1領域23aは、アルミニウムを主成分とする正極集電体21とリチウム遷移金属酸化物を隔離し、正極集電体21が関与する酸化還元反応を抑制する。そして、釘刺し等により内部短絡が発生した場合の発熱量を抑え、電池の釘刺し安全性を向上させる。第2領域23bは、正極集電体21の正極合材層22が形成されない部分と負極30との低抵抗な内部短絡の発生を高度に抑制する。第2領域23bは、無機物粒子24を主成分とする硬質層であるため、混入した異物が強く当接しても破断し難い。
【0028】
保護層23の厚みは、1〜20μmが好ましく、1〜10μmがより好ましい。保護層23には導電材が含まれるため、保護層23を厚く形成しても正極集電体21と正極合材層22の導電性を損なわず、良好な電池特性を維持できる。但し、保護層23を厚くし過ぎると電池容量の低下を招く場合があるため、保護層23の厚みは20μm以下に設定されることが好ましい。また、保護層23の面密度、即ち正極集電体21上における単位面積当たりの重量は0.1〜50g/m2が好ましく、1〜20g/m2がより好ましい。
【0029】
図2に示す例では、第1領域23aと第2領域23bとで厚みが異なっている。第1領域23aの厚みは第2領域23bの厚みよりも薄く、第1領域23aでは、無機物粒子24が正極集電体21にめり込んでいる。例えば、正極20の圧延工程において、正極合材層22が形成されない部分に圧延ローラーが当接せず圧力が加わらない場合、このような厚み差が形成される。第1領域23aが薄くなることで正極集電体21と正極合材層22との導電性が損なわれ難く、好ましい。また、無機物粒子24が正極集電体21にめり込むことで、第1領域23aと正極集電体21との結着性が高まり、好ましい。第2領域23bは厚い方が異物混入による内部短絡の抑制効果が高く、好ましい。
【0030】
保護層23に含まれる無機物粒子24は、比抵抗が103Ω・m以上である無機化合物を主成分とする粒子であることが好ましい。比抵抗が103Ω・m以上である無機化合物を用いることで大電流が流れる低抵抗な短絡の発生が抑制される。無機物粒子24の含有量は、保護層23の総重量に対して70〜99.8重量%が好ましく、90〜99重量%が特に好ましい。
【0031】
好適な無機物粒子24の具体例としては、酸化アルミニウム、酸化チタン、酸化マンガン、及び酸化ケイ素から選択される少なくとも1種が挙げられる。中でも、酸化アルミニウム(Al23)又は酸化チタン(TiO2)を用いることが好ましい。無機物粒子24の平均粒径は、例えば1μm以下であり、好ましくは0.3〜1μmである。ここで、平均粒径とは光散乱法により測定される体積平均粒径を意味する。
【0032】
保護層23に含まれる導電材には、正極合材層22に適用される導電材と同種のもの、例えばカーボンブラック(CB)、アセチレンブラック(AB)、ケッチェンブラック、黒鉛等の炭素材料などを用いることができる。これらは、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。導電材の含有量は、保護層23の総重量に対して0.1〜20重量%が好ましく、1〜10重量%が特に好ましい。保護層23における導電材の含有率は、例えば正極合材層22における導電材の含有率よりも高い。
【0033】
保護層23に含まれる結着材には、正極合材層22に適用される結着材と同種のもの、例えばポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)等のフッ素系樹脂、ポリアクリロニトリル(PAN)、ポリイミド系樹脂、アクリル系樹脂、ポリオレフィン系樹脂などを用いることができる。これらは、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。結着材の含有量は、保護層23の総重量に対して0.1〜20重量%が好ましく、1〜10重量%が特に好ましい。
【0034】
図3及び図4は、電極体11の積層構造を示す図である。図3では、負極30を破線で、セパレータ40を二点鎖線で示す。図4では、セパレータ40の図示を省略する。電極体11は、正極20と負極30がセパレータ40を介して交互に積層された積層構造を有する。上述のように、正負極間におけるリチウムイオンの円滑な移動を確保するため、正極20は負極30よりも小さく形成され、少なくとも正極合材層22が形成された部分は負極30の負極合材層32が形成された部分に対向配置される。
【0035】
正極20は、正極集電体21の一部が突出して形成された正極リード部25を有する。正極20は、例えば正面視略矩形形状の本体部26と、本体部26の縦方向一端から突出した平面視略矩形形状の正極リード部25とを有する。正極合材層22は、本体部26の両面の略全域に形成され、正極リード部25の付け根にも僅かに形成されている。換言すると、正極合材層22は正極リード部25の大部分に形成されていない。各正極リード部25の集電体表面が露出した部分は互いに重ね合わされ、正極端子12に接続される。
【0036】
負極30は、負極集電体31の一部が突出して形成された負極リード部35を有する。負極30は、例えば正面視略矩形形状の本体部36と、本体部36の縦方向一端から突出した平面視略矩形形状の負極リード部35とを有する。各負極リード部35の集電体表面が露出した部分は互いに重ね合わされ、負極端子13に接続される。本実施形態では、正極リード部25が電極体11の横方向一端側に、負極リード部35が電極体11の横方向他端側にそれぞれ配置されている。正極リード部25は、負極30と対向する範囲を超えて縦方向に延びている。
【0037】
保護層23は、本体部26の両面の略全域に形成され、正極リード部25において正極合材層22の縁からはみ出し、正極合材層22が形成されない部分にも形成される。保護層23の正極合材層22の縁からはみ出した部分である第2領域23bは、負極30と対向する範囲だけに形成されてもよく、正負極の位置ずれを考慮し、好ましくは負極30と対向する範囲を超えて形成されてもよい。図3に示す例では、正極リード部25の付け根から当該リード部の縦方向長さの1/3程度の範囲に保護層23が形成されている。そして、正極リード部25の先端から2/3程度の範囲で集電体表面が露出している。保護層23は、負極30と対向する範囲を超えて形成されていればよく、セパレータ40との位置関係は特に限定されない。極板上で電流の集中する正極リード部25と負極30とが対向する範囲に保護層23を形成することによって、より異物混入時の安全性を高めることができる。
【0038】
[負極]
負極30は、上述のように金属箔等からなる負極集電体31と、当該集電体上に形成された負極合材層32とを備える。負極集電体31には、銅などの負極30の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。負極合材層32は、負極活物質の他に、結着材を含むことが好適である。負極合材層32は、一般的に負極集電体31の両面に形成される。負極30は、例えば負極集電体31上に負極活物質、結着材等を含む負極合材スラリーを塗布し、塗膜を乾燥させた後、圧延して負極合材層32を集電体の両面に形成することにより作製できる。なお、負極合材スラリーは負極集電体31上において負極リード部35となる領域には塗工されず、これにより負極30の一部には負極合材層32が形成されず集電体表面が露出した負極リード部35が形成される。
【0039】
負極活物質としては、リチウムイオンを可逆的に吸蔵、放出できるものであれば特に限定されず、例えば天然黒鉛、人造黒鉛等の炭素材料、ケイ素(Si)、錫(Sn)等のリチウムと合金化する金属、又はSi、Sn等の金属元素を含む合金、複合酸化物などを用いることができる。負極活物質は、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
【0040】
負極合材層32に含まれる結着材としては、正極の場合と同様にフッ素系樹脂、PAN、ポリイミド系樹脂、アクリル系樹脂、ポリオレフィン系樹脂等を用いることができる。水系溶媒を用いて負極合材スラリーを調製する場合は、スチレン−ブタジエンゴム(SBR)、CMC又はその塩、ポリアクリル酸(PAA)又はその塩(PAA−Na、PAA−K等、また部分中和型の塩であってもよい)、ポリビニルアルコール(PVA)等を用いることが好ましい。
【0041】
[セパレータ]
セパレータ40には、イオン透過性及び絶縁性を有する多孔性シートが用いられる。多孔性シートの具体例としては、微多孔薄膜、織布、不織布等が挙げられる。セパレータの材質としては、ポリエチレン、ポリプロピレン等のオレフィン系樹脂、セルロースなどが好適である。セパレータは、セルロース繊維層及びオレフィン系樹脂等の熱可塑性樹脂繊維層を有する積層体であってもよい。また、ポリエチレン層及びポリプロピレン層を含む多層セパレータであってもよく、セパレータの表面にアラミド系樹脂等が塗布されたものを用いてもよい。
【0042】
セパレータ40と正極20及び負極30の少なくとも一方との界面には、無機物のフィラーを含むフィラー層が形成されていてもよい。無機物のフィラーとしては、例えばチタン(Ti)、アルミニウム(Al)、ケイ素(Si)、マグネシウム(Mg)の少なくとも1種を含有する酸化物、リン酸化合物などが挙げられる。フィラー層は、例えば当該フィラーを含有するスラリーを正極20、負極30、又はセパレータ40の表面に塗布して形成することができる。
【0043】
[非水電解質]
非水電解質は、非水溶媒と、非水溶媒に溶解した電解質塩とを含む。非水電解質は、液体電解質(非水電解液)に限定されず、ゲル状ポリマー等を用いた固体電解質であってもよい。非水溶媒には、例えばエステル類、エーテル類、アセトニトリル等のニトリル類、ジメチルホルムアミド等のアミド類、及びこれらの2種以上の混合溶媒等を用いることができる。非水溶媒は、これら溶媒の水素の少なくとも一部をフッ素等のハロゲン原子で置換したハロゲン置換体を含有していてもよい。
【0044】
上記エステル類の例としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート等の環状炭酸エステル、ジメチルカーボネート(DMC)、メチルエチルカーボネート(EMC)、ジエチルカーボネート(DEC)、メチルプロピルカーボネート、エチルプロピルカーボネート、メチルイソプロピルカーボネート等の鎖状炭酸エステル、γ−ブチロラクトン、γ−バレロラクトン等の環状カルボン酸エステル、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル(MP)、プロピオン酸エチル、γ−ブチロラクトン等の鎖状カルボン酸エステルなどが挙げられる。
【0045】
上記エーテル類の例としては、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、テトラヒドロフラン、2−メチルテトラヒドロフラン、プロピレンオキシド、1,2−ブチレンオキシド、1,3−ジオキサン、1,4−ジオキサン、1,3,5−トリオキサン、フラン、2−メチルフラン、1,8−シネオール、クラウンエーテル等の環状エーテル、1,2−ジメトキシエタン、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、エチルビニルエーテル、ブチルビニルエーテル、メチルフェニルエーテル、エチルフェニルエーテル、ブチルフェニルエーテル、ペンチルフェニルエーテル、メトキシトルエン、ベンジルエチルエーテル、ジフェニルエーテル、ジベンジルエーテル、o−ジメトキシベンゼン、1,2−ジエトキシエタン、1,2−ジブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、1,1−ジメトキシメタン、1,1−ジエトキシエタン、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチル等の鎖状エーテル類などが挙げられる。
【0046】
上記ハロゲン置換体としては、フルオロエチレンカーボネート(FEC)等のフッ素化環状炭酸エステル、フッ素化鎖状炭酸エステル、フルオロプロピオン酸メチル(FMP)等のフッ素化鎖状カルボン酸エステル等を用いることが好ましい。
【0047】
電解質塩は、リチウム塩であることが好ましい。リチウム塩の例としては、LiBF4、LiClO4、LiPF6、LiAsF6、LiSbF6、LiAlCl4、LiSCN、LiCF3SO3、LiCF3CO2、Li(P(C24)F4)、LiPF6-x(Cn2n+1x(1<x<6,nは1又は2)、LiB10Cl10、LiCl、LiBr、LiI、クロロボランリチウム、低級脂肪族カルボン酸リチウム、Li247、Li(B(C24)F2)等のホウ酸塩類、LiN(SO2CF32、LiN(C12l+1SO2)(Cm2m+1SO2){l,mは1以上の整数}等のイミド塩類などが挙げられる。リチウム塩は、これらを1種単独で用いてもよいし、複数種を混合して用いてもよい。これらのうち、イオン伝導性、電気化学的安定性等の観点から、LiPF6を用いることが好ましい。リチウム塩の濃度は、非水溶媒1L当り0.8〜1.8molとすることが好ましい。
【実施例】
【0048】
以下、実施例により本開示をさらに詳説するが、本開示はこれらの実施例に限定されるものではない。
【0049】
<実施例1>
[正極の作製]
酸化アルミニウム(Al23)を93.5重量部と、アセチレンブラック(AB)を5重量部と、ポリフッ化ビニリデン(PVdF)を1.5重量部とを混合し、さらにN−メチル−2−ピロリドン(NMP)を適量加えてスラリーを調製した。次に、当該スラリーを厚み15μmのアルミニウム箔からなる長尺状の正極集電体の両面に塗布し、乾燥させることにより、厚みが6μm、面密度が10g/m2の保護層を形成した。
【0050】
正極活物質としてLiNi0.5Co0.2Mn0.32で表されるリチウム含有遷移金属酸化物を97重量部と、アセチレンブラック(AB)を2重量部と、ポリフッ化ビニリデン(PVdF)を1重量部とを混合し、さらにN−メチル−2−ピロリドン(NMP)を適量加えて、正極合材スラリーを調製した。次に、当該正極合材スラリーを保護層が形成された正極集電体の両面に塗布し、乾燥させた。これをローラーを用いて圧延した後、所定の電極サイズに切断し、正極集電体の両面に保護層及び正極合材層が順に形成された正極を作製した。
【0051】
正極には、上記切断工程において、平面視略矩形形状の本体部、及び本体部の端から突出した正極リード部が形成される。本体部には、保護層及び正極合材層が略全域に形成されている。正極リード部には、その付け根からリード部の縦方向長さの1/3程度の範囲に保護層が形成されている。そして、正極リード部の先端から2/3程度の範囲で正極集電体の表面が露出している。なお、正極リード部の付け根及びその近傍には、僅かに正極合材層が形成されている。正極の形状は、図3で図示するものと同様である。
【0052】
[負極の作製]
黒鉛粉末を98.7重量部と、カルボキシメチルセルロース(CMC)を0.7重量部と、スチレン−ブタジエンゴム(SBR)を0.6重量部とを混合し、さらに水を適量加えて、負極合材スラリーを調製した。次に、当該負極合材スラリーを銅箔からなる長尺状の負極集電体の両面に塗布し、乾燥させた。これをローラーを用いて圧延した後、所定の電極サイズに切断し、負極集電体の両面に負極合材層が形成された負極を作製した。負極には、正極の場合と同様に、本体部及び負極リード部が形成される。
【0053】
[非水電解質の調製]
エチレンカーボネート(EC)と、メチルエチルカーボネート(EMC)と、ジメチルカーボネート(DMC)を、3:3:4の体積比で混合した。当該混合溶媒に、LiPF6を1.2mol/Lの濃度で溶解させて非水電解質を調製した。
【0054】
[電池の作製]
上記正極と上記負極をポリエチレン製のセパレータを介して交互に積層することにより、積層型の電極体を作製した。正極と負極の積層枚数は、それぞれ16枚とした。各正極の正極リード部は電極体の横方向一端側に、各負極の負極リード部は電極体の横方向他端側にそれぞれ配置した。このとき、正極リード部において正極合材層の縁からはみ出して形成された保護層の第2領域が、負極と対向する範囲を超えるように正極及び負極を積層した。当該電極体を略箱形状のケース本体に収容した後、上記非水電解液を注入した。そして、各リード部を封口体に設けられた正極端子及び負極端子にそれぞれ接続し、封口体によりケース本体の開口部を塞ぎ、積層型の電極体を備えた角形電池を作製した。
【0055】
<実施例2>
保護層の面密度を5g/m2、厚みを3μmとしたこと以外は、実施例1と同様にして電池を作製した。
【0056】
<実施例3>
保護層の面密度を1.6g/m2、厚みを1μmとしたこと以外は、実施例1と同様にして電池を作製した。
【0057】
<実施例4>
酸化アルミニウム(Al23)の代わりに酸化チタン(TiO2)を用いたこと以外は、実施例2と同様にして電池を作製した。
【0058】
<比較例1>
保護層の形成において、酸化アルミニウム(Al23)及びアセチレンブラック(AB)を用いなかったこと以外は、実施例1と同様にして電池を作製した。
【0059】
<比較例2>
保護層の形成において、酸化アルミニウム(Al23)を用いず、アセチレンブラック(AB)の代わりに黒鉛粉末を用いたこと以外は、実施例1と同様にして電池を作製した。
【0060】
[異物短絡試験]
上記各電池について、下記の手順で試験を行った。
(1)25℃の環境下で、0.3C(600mA)の定電流で電池電圧が4.2Vになるまで充電を行い、その後定電圧で電流値が0.05C(90mA)になるまで充電を引き続き行った。
(2)(1)で充電した電池のケースを解体して電極体を取り出した後、ニッケル小片(高さ0.2mm×幅0.1mmで各辺1mmのL字形)を、正極リード部の保護層が形成された部分(第2領域23b)のうち負極と対向する部位に挿入し、当該挿入部に圧力を印加した。
(3)圧力印加の結果、発火の有無を確認した。
【0061】
[釘刺し試験]
上記各電池について、下記の手順で試験を行った。
(1)25℃の環境下で、0.3C(600mA)の定電流で電池電圧が4.2Vになるまで充電を行い、その後定電圧で電流値が0.05C(90mA)になるまで充電を引き続き行った。
(2)25℃の環境下で、(1)で充電した電池の側面中央部に3mmφの太さの丸釘の先端を接触させ、10mm/secの速度で電池の直径方向に丸釘を突き刺し、丸釘が完全に電池を貫通した時点で丸釘の突き刺しを停止させた。
(3)丸釘を突き刺した電池側面中央部から10mm離れた位置の電池温度を測定して、最高到達温度を求めた。
【0062】
【表1】
【0063】
表1に示すように、実施例の電池はいずれも、異物短絡試験で発火が確認されず、また比較例の電池と比べて釘刺し試験における最高到達温度が大幅に低かった。なお、比較例の電池の異物短絡試験では発火が確認された。実施例の電池によれば、異物混入による正極集電体と負極との低抵抗な内部短絡の発生を高度に抑制でき、且つ釘刺しにより内部短絡が発生した場合に発熱量を十分に抑えることが可能である。
【符号の説明】
【0064】
10 非水電解質二次電池、11 電極体、12 正極端子、13 負極端子、14 電池ケース、15 ケース本体、16 封口体、17 絶縁部材、20 正極、21 正極集電体、22 正極合材層、23 保護層、23a 第1領域、23b 第2領域、24 無機物粒子、25 正極リード部、30 負極、31 負極集電体、32 負極合材層、35 負極リード部、40 セパレータ
図1
図2
図3
図4