【実施例】
【0067】
実施例1
部分的に焼結済みのジルコニアテープの、長さ90フィート(27.432m)のテープを、
図12に概ね示されている装置を用いて作製した。この素地テープは、株式会社トーショー(日本)製ジルコニア粉末3YEを用いて、米国審査済登録特許第8,894,920号明細書に記載されているものと同様の様式で作製された。この素地テープを、幅約20cm超に成形し、またこの素地テープの厚さは約25マイクロメートルであった。続いてこのテープを、円形のカミソリの刃を用いて、幅約15mmに手動で切断した。この素地テープは、繰り出しスプール(概して
図12のスプール1214を参照)から分離位置(
図12の分離位置1218を参照)を越え、バインダバーンオフチムニー(
図12の炉1226のバーンオフセクションB’’’を参照)を通り、遷移ゾーン(
図12のゾーン「X’’’」を参照)を通り、そして高温炉(例えば
図12の炉1226のセクションC’’’)内へと移動した。
【0068】
図12の文脈において実施例1を参照すると、分離位置1218において、セラミックテープ1212をキャリアフィルム1216から取り外した。キャリアフィルム1216を、張力印加デバイス1240を越えて取り上げスプール1220上へと流した。バインダバーンオフセクションB’’’を、炉セクションC’’’からの高温空気によって受動的に加熱した。実施例1のために使用した炉及びバインダバーンオフチムニー内のチャネルは、プレート間に0.125〜0.5インチ(3.175mm〜1.27cm)のギャップ(概して
図4のギャップ414及びL2を参照)を有する平行なプレート状の、セラミック繊維ボードから作製された。上記チャネルの、上記ギャップに対して垂直な幅は、約3.5インチ(8.89cm)であった。上記バインダバーンオフセクションの長さは約17インチ(43.18cm)であり、上記バインダバーンオフセクションの下方の上記炉の長さは24インチ(60.96cm)であった。
【0069】
上記素地テープは、低温又は高温のいずれで炉を通過させることもできることを、出願人は注記する。高温で通過させる場合、出願人は、炉に関して1000℃付近の温度を設定し、また、3YSZ即ち3モル%イットリア安定化ジルコニア、正方相ジルコニア多結晶「TZP」、及び/又はアルミナ若しくは他のセラミックを同様の焼結温度で焼結又は部分的に焼結する場合、1インチ(2.54cm)/分のテープ速度を設定する。高温で通過させた後、テープが炉の底部から出た後で、温度を上昇させてテープ速度を増大させることができる。低温で通過させる場合、出願人は、炉を通した加熱中に、テープを0.25〜1インチ(0.635〜2.54cm)/分という低速で移動させる(即ち輸送する、搬送する)ことを推奨する。
【0070】
この実施例1では、テープは高温で通過させ、通過後、炉を加熱して1200℃に設定し、次にテープを、炉を通して8インチ(20.32cm)/分の速度で移動させた。バインダバーンオフチムニーは、約100〜400℃の温度であった。上記素地テープを、2.25時間超に亘って炉を通して輸送し、連続した長さが約90フィート(27.432m)の、部分的に焼結済みのテープを得た。
【0071】
幅の焼結収縮は、約9.5〜10.5%であった。この部分的に焼結済みのテープを、直径3.25インチ(8.255cm)のスプールに、割れを生じさせずに巻き取った。
【0072】
実施例2
長さ65フィート(19.812m)の部分的に焼結済みのジルコニアテープを、
図12に示した装置と同様の装置を用いて作製し、ここでも素地テープは、株式会社トーショー(日本)製ジルコニア粉末3YEを用いて、米国審査済登録特許第8,894,920号明細書に記載されているものと同様の様式で作製された。この素地テープを、幅約20cm超に成形した。この素地テープの厚さは約25マイクロメートルであった。続いてこの素地テープを、円形のカミソリの刃を用いて、幅約52mmに手動で切断した。
【0073】
次にこの素地テープを、繰り出しスプールから分離位置を越え、バインダバーンオフチムニーを通り、遷移ゾーンを通り、そして高温の、積極的に加熱された炉(例えば炉1226)内へと移動させた。バインダバーンオフセクションを、炉からの高温空気によって受動的に加熱した。炉及びバインダバーンオフチムニー内のチャネルは(ここでも)、プレート間に1/8〜1/2インチ(3.175mm〜1.27cm)のギャップを有する平行なプレート状の、セラミック繊維ボードから作製された。上記チャネルの幅は、約3 1/2インチ(8.89cm)であった。上記バインダバーンオフセクションの長さは約17インチ(43.18cm)であり、上記炉の長さは24インチ(60.96cm)であった。
【0074】
この実施例2では、通過後、テープを2インチ(5.08cm)/分の速度で炉を通して移動させながら、炉を1000℃、1025℃、1050℃、1075℃及び1100℃まで加熱した。バインダバーンオフチムニーは、約100〜400℃の温度であった。テープを、個々の炉温度において、各温度に関して約1時間に亘って通過させた。炉を6.5時間超に亘って動作させ、連続した65フィート(19.812m)超(素地)の部分的に焼結済みのテープを炉に通過させた。
【0075】
テープの幅を横断する方向の焼結収縮は、炉の温度に依存し、以下の表1に列挙するようなものであった。平面から外れる多少の変形が発生し、表中の焼結収縮の変動は、部分的には、テープの平面から外れる変形によるものである。
【0076】
【表1】
【0077】
本明細書に開示されている材料及びシステム等に関する、本明細書に開示されている様々な実施形態において、高温炉の温度は少なくとも800℃、例えば少なくとも1000℃である。素地テープは高温炉を、少なくとも1インチ(2.54cm)/分、例えば少なくとも2インチ(5.08cm)/分の速度で通過する。速度は、例えば炉の長さを増大させることによって増大し得る。高温炉を通過する素地テープの収縮は、少なくとも1.5%、例えばいくつかの実施形態では少なくとも2%、及び/又は20%以下、例えば15%以下であった。
【0078】
実施例3
長さ約60フィート(18.288m)の部分的に焼結済みのジルコニアテープを、
図12に示した装置と同様の装置を用いて作製し、ここでも素地テープは、株式会社トーショー(日本)製ジルコニア粉末3YEを用いて、米国審査済登録特許第8,894,920号明細書に記載されているものと同様の様式で作製された。この素地テープを、幅約20cm超に成形した。この素地テープの厚さは約25マイクロメートルであった。続いてこのテープを、円形のカミソリの刃を用いて、幅約35mmに手動で切断した。
【0079】
この素地テープを、繰り出しスプールから分離位置を越え、バインダバーンオフチムニーを通り、遷移ゾーンを通り、炉内へと移動させた。バインダバーンオフセクションを、炉からの高温空気によって受動的に加熱した。炉及びバインダバーンオフチムニー内のチャネルは、プレート間に1/8〜1/2インチ(3.175mm〜1.27cm)のギャップを有する平行なプレート状の、セラミック繊維ボードから作製された。上記チャネルの幅は、約3 1/2インチ(8.89cm)であった。上記バインダバーンオフセクションの長さは約17インチ(43.18cm)であり、上記炉の長さは24インチ(60.96cm)であった。
【0080】
この実施例3では、通過後、テープを4及び6インチ(10.16cm及び15.24cm)/分の速度で移動させながら、炉を1100℃、1150℃及び1200℃まで加熱した。バインダバーンオフチムニーは、約100℃〜400℃の温度であった。各温度及び各テープ速度条件の約10フィートのテープを、部分的な焼結後に、破損しないように、直径3.25インチ(8.255cm)のスプール上に巻きつけた。
【0081】
焼結収縮を測定し、これを以下の表2に列挙する。ここでは平面から外れる多少の変形が発生し、表中の焼結収縮の変動は、部分的には、テープの平面から外れる変形によるものである。
【0082】
【表2】
【0083】
実施例4
長さ175フィート(53.34m)の部分的に焼結済みのジルコニアテープを、
図12に示した装置を用いて作製した。ジルコニア素地テープは上述のように作製したが、このテープを、円形のカミソリの刃を用いて、幅約15mmに手動で切断した。このテープを、繰り出しスプールから分離位置を越え、バインダバーンオフチムニーを通り、遷移ゾーンを通り、炉内へと移動させた。1100℃〜1200℃の温度及び4、6又は8インチ(10.16cm、15.24cm又は20.32cm)/分の速度を適用した。バインダバーンオフチムニーは、約100〜400℃の温度であり、合計175フィート(53.34m)(素地)の部分的に焼結済みのテープを作製した。ギャップ
焼結収縮を測定し、これを以下の表3に列挙する。ここでは平面から外れる多少の変形が発生し、表中の焼結収縮の変動は、部分的には、テープの平面から外れる変形によるものである。1200℃及び8インチ(20.32cm)/分で作製したテープは、テープの長さに沿って1200mmに亘って測定した場合に、テープの長さ及び幅に亘って、全体として約0.6mmの、平面から外れる変形を有していた。
【0084】
【表3】
【0085】
実施例5
長さ147フィート(44.8056m)の部分的に焼結済みのジルコニアテープを、
図12に示した装置と同様の装置を用いて作製した。ジルコニア素地テープを上述のように作製し、円形のカミソリの刃を用いて、約15mmに切断した。通過後に炉を加熱して1200℃に設定し、テープを8インチ(20.32cm)/分の速度で移動させたことを除いて、上記テープを上述のように処理した。バインダバーンオフチムニーは、約100℃〜400℃の温度であった。素地テープを、3時間超に亘って炉を通して移動させ、連続した長さが147フィート(44.8056m)超(素地)の、部分的に焼結済みのテープを得た。
【0086】
ここで
図13を参照すると、部分的な焼結のための製造ライン1310は、部分的に焼結済みのテープ1312のソースを含む。このソースは、部分的に焼結済みのテープ1312のスプール1314の形態であり、ここでテープ1312は、間紙材料を有してよい。テープ1312はスプール1314からローラ1342に入り、ローラ1342を通り過ぎる。高温材料のプレート1346は、炉1326内に狭いチャネルを形成する。
【0087】
次にテープ1212は炉1326内へと移動し、テープ1312は概ね垂直であり、並びに/又は炉に接触せず、及び/若しくは炉の中央部分に沿って炉に接触しない。考えられる実施形態では、テープの縁部はガイド又は炉の表面に接触してよいが、本明細書に開示されているように、欠陥が少ないテープの中央部分を提供するために、後に除去してよい。いくつかのこのような実施形態では、テープの長さ方向縁部は、レーザによる又は機械的な痕跡といった、切断の跡を含む。
【0088】
炉1326を通過した後、最終的な焼結済みテープ1329を、張力デバイス1340を横断するように引っ張ってよい。入力ローラ1342及び張力デバイス1340は、テープ1312が炉1326の表面と接触しないよう、炉1326を通るチャネルと概ね直線状に整列され、いくつかのこのような実施形態ではこれによって、本明細書に記載されているように、接着及び擦過に関連する表面欠陥の数が削減される。張力デバイス1340を通り過ぎた後、最終的な焼結済みテープは2つのローラ1344を越えて、搬送デバイス1360(例えばローラ、軸受、トレッド)を通って移動する。搬送デバイス1360の後、最終的な焼結済みテープを、間紙材料を伴って又は伴わずに、巻き取ることができる。
【0089】
図14を参照すると、部分的な焼結のための製造ラインは、部分的に焼結済みのテープ1412のソースを含む。このソースは、部分的に焼結済みのテープ1412のスプール1414の形態であり、ここでテープ1412は、間紙材料を有してよい。テープ1412がスプール1414から入って来ると、テープ1412は炉1426内へと移動し、テープ1412は概ね垂直に配向される。テンショナー(例えばおもり1460、ローラ)を、部分的に焼結済みのテープに取り付けることによって、テープを引っ張り、及び/又は焼結中にテープを平坦に保持する。考えられる実施形態では、おもり1460は、テープ自体の長さであってよい。
【0090】
驚くべきことに、既に開示されているように、出願人は、バインダをバーンオフした短い長さの素地テープは、テープを落下させることなく、ある程度の張力を支持できることを発見した。バインダがバーンオフされているものの高温炉に入る前の、セクションの引張強度は、同一材料の、かつ同一寸法及び組成の素地テープから形成された、理想的な完全に焼結されたテープの引張強度のわずかな分数値であり、例えば20%未満、10%未満、5%未満であるが、それでもなお正の値、例えば少なくとも0.05%である。
【0091】
実施例6
幅15mm(素地)の部分的に焼結済みのテープを、実施例1に記載されているように作製した。この幅15mm(素地)、厚さ約25マイクロメートル(素地)の、部分的に焼結済みのテープのロールを、
図13に示すシステム1310と同様の装置(例えば第2の炉、第2の焼結位置)上に配置した。セラミックプレート1346は、炭化ケイ素製であった。プレート間のギャップは2〜8mmであり、プレートの幅は4インチ(10.16cm)であった。炉の外寸は、長さ21インチ(53.34cm)であった。炉を1400℃(例えば実施例1の炉より少なくとも100℃高い、例えば少なくとも200℃高い、400℃高い温度)まで加熱した。
【0092】
実施例6では、(実施例1による)部分的に焼結済みのテープを、1400℃の炉に、1フィート(30.48cm)/分超で、手で迅速に通過させた。テープ1312を張力印加デバイス1340の周りに巻きつけるために十分なテープを、2つのローラ1344を通し、そして搬送デバイス1360を通して、スプール1314から供給した。
【0093】
通過後、テープを2インチ(5.08cm)/分で移動させた。張力デバイス1340によって、50グラム未満の張力を焼結テープに印加した。約9インチ(22.86cm)の密な最終焼結済みテープを製造した(例えば
図17〜22の完全に焼結されたテープ2010を参照)。テープは半透明であり、このテープに接触するようにテキストを配置した場合に、このテープを通してテキストを読むことができる(
図17〜18の完全に焼結されたテープ2010を参照;また
図17〜18の部分的に焼結済みのテープ2012と比較)。このテープは、光の散乱による、場合によってはわずかな多孔率(例えば1%未満、例えば0.5%未満及び/又は少なくとも0.1%の多孔率)による、ある程度の白色のヘイズを有していた。
【0094】
横断方向のテープ収縮は、約24%であった。同一のタイプのテープ成形物の、バッチ焼成した材料は、約23%±約0.5%の焼結収縮を有していた。この実験のために使用される、部分的に焼結済みのテープは、ある程度の平面から外れる変形を有していたが、最終的な焼結後、テープは、テープの運動方向において平坦であった。ウェブ(テープ)横断方向において、ある程度の「C字型(C‐shaped)」の縮れが存在していた。完全に焼結されたテープの1cm×1cmの領域を、100倍の倍率の光学顕微鏡で検査した。最終焼結済みテープの両側を検査した。セッタボードには典型的な接着又は擦過による欠陥は、見つからなかった。
【0095】
図15に示すように、最終焼結済みテープは、約2.5cm未満の半径で屈曲させることができる。
【0096】
実施例7
図14に示されているものと同様の、2段階焼結装置を使用した。炉は高さ4インチ(10.16cm)しかなく、高温ゾーンは2インチ(5.08cm)であった。実施例3に関して記載されているものと同様の様式で作製された、幅30mm(素地)の部分的に焼結済みのテープを使用した。部分的な焼結の前、テープは厚さ約25マイクロメートルであった。部分的に焼結済みのテープのスプールを、炉の上方に配置し、ここで炉は、3/16インチ(0.47625cm)の狭いギャップを有し、また上部及び底部の炉の断熱部において幅3.5インチ(8.89cm)を有し、これによりテープを通過させることができる。テープを低温でギャップに通過させ、7.5グラムのおもりを取り付けた(概して
図14を参照)。炉を1450℃まで加熱し、炉が1450℃に到達したときに、テープの運動を開始した。テープを、上部から底部まで、0.5インチ(1.27cm)の速度で移動させた。約18インチ(45.72cm)の、完全に焼結された焼結済みジルコニアテープを作製した。このジルコニアテープは半透明であった。4インチ(10.16cm)の炉を用いる実施例7では、テープ、及びその完全に焼結された部分は、炉より長くなった。
【0097】
図15〜16を参照すると、文脈及び比較のために、素地テープ(3モル%イットリア安定化ジルコニア)を、以上の実施例に記載されているように作製し、焼結中に素地テープを支持するためのアルミナセッタボードの使用を含む従来の焼結プロセスを用いて焼結して、セラミックテープ3010を形成した。
図15に示すように、セッタボードに起因する接着及び擦過による表面欠陥を、100倍の倍率で観察できる。シートは25マイクロメートル程度と極めて薄いため、接着又は擦過によって引き起こされる欠陥の多くは、焼結済みシートにピンホールを形成する。
図15に示すように、セッタボードに起因する接着及び擦過による欠陥は一般に、互いに共通の方向の楕円である。
【0098】
既に議論したように、セッタが誘発する欠陥は典型的には、セッタボードと接触した素地テープの焼結収縮によって引き起こされる表面特徴であり、セラミックは焼結収縮中に、それ自体の一部を、セッタボードを横切って引きずる。これにより、結果として得られる焼結済み物品の被支持側は、セッタボードの耐火性材料から焼結済み物品に転移した、引きずり溝、焼結済みデブリ、不純物パッチ、そしてセッタボードが材料を焼結済み物品から引き出す場合には表面のくぼみ等といった、表面欠陥を有する。このようなセッタボードによる欠陥を最小化することは、セラミック物品がその上に堆積される薄膜を有する場合に重要である。1つ以上の薄膜の層厚さがセッタボードによる欠陥の寸法と同様である場合、この薄膜はピンホールを有することになり得、又はセッタボードによる欠陥が1つ以上の薄膜層を横断することになり得る。
【0099】
図15〜16のセラミックテープ3010を、本開示の、特に
図19〜20に示す技術を用いて製造された
図17〜22のセラミックテープ2010と比較するが、
図19〜20はそれぞれ
図15〜16と同一の倍率、100倍及び500倍であり、また
図15〜16に関して使用したテープと同一の方法で作製された素地テープからのものである。より具体的には、セラミックテープ2010は、本明細書に開示されているように連続的に焼結され、炭化ケイ素中央チャネルを有する、実施例に記載されているような二次炉を、1400℃において2インチ(5.08cm)/分の速度で通過した。セラミックテープ3010をセラミックテープ2010と比較すると、両方のテープは表面に、例えば細長い起伏した線条及び傾斜(山/谷)のような、様々な成形の跡を示す。セラミックテープ3010は、本明細書において議論されているように、セッタボードの引きずりが、収縮するテープがセッタボード表面を横切って引きずられる際の表面のガウジングにより、複数の領域に特徴的な損傷パターンを生成する場合等に、セッタボードに関連する欠陥:結合した粒子、引き出し及びセッタボードの引きずりによる欠陥を、多数示す。
【0100】
図15〜16及び
図19〜20を参照すると、断面寸法が5μm超である結合した粒子が、表面の100倍での光学検査において容易に観察された(
図15及び19を参照)。より具体的には、約8cm
2の面積に亘って、1つのこのような粒子が、本明細書に開示されている技術を用いて焼結されたセラミックテープ2010の表面において観察されたが、同一の約8cm
2の面積に亘って、セラミックテープ3010の表面においては、8個のこのような粒子が観察された。出願人は、セラミックテープ3010はセッタボードとの接触によって比較的多くの結合した粒子を有し、その一方でセラミックテープ2010は、結合した表面粒子の数が比較的少なく、この粒子は炉の雰囲気中の粒子の接着によって存在するものであり得ると考えている。このように少ない、セラミックテープ2010上の結合した表面粒子の数は、炉の雰囲気中の粒子を除去又は低減するためのフィルタ又は他のプロセスを使用する将来のプロセスの実施形態において、更に減少させることができる。
【0101】
例示的な実施形態によると、本開示に従って製造されたテープは、その表面に亘る平均として、8cm
2あたり5つ未満の、断面寸法が5μm超の結合した粒子を、例えば3つ未満のこのような粒子、例えば2つ未満のこのような粒子を有する。
【0102】
例示的な実施形態によると、本明細書に開示されている焼結済みセラミックのシートは、50マイクロメートル未満の厚さ、及び全表面に亘る平均として表面1平方ミリメートルあたり10個未満の、少なくとも1平方ミリメートルの断面積を有するピンホール(又は表面積が1平方ミリメートル未満である場合は全表面に亘って10個未満のピンホール)、例えば全表面に亘る平均として表面1平方ミリメートルあたり5つ未満のピンホール、2つ未満のピンホール、更には1個未満のピンホールを有する。
【0103】
図19〜20を参照すると、セラミックテープ2010は、膨らみ(bulge)2014を有する顆粒状表面を有する。この膨らみは、100マイクロメートル程度以上の最長寸法を有する。この膨らみは一般に楕円であり、例えば互いに概ね同一の方向に配向された長軸を有する(例えば90%が方向Dの15°以内、例えば10°以内となる)楕円である。上記膨らみは、擦過及び接着といった、セッタボードによって誘発される表面欠陥とは区別できる。というのは、接着した粒子又はセッタボードによって引き起こされる擦過に特徴的であるように、表面上のばらばらの若しくは不連続な境界によって画定されるか又はこれらを含むのではなく、上記膨らみは一般に、隣接する表面から滑らかに起伏して連続的に湾曲するためである。上記膨らみは、本明細書に開示されている少なくともいくつかのプロセスの跡であり得、例えば制約が比較的少ない焼結プロセスによるものであり得る。焼結中にテープに軸方向及び幅方向の張力を印加する(これはテンショナー(例えばローラ、トレッド、ホイール、機械式テンショナー又は他のこのような要素)によって実施できる)場合等の他の実施形態は、このような膨らみを含まない場合がある。
【0104】
ここで
図21〜22を参照すると、セラミックテープ4010は、セッタボードを用いずに、本明細書に開示されているプロセスに従って製造した。テープ4010の材料は、3モル%イットリア安定化ジルコニア、正方相ジルコニア多結晶「TZP」である。テープの幅は、12.8〜12.9mmである。図示されている部分は、テープの、長さ22インチ(55.88cm)の片である。テープの厚さは約22マイクロメートルである。なお、白点は、スキャナが認識しなかった、テープ上のマーカの痕跡である。
【0105】
比較のために、破線Lの下方ではテープを完全に焼結し、破線Lの上方では部分的にのみ焼結した。SEC1、SEC2、SEC3、SEC4は、セラミックテープ4010の上面のプロファイルである。これらのプロファイルは、このテープが、長さ方向軸(
図21にX軸として示されている)に関して、ある程度の「C字型」の曲率を有することを示している。テープの反りは、本明細書に開示されているように、張力下での完全な焼結によって低減される。確認できるように、テープの最大高さは、約1.68mmから0.89〜0.63mmまで約100%だけ減少した。出願人は、本プロセス及び/又は更なるプロセスの洗練(例えば張力の増大若しくはプロセス速度の変更)により、平坦表面上に平坦に載置された、完全に焼結されたテープの最大高さが、例えば約10〜15mmの幅を有するテープに関して、1.5mm未満、例えば1mm未満、例えば0.7mm未満、例えば理想的には約100マイクロメートル未満となると考えている。
【0106】
考えられる実施形態では、本明細書に記載のテープを、複数の図面に示されているようにスプール上に巻きつけて、テープのロールを形成してよい。このスプールは、テープの長さが少なくとも1m、例えば少なくとも10mである場合に、少なくとも約0.5cm、例えば少なくとも約2.5cm及び/又は1m以下の直径を有してよく、また本明細書に記載の幅及び厚さ、並びに/又は少なくとも10mm及び/若しくは20cm以下の幅と、少なくとも10マイクロメートル及び/若しくは500マイクロメートル以下、例えば250マイクロメートル以下、例えば100マイクロメートル以下、例えば50マイクロメートル以下の厚さとを有する。
【0107】
以下、本発明の好ましい実施形態を項分け記載する。
【0108】
実施形態1
有機バインダによって結合した無機材料の粒子を含む素地セクションを含む、テープ;並びに
炉であって:
バインダバーンオフ位置及び焼結位置を含む通路を画定する、ガイド;及び
上記通路の上記焼結位置において少なくとも300℃の温度を達成する、ヒータ
を備える、炉
を備える、製造ラインであって、
上記バインダバーンオフ位置は、上記素地セクションから上記有機バインダを炭化又は燃焼させることによって、まだ焼結されていないものの炭化された上記バインダを上記有するか又は上記バインダを有しない、上記テープの未結合セクションを形成し;
上記焼結位置は、上記無機材料を少なくとも部分的に焼結することによって、上記テープの、少なくとも部分的に焼結済みのセクションを形成し;
上記未結合セクションは、上記未結合セクションに物理的に接続されて隣接する上記テープの重量を支持する、製造ライン。
【0109】
実施形態2
上記炉は第1の炉であり、
上記製造ラインは更に:
上記少なくとも部分的に焼結済みのテープの上記無機材料を更に焼結することによって、完全に焼結された物品を形成する、第2の炉;及び
上記テープの張力に影響を及ぼすことによって、上記第2の炉における更なる焼結中に、上記少なくとも部分的に焼結済みのセクションの成形を促進する、張力調節器
を備える、実施形態1に記載の製造ライン。
【0110】
実施形態3
上記炉の上記通路は、上記テープが上記炉を概ね垂直に通過するよう配向される、実施形態1に記載の製造ライン。
【0111】
実施形態4
上記通路は、直線状の通路として延在する、実施形態1に記載の製造ライン。
【0112】
実施形態5
上記通路は、上記炉を通って延在する深さ寸法、上記深さ寸法に対して垂直な幅寸法、及び上記深さ寸法及び上記幅寸法の両方に対して垂直なギャップ寸法を有し、
上記深さ寸法は上記幅寸法より大きく、
上記幅寸法は上記ギャップ寸法より大きい、実施形態4に記載の製造ライン。
【0113】
実施形態6
上記ギャップ寸法は、少なくとも1ミリメートルである、実施形態5に記載の製造ライン。
【0114】
実施形態7
上記ヒータは、上記炉の上記バインダバーンオフ位置及び上記焼結位置の両方を加熱する、実施形態1に記載の製造ライン。
【0115】
実施形態8
上記ヒータは、上記焼結位置に隣接し、かつ上記焼結位置を少なくとも部分的に取り囲むものの、上記バインダバーンオフ位置から垂直に離間している、実施形態7に記載の製造ライン。
【0116】
実施形態9
上記ガイドは耐火性材料で構成される、実施形態1に記載の製造ライン。
【0117】
実施形態10
テープを焼結するプロセスであって、
上記プロセスは:
(a)上記テープの素地セクションを、炉の第1の炉位置を通して移動させるステップであって、上記素地セクションは、有機バインダに支持された無機粒子を含む、ステップ;
(b)上記素地セクションが上記第1の炉位置を通過する際に、上記素地セクションから上記有機バインダをバーンオフ又は炭化して、上記テープの未結合セクションを形成するステップ;
(c)上記未結合セクションを、第2の炉位置を通して移動させるステップ;及び
(d)上記未結合セクションが上記第2の炉位置を通過する際に、上記無機粒子を少なくとも部分的に焼結して、上記テープの少なくとも部分的に焼結済みのセクションを形成するステップ
を含み、
上記未結合セクションを、上記第2の炉位置を通して移動させる上記ステップは、上記テープの上記未結合セクションを支持するセッタボードを用いずに行われる、プロセス。
【0118】
実施形態11
上記テープの上記素地セクションは、上記素地セクションから上記有機バインダをバーンオフ又は炭化するステップ中に、上記素地セクションが上記第1の炉位置を通過する際、上記炉の表面と接触しない、実施形態10に記載のプロセス。
【0119】
実施形態12
上記テープの上記未結合セクションは、上記無機粒子を少なくとも部分的に焼結する上記ステップ中に、上記未結合セクションが上記第2の炉位置を通過する際、上記炉の表面と接触しない、実施形態11に記載のプロセス。
【0120】
実施形態13
上記無機粒子は、多結晶質セラミック及び合成鉱物からなる群から選択される材料の粒子である、実施形態12に記載のプロセス。
【0121】
実施形態14
上記テープは、上記素地セクション、上記未結合セクション及び上記少なくとも部分的に焼結済みのセクションが上記プロセスの上記ステップ(a)〜(d)中に互いに連続するように、単一構造である、実施形態12に記載のプロセス。
【0122】
実施形態15
上記未結合セクションは、上記無機粒子を少なくとも部分的に焼結する上記ステップ中に、上記未結合セクションが上記第2の炉位置を通過する際、自立している、実施形態10に記載のプロセス。
【0123】
実施形態16
上記素地セクションは、上記素地セクションが上記第1の炉位置を通過する際、概ね垂直に配向され、これにより上記未結合セクションは、上記未結合セクションに物理的に接続された、上記未結合セクションに垂直に隣接する上記テープの重量を支持する、実施形態10に記載のプロセス。
【0124】
実施形態17
第1の表面、第2の表面、及び上記第1の表面と上記第2の表面との間に延在する材料の本体を備える、焼結済み物品であって、
上記第2の表面は、上記焼結済み物品の、上記第1の表面とは反対側にあり、従って上記焼結済み物品の厚さは、上記第1の表面と上記第2の表面との間の距離として定義され、上記焼結済み物品の幅は、上記第1の表面又は上記第2の表面のうちの一方の、上記厚さに対して垂直な第1の寸法として定義され、上記焼結済み物品の長さは、上記第1の表面又は上記第2の表面のうちの一方の、上記焼結済み物品の上記厚さ及び上記幅の両方に対して垂直な第2の寸法として定義され、
上記材料の本体は、無機材料を含み;
上記焼結済み物品の上記長さは、上記焼結済み物品の上記幅以上であり、上記焼結済み物品は、上記焼結済み物品の上記幅が上記焼結済み物品の上記厚さの5倍超となるような薄さであり、上記焼結済み物品の上記厚さは、1ミリメートル以下であり;
上記焼結済み物品は略未研磨であり、従って上記第1の表面及び上記第2の表面はそれぞれ、顆粒状プロファイルを有し;
上記焼結済み物品は、上記第1の表面及び上記第2の表面の両方が、接着又は擦過に由来する5マイクロメートル超の寸法の表面欠陥を10個未満しか有しない、少なくとも1平方センチメートルの面積を有するような、高い表面品質を有し、上記高い表面品質は、上記焼結済み物品の強度を増強し;
上記焼結済み物品は、接着又は擦過に由来する5マイクロメートル超の寸法の表面欠陥の、上記第1の表面の1平方センチメートルあたりの平均面積が、接着又は擦過に由来する5マイクロメートル超の寸法の表面欠陥の、上記第2の表面の1平方センチメートルあたりの平均面積の、±50%以内となるよう、上記第1の表面及び上記第2の表面両方において一貫した表面品質を有する、焼結済み物品。
【0125】
実施形態18
上記顆粒状プロファイルは、粒子を含み、上記粒子は、各上記粒子間の境界線において、上記第1の表面及び上記第2の表面の凹状部分に対して25ナノメートル〜150マイクロメートルの範囲の高さを有する粒子を含む、実施形態17に記載の焼結済み物品。
【0126】
実施形態19
上記物品は、上記第1の表面又は上記第2の表面に沿った長さ方向において、1センチメートルの距離に亘って、100ナノメートル〜50マイクロメートルの範囲の平坦度を有する、実施形態17に記載の焼結済み物品。
【0127】
実施形態20
略未研磨である場合に、上記第1の表面及び上記第2の表面のうちの少なくとも一方は、上記第1の表面又は上記第2の表面に沿った長さ方向のプロファイルに沿って測定された1センチメートルの距離に亘って、1ナノメートル〜10マイクロメートルの範囲の粗度を有する、実施形態17に記載の焼結済み物品。
【0128】
実施形態21
上記物品は、上記物品の上記長さが上記物品の上記幅の5倍超となり、かつ上記物品の幅が上記物品の厚さの10倍超となるよう、特に薄くかつ細長い、実施形態17に記載の焼結済み物品。
【0129】
実施形態22
上記本体の上記厚さは、0.5ミリメートル未満であり、上記第1の表面及び上記第2の表面のうちの一方の面積は、30平方センチメートル超である、実施形態21に記載の焼結済み物品。
【0130】
実施形態23
上記第1の表面及び上記第2の表面のうちの一方の面積は、100平方センチメートル超である、実施形態22に記載の焼結済み物品。
【0131】
実施形態24
上記無機材料は、多結晶質セラミック及び合成鉱物からなる群から選択された無機材料である、実施形態17に記載の焼結済み物品。
【0132】
実施形態25
焼結済み物品であって、
上記焼結済み物品は、第1の表面、第2の表面、及び上記第1の表面と上記第2の表面との間に延在する材料の本体を備える、シートであり、
上記第2の表面は、上記シートの、上記第1の表面とは反対側にあり、従って上記シートの厚さは、上記第1の表面と上記第2の表面との間の距離として定義され、上記シートの幅は、上記第1の表面又は上記第2の表面のうちの一方の、上記厚さに対して垂直な第1の寸法として定義され、上記シートの長さは、上記第1の表面又は上記第2の表面のうちの一方の、上記シートの上記厚さ及び上記幅の両方に対して垂直な第2の寸法として定義され、
上記材料の本体は、多結晶質セラミック及び合成鉱物からなる群から選択された無機材料製であり、上記材料は焼結済み形態であるため、上記材料の粒子は互いに融着しており;
上記シートの上記第1の表面及び上記第2の表面は、略未研磨であり、従って上記第1の表面及び上記第2の表面はそれぞれ、粒子を含む顆粒状プロファイルを有し、上記粒子は、各上記粒子間の境界線において、各上記上記表面の凹状部分に対して25ナノメートル〜150マイクロメートルの範囲の高さを有する粒子を含み;
上記シートは、上記シートの上記長さが上記シートの上記幅の5倍超となり、かつ上記シートの幅が上記シートの厚さの5倍超となるように、薄くかつ細長く、また上記シートの上記厚さは1ミリメートル以下であり、上記第1の表面及び上記第2の表面それぞれの面積は10平方センチメートル超であり;
上記シートは、上記第1の表面及び上記第2の表面の両方が、接着又は擦過に由来する5マイクロメートル超の寸法の表面欠陥を100個未満しか有しない、少なくとも10平方センチメートルの面積を有するような、高い表面品質を有し;
上記シートは、上記第1の表面又は上記第2の表面に沿った長さ方向において、1センチメートルの距離に亘って、100ナノメートル〜50マイクロメートルの範囲の平坦度を有する、焼結済み物品。
【0133】
実施形態26
上記材料の本体の上記材料は、多結晶質セラミック及び合成鉱物からなる上記群から選択される材料であるのに加えて、アルミナ、ジルコニア、スピネル及びガーネットからなる群から選択される材料でもある、実施形態25に記載の焼結済み物品。
【0134】
実施形態27
上記シートの上記厚さは、500マイクロメートル超である、実施形態26に記載の焼結済み物品。
【0135】
実施形態28
上記シートは、少なくとも部分的に透明であり、約300ナノメートル〜約800ナノメートルの波長において少なくとも30%の全透過率を有する、実施形態27に記載の焼結済み物品。
【0136】
実施形態29
上記第1の表面及び上記第2の表面のうちの一方の面積は、100平方センチメートル超である、実施形態26に記載の焼結済み物品。
【0137】
実施形態30
略未研磨である場合に、上記第1の表面及び上記第2の表面のうちの少なくとも一方は、上記第1の表面又は上記第2の表面に沿った長さ方向において、1センチメートルの距離に亘って、1ナノメートル〜10マイクロメートルの範囲の粗度を有する、実施形態25に記載の焼結済み物品。
【0138】
実施形態31
焼結済み物品であって、
上記焼結済み物品は、セラミックテープであり;
上記セラミックテープは、第1の表面、第2の表面、及び上記第1の表面と上記第2の表面との間に延在する材料の本体を備え、
上記第2の表面は、上記セラミックテープの、上記第1の表面とは反対側にあり、従って上記セラミックテープの厚さは、上記第1の表面と上記第2の表面との間の距離として定義され、上記セラミックテープの幅は、上記第1の表面又は上記第2の表面のうちの一方の、上記厚さに対して垂直な第1の寸法として定義され、上記セラミックテープの長さは、上記第1の表面又は上記第2の表面のうちの一方の、上記セラミックテープの上記厚さ及び上記幅の両方に対して垂直な第2の寸法として定義され、
上記材料の本体は、アルミナ、ジルコニアからなる群から選択されたセラミックであり、上記材料は焼結済み形態であるため、上記材料の粒子は互いに融着しており;
上記セラミックテープの上記第1の表面及び上記第2の表面は、略未研磨であり、従って上記第1の表面及び上記第2の表面はそれぞれ、粒子を含む顆粒状プロファイルを有し、上記粒子は、各上記粒子間の境界線において、各上記表面の凹状部分に対して10ナノメートル〜150マイクロメートルの範囲の高さを有する粒子を含み;
上記セラミックテープは、上記セラミックテープの上記長さが上記セラミックテープの上記幅の5倍超となり、かつ上記セラミックテープの幅が上記セラミックテープの厚さの5倍超となるように、薄くかつ細長く、また上記セラミックテープの上記厚さは150マイクロメートル以下であり、上記第1の表面及び上記第2の表面それぞれの面積は2平方センチメートル超であり;
上記セラミックテープは膨らみを有し、上記膨らみのうちの少なくともいくつかは、100マイクロメートル〜約1mmの最大表面寸法を有し、上記膨らみは、周りを取り囲む隣接した表面に対して滑らかに連続した曲率を有し、これにより上記膨らみの境界線は概ね接着又は擦過を特徴とせず;
平坦な表面上に、無制約状態で静置されている場合、上記セラミックテープは、上記セラミックテープの上記長さに沿った軸の周りに反りを有する、焼結済み物品。
【0139】
実施形態32
上記反りは、上記テープの厚さより少なくとも10マイクロメートルかつ1ミリメートル以下だけ大きい、上記平坦な表面より上方の上記セラミックテープの高さをもたらす、静置31に記載の焼結済み物品。
【0140】
実施形態33
上記 スプール;
上記スプール上に巻きつけられたテープ
を備えるロールであって、
上記セラミックテープは、実施形態17〜32のいずれか1つに記載の焼結済み物品であり、
上記セラミックテープは、少なくとも1メートルの長さを有する、ロール。