【実施例1】
【0016】
図1ないし
図3を参照して、本発明の実施例1に係る容量制御弁について説明する。
図1において、1は容量制御弁である。容量制御弁1には、外形を形成するバルブ本体2を設ける。このバルブ本体2は、内部に機能が付与された貫通孔を形成する第1バルブ本体2Aと、この第1バルブ本体2Aの一端部に一体に嵌合された第2バルブ本体2Bとから構成する。この第1バルブ本体2Aは真鍮、鉄、アルミニウム、ステンレス等の金属または合成樹脂材等で製作する。又、第2バルブ本体2Bは鉄等の磁性体で形成する。
【0017】
又、第2バルブ本体2Bは、ソレノイド部30を結合させるため、及び、磁性体にしなければならないので、第1バルブ本体2Aの材質と機能的を異にするために分離して設けられているものである。この点を考慮すれば、
図1に示す形状は適宜に変更しても良い。 また、第1バルブ本体2Aには、貫通孔の他端部に仕切調整部3を結合する。この仕切調整部3は、第1バルブ本体2Aの第3弁室(以下、容量室ということがある。)4を塞ぐように嵌着しているが、ねじ込みにして図示省略の止めねじにより固定すれば、ベローズ22A内に並列に配置した圧縮ばね又はベローズ22Aのばね力を軸方向へ移動調整できるようになる。
【0018】
第1バルブ本体2Aを軸方向へ貫通した貫通孔の区画において、一端側に第3弁室(容量室)4が形成される。第3弁室(容量室)4には第3連通路9が連接される。この第1連通路9は、容量可変型圧縮機の吸入室と連通して吸入圧力Psの流体を容量制御弁1によって吸入室へ流入させるとともに、流出できるように構成する。
【0019】
容量室4内には感圧体(以下、感圧装置という。)22を設ける。この感圧装置22は、金属製のベローズ22Aの一端部を仕切調整部3に密封に結合すると共に、他端を弁座部22Bに結合している。このベローズ22Aは、リン青銅等により製作するが、そのばね定数は所定の値に設計されている。感圧装置22の内部空間は真空又は空気が内在している。そして、この感圧装置22のベローズ22Aの有効受圧面積Abに対し、容量室4内の圧力(例えばPcの圧力)と吸入圧力Psが作用して感圧装置22を収縮作動させるように構成されている。感圧装置22の自由端には、皿型で端部周面に第1弁座面22Cが設けられた弁座部22Bを設ける。
【0020】
また、貫通孔の区画には第3弁室(容量室)4に隣接して
図1の上方側(ソレノイド部30側)に第3弁室(容量室)4の径より小径の第3弁座面12を連設する。
【0021】
更に、貫通孔の区画には第3弁座面12と隣接して
図1の上方側(ソレノイド部30側)に第2弁室6を設ける。更に、貫通孔の区画には第2弁室6と隣接して
図1の上方側(ソレノイド部30側)に第2弁室6に連通する第1弁室7を連設する。第2弁室6と第1弁室7との間にはこれらの室の径より小径の弁孔5を連設する。弁孔5の周りの第1弁室7の側には第2弁座面6Aを形成する。
なお、第3弁座面12と第2弁室6との間はシール手段によりシールされている。
【0022】
バルブ本体2内の第2弁室6には第2連通路8を連設する。この第2連通路8は、図示を省略する容量可変型圧縮機の吐出室内に連通して吐出圧力Pdの流量を容量制御弁1によって制御室に流入できるように構成する。
【0023】
更に、バルブ本体2の第1弁室7には第1連通路10を形成する。この第1連通路10は、容量可変型圧縮機の制御室(クランク室)と連通して後記する第2弁室6から流入した吐出圧力Pdの流体を容量可変型圧縮機の制御室(クランク室)へ流出させる。
【0024】
なお、第1連通路10、第2連通路8、第3連通路9は、バルブ本体2の周面に各々、例えば、2等配から6等配に貫通している。更に、バルブ本体2の外周面は4段面に形成されており、この外周面にはOリング用の取付溝を軸方向へ沿って3カ所に設ける。そして、この各取付溝には、バルブ本体2と、バルブ本体2を嵌合するケーシングの装着孔(図示省略)との間をシールするOリング46を取り付ける。
【0025】
第1バルブ本体2Aを軸方向へ貫通した貫通孔には弁体21が軸方向に移動自在に配設される。
弁体21の一端には、弁座部22Bの第3弁座面22Cと開閉する第3弁部21Aを設ける。第3弁部21Aには第3弁座面22Cと開閉する第3弁部面21A1を設ける。
第3弁部21Aの外径は第3弁座面12の内径よりわずかに小さく設定されている。
【0026】
更に、第3弁部21Aにおける第3弁部面21A1と反対側であって、第3弁座面12と摺動する位置には連通孔23を設ける。連通孔23は後記する弁体21内を軸方向に貫通する中間連通路26と連通され、第3弁座面12に対向するようにして第1弁部21Aの周方向に少なくと1個以上設けられる。
【0027】
更に、弁体21の第3弁部21Aにおける第3弁部面21A1と反対側には、連結部として第2弁部21Bを設ける。第2弁部21Bの外径は弁孔5の径より小径に形成され、第2弁室6と第1弁室7とが第2弁部21Bの開弁時に吐出圧力Pdの流体が通過できるようにされている。
【0028】
弁体21の中間部の第2弁部21Bは第2弁室6内に配置する。そして、第2弁部21Bには第2弁座面6Aと接合する第2弁部面21B1を設ける。
【0029】
弁体21の第2弁部21Bより上方側の第1弁部21Cは、第1弁室7内に配置する。 この第1弁部21Cは固定鉄心31の下端面に形成した第1弁座面31Aと開閉する。
【0030】
弁体21の内部には中間流通路26が第1弁室7から第3弁室4に貫通するように設けられている。そして、第1弁部21Cが第1弁座面31Aから開弁したときに、第1弁室7から制御流体Pcが第3連通路9へ流出できるようになる。
【0031】
弁体21は、ソレノイドロット25の下端部に設けた結合部25Aを弁体21の嵌合孔21Dに嵌着する。
弁体21には、嵌合孔21Dの下方であって第1弁室7内に位置して、例えば4等配の補助連通路21Eを設ける。この補助連通路21Eを介して第1弁室7は中間連通路26に連通する。
第1弁室7は弁体21の外形よりやや大径面に形成されて第1連通路10からの制御流体Pcの流体が第1弁室7に流入しやすく構成されている。
【0032】
以上説明したバルブ本体2と弁体21と感圧装置22とを含めた
図1の下部の構成がバルブ部を構成する。
【0033】
補助連通路21Eの面積をS1、連通孔23の最大面積をS2maxとすると、S1はS2maxと比較し同等以上であればよい。
【0034】
また、空気調和機の容量の大きさによっては、この補助連通路21Eの直径は変わることがある。
なお、冷媒液の気化した制御流体Pcの圧力に応じて感圧装置22を収縮させて第1弁部21Aを開弁した状態では、冷媒液を気化させる時間が10分以上もかかる。この間、斜板式容量可変型圧縮機の制御室の圧力は、気化する状態にあるから、この圧力が次第に上昇するので、さらに気化が遅れることになる。しかし、この補助連通路21Eを設けることにより、制御室内の冷媒液を急速に気化させることができる。そして、この制御室内の冷媒液が全部気化すれば、容量制御弁1により制御室内の圧力を自由に制御することが可能になる。
【0035】
第3弁部21Aの連通孔23は、第2弁部21Bの第2弁部面21B1が閉弁状態において開の状態となり、第2弁部面21B1が開弁状態では閉の状態となるように設定されている。
【0036】
ソレノイドロッド25の結合部25Aと反対の他端部は、プランジャ32の嵌合孔32Aに嵌着して結合する。弁体21とプランジャ32との間には第1バルブ本体2Aに固着された固定鉄心31が設けられている。そして、ソレノイドロッド25は固定鉄心31の内周面31Dと移動自在に嵌合している。
【0037】
この固定鉄心31のプランジャ32側には、ばね座室31Cを形成する。このばね座室31Cには第1弁部21Aと第2弁部21Bを閉弁状態から開弁状態にするばね手段(以下、弾発手段とも称する)28が配置されている。つまり、ばね手段28はプランジャ32を固定鉄心31から引き離すように弾発している。固定鉄心31の吸着面31Bとプランジャ32の接合面32Bとは互いに対向するテーパ面を成し、対向面に隙間を設けて吸引可能に構成されている。この固定鉄心31の吸着面31Bとプランジャ32の接合面32Bの離接は、電磁コイル35に流れる電流の強さにより行われる。又、ソレノイドケース33は第2バルブ本体2Bの一端側の段部に固着されていると共に、内部に電磁コイル35を配置している。ソレノイド部30は以上の全体構成を示すものであり、このソレノイド部30に設けられた電磁コイル35は、図示省略の制御コンピュータにより制御される。
【0038】
プランジャケース34は固定鉄心31と嵌着すると共に、プランジャ32とは摺動自在に嵌合している。このプランジャケース34は一端が第2バルブ本体2Bの嵌合孔と嵌着すると共に、他端がソレノイドケース33の端部の嵌着孔に固定する。以上の構成がソレノイド部30である。
【0039】
なお、
図1において、第1連通路10から第3連通路9に至る矢印の太い曲線はPc−Ps流路を示している。
【0040】
次に、
図2を参照しながら、第1弁部21C、第2弁部21B及び及び第3弁部21Aの連通孔23との位置関係について詳しく説明する。
【0041】
図2(a)に示す液冷媒排出時(最大容量制御時)、すなわち、第2弁部21Bが全閉の状態において、第1弁部21Cは全開の状態にあり、第3弁部21Aの連通孔23も開の状態にあり、制御流体Pc(液冷媒排出時においては冷媒液の気化した制御流体Pc)が補助連通路21E、中間連通路26及び連通孔23を介して第3弁室4に流入し、第3弁室4から第3連通路9へ流出する。
この状態において、連通孔23は第3弁座面12に対して最大開口面積S2maxを生成する。そして、最大開口面積S2maxが補助連通路21Eの面積S1(補助連通路が複数の場合は合計の面積)と同等又はそれ以下になるように連通孔23の位置が設定されている。この際、開口面積S2は弁体21の移動の初期において急速に減少し、その後、ほぼ一定になるように設定されるものである。
なお、矢印の太い曲線はPc−Ps流路を示している。
【0042】
また、
図2(b)に示す制御域において、第3弁座面12と連通孔23との間の開口面積S2は、補助連通路21Eの面積S1より小さく、例えば、S1の10%〜30%の範囲であって、ほぼ、一定の値に設定されている。
【0043】
さらに、
図2(c)に示す第2弁部21Bが全開の状態のOFF時においては、S2は隙間が残り零とはならないが、第1弁部21Cが第1弁座面31AとシールするためPc−Ps流路は零となる。
【0044】
次に、
図3を参照しながら、Pc−Ps流路の最小面積について説明する。
図3において、横軸は弁体21のストロークを、また、縦軸は開口面積を示している。
図3の左端は液冷媒排出時、すなわち、第2弁部21Bが全閉(第1弁部21Cが全開)の状態であり、また、同じく右端は第2弁部21Bが全開(第1弁部21Cが全閉)の状態を示し、左端から横軸のほぼ中間位置の破線からなる縦線で示す範囲が制御域を示している。
さらに、縦軸のほぼ中間位置の破線からなる横線が補助連通路21Eの面積S1を示している。
【0045】
本発明においては、制御域における第3弁部21Aの連通孔23と第3弁座面12との間の開口面積S2は補助連通路21Eの面積S1(固定)より小さく設定されるから、Pc−Ps流路の最小面積は第3弁部21Aの連通孔23と第3弁座面12との間の開口面積S2により規定される。
このように、制御圧力の流体の作用する第1弁室7内の第1弁部21Cに補助連通路21Eを、また、吸入圧力の流体の作用する第3弁室4に感圧装置22及び液冷媒を排出する第3弁部21Aを配設した容量制御弁において、弁体21の第3弁部21Aに連通孔23を設けるという簡単な構成により、制御域におけるPc−Ps流路の最小面積を小さくすることができる。
【0046】
図3において、制御域における第3弁部21Aの連通孔23と第3弁座面12との間の開口面積S2は、実線で示されており、左端の液冷媒排出時、すなわち、第2弁部21Bが全閉(第1弁部21Cが全開)の状態では最大開口面積S2maxを生成する状態にあり、かつ、最大開口面積S2maxが補助連通路21Eの面積S1と同一又はほぼ同一に設定されている、弁体21が移動を開始するにつれ、まず、補助連通路21Eの面積S1より急速に低減され、S1の10%〜30%の範囲のほぼ一定の値になる。
【0047】
制御域における第3弁部21Aの連通孔23と第3弁座面12との間の弁体21の移動に伴う開口面積S2の変化率は、連通孔23の形状により変えることができる。
図1及び
図2の例では、連通孔23の正面形状は略円形であって、断面形状は第3弁座面12に面する側が大径部で中間流通路26に面する側が小径部の段付き形状であって、弁体21の移動初期において大径部のほぼ全域が第3弁座面12と重複して両者間の隙間が急速に減少され、その後、弁体21と第3弁座面12との径方向隙間が残ることになるため、
図3の実線で示すように開口面積Sが変化する。
【0048】
本発明の実施例1に係る容量制御弁は上記のとおりであり、以下のような優れた効果を奏する。
(1)作動制御室内の流量又は圧力を制御する制御域における第3弁部21Aの連通孔23と第3弁座面12との間の開口面積S2は補助連通路21Eの面積S1より小さく設定されることにより、補助連通路を設けて容量可変型圧縮機の起動時における制御室の液冷媒の排出機能を改善した容量制御弁において、制御域におけるPc−Ps流路の最小面積を小さくすることができ、容量可変型圧縮機の起動時間の短縮及び制御時における運転効率の向上を同時に達成できる。
(2)制御圧力の流体の作用する第1弁室7内の第1弁部21Cに補助連通路21Eを、また、吸入圧力の流体の作用する第3弁室4に感圧装置22及び液冷媒を排出する第3弁部21Aを配設した容量制御弁において、弁体21の第3弁部21Aに連通孔23を設けるという簡単な構成により、制御域におけるPc−Ps流路の最小面積を小さくすることができる。
(3)第2弁部21Bの閉弁状態における第3弁部21Aの連通孔23と第3弁座面12との間の最大開口面積S2maxが補助連通路21Eの面積S1と同等又はそれ以下に設定されることにより、液冷媒排出時におけるPc−Ps流路の最小面積を上記の従来技術と同様の大きさに確保することができる。