(58)【調査した分野】(Int.Cl.,DB名)
【発明の概要】
【発明が解決しようとする課題】
【0004】
一般的に、上述した蒸気発生装置においては、ボイラにて湯水を加熱する温熱源の排熱により、ボイラへ供給される湯水を予熱する構成が採用される。このため、上記特許文献1に開示の技術の如く、ブロー水が保有する排熱を回収する構成を採用したとしても、当該排熱を有効に利用できないことが多く、エネルギ効率向上の観点から、改善の余地があった。
【0005】
本願に係る発明は、上述の課題に鑑みてなされたものであり、その目的は、メンテナンス性が高く比較的簡易な構成で、ボイラからの排熱としての温熱エネルギを良好に回収できると共に、回収した温熱エネルギを冷熱エネルギ等の需要のあるエネルギへ適切に変換できる蒸気発生装置を提供する点にある。
【課題を解決するための手段】
【0006】
上記目的を達成するための蒸気発生装置は、
外部から供給される湯水を内部に貯留可能であると共に、温熱源にて発生する温熱により内部の湯水を加熱して蒸気を発生させるボイラを備えた蒸気発生装置であって、その特徴構成は、
作動媒体が充填され音波が伝播する音響筒に、前記作動媒体を外部から加熱する加熱器と前記作動媒体を外部から冷却する冷却器と前記加熱器と前記冷却器との間で音波の音響エネルギを増幅する第1再生器とから成る原動機を少なくとも1つ以上有すると共に、前記作動媒体が外部から吸熱する吸熱器と前記作動媒体が外部へ放熱する放熱器と前記吸熱器と前記放熱器との間で音波が音響エネルギを消費する形態で圧縮及び膨張する第2再生器とから成る音響ヒートポンプ部を少なくとも1つ以上有する熱音響機関と、
前記ボイラからのブロー水を前記加熱器に通流させるブロー水通流路と、
湯水を前記冷却器に通流させた後に前記ボイラへ導く湯水通流路と、
冷媒が保有する冷熱が放熱され利用される冷熱利用部と前記吸熱器との間で冷媒を循環させる冷媒循環路とを備え
、
前記湯水通流路は、湯水を前記放熱器及び前記冷却器に記載の順に通流させた後に前記ボイラへ導くものである点にある。
【0007】
上記特徴構成によれば、まずもって、ブロー水通流路を介して原動機の加熱器へブロー水を通流させると共に、湯水通流路を介して原動機の冷却器へ湯水を通流させる形態で、加熱器と冷却器との間で比較的大きい温度差を形成し、加熱器と冷却器との間の第1再生器から当該温度差に応じた音響エネルギを有する音波を発生することができる。
このように発生した音波は、音響筒を伝播して音響ヒートポンプ部に導かれ、第2再生器にて音響エネルギを消費する形態で、放熱器にて作動媒体から外部へ放熱させる温度よりも吸熱器にて外部から作動媒体へ吸熱させる温度を低くできるから、外部から供給される湯水(例えば、20℃程度)を放熱器へ通流させると共に冷媒を吸熱器へ通流させることで、当該冷媒を湯水よりも低い温度で冷却能力を発揮し得る温度にまで降温できる。
即ち、当該構成を採用することにより、蒸気発生装置において余剰となることが多い排熱(ブロー水が保有する排熱)を、冷熱に変換することができ、冷熱利用部で有効に利用することができるようになる。
因みに、上記特徴構成によれば、外部から供給される湯水は、冷却器へ通流して加熱器の熱をくみ上げた後に、ボイラへ供給されるため、十分に予熱された状態でボイラへ補給される。
また、本発明のような熱音響機関は、可動部のない簡易な構成のため故障等が発生する虞がほとんどなく、メンテナンスの必要がほとんどなく、経済性が高い装置を実現できる。
更に、上記特徴構成によれば、外部から供給される湯水は、冷却器へ通流して加熱器の熱をくみ上げる前に、放熱器を通流して冷媒の熱をくみ上げるため、より一層十分に昇温した湯水を、ボイラへ補給でき、熱効率の向上を図ることができる。
以上より、メンテナンス性が高く比較的簡易な構成で、ボイラからの排熱(特に、ブロー水の保有する排熱)としての温熱エネルギを良好に回収できると共に、回収した温熱エネルギを冷熱エネルギ等の需要のあるエネルギへ適切に変換できる蒸気発生装置を実現できる。
【0010】
蒸気発生装置の更なる特徴構成は、
前記ボイラは、温熱源にて発生する温熱を保有する熱媒を通流可能な伝熱部を内部に備え、
前記伝熱部と前記加熱器とに記載の順に熱媒を通流する熱媒通流路を備える点にある。
【0011】
上記特徴構成によれば、湯水を加熱する熱媒(例えば、燃焼排ガス)を、ボイラの伝熱部へ通流させた後に、熱音響機関の原動機の加熱部へ通流させるから、ボイラのブロー水の保有する排熱に加え、ボイラから排出される他の排熱についても熱音響機関にて音響エネルギへ変換することができ、当該音響エネルギを冷熱エネルギ等へ変換して有効に利用することで、蒸気発生装置の全体のエネルギ効率をより一層向上することができる。
【0012】
蒸気発生装置の更なる特徴構成は、
前記ブロー水通流路を通流するブロー水の流量を調整する第1流量調整弁を備え、
前記第1流量調整弁の弁開度が、前記加熱器へブロー水を連続供給可能な開度に調整され、
前記湯水通流路を通流する湯水の流量を調整する第2流量調整弁を備え、
前記第2流量調整弁の開度が、前記放熱器へ湯水を連続供給可能な開度に調整される点にある。
【0013】
通常、ボイラでは、ボイラ水に溶解している脱酸素剤やスケール防止剤等の薬品の濃度が一定以上となったときに、ブロー水を排出するように構成されており、このような構成にあっては間欠的にブロー水が排出されることとなる。
しかしながら、本願に係る発明において、加熱器を通流するブロー水が間欠的に供給されると、熱音響機関の原動機にて音響エネルギを安定して発生させることができなくなり、ひいては、音響ヒートポンプ部の吸熱器にて冷媒を安定的に冷却することができなくなる。
上記特徴構成によれば、ブロー水は加熱器を連続的に通流すると共に、湯水は冷却器を連続的に通流するから、熱音響機関の原動機にて音響エネルギを安定して発生でき、音響ヒートポンプ部の吸熱器にて冷媒を安定的に冷却できる。
特に、加熱器を通流するブロー水の流量、及び冷却器を通流する湯水の流量は、一定流量であることが好ましく、更には、所定の単位時間(例えば、数秒単位の時間)において、加熱器でブロー水から放熱される熱量と、冷却器で湯水に吸熱される熱量とは、略同等であることが好ましい。
【0014】
蒸気発生装置の更なる特徴構成は、
前記ブロー水通流路を通流するブロー水の流量を調整する第1流量調整弁を備え、
前記第1流量調整弁の弁開度は、前記加熱器へブロー水を間欠供給すべく、所定時間毎に開放状態と閉止状態とが切り替え制御される点にある。
【0015】
上述したように、温熱源にて発生する温熱を保有する熱媒を加熱器へ供給する構成を採用する場合、ボイラが蒸気発生運転中であるときには、加熱器へは熱媒により常に熱が供給される構成が採用される。このため、加熱器へブロー水を連続的に供給しない場合であっても、熱音響機関の原動機にて音響エネルギを安定して発生させることができる。
即ち、上記特徴構成を有する蒸気発生装置にあっては、ボイラとして、間欠的にブロー水を排出する従来の蒸気発生ボイラであっても、その排熱から良好に冷熱を発生することができる。
更に、上記目的を達成するための蒸気発生装置は、
外部から供給される湯水を内部に貯留可能であると共に、温熱源にて発生する温熱により内部の湯水を加熱して蒸気を発生させるボイラを備えた蒸気発生装置であって、その特徴構成は、
作動媒体が充填され音波が伝播する音響筒に、前記作動媒体を外部から加熱する加熱器と前記作動媒体を外部から冷却する冷却器と前記加熱器と前記冷却器との間で音波の音響エネルギを増幅する第1再生器とから成る原動機を少なくとも1つ以上有すると共に、前記作動媒体が外部から吸熱する吸熱器と前記作動媒体が外部へ放熱する放熱器と前記吸熱器と前記放熱器との間で音波が音響エネルギを消費する形態で圧縮及び膨張する第2再生器とから成る音響ヒートポンプ部を少なくとも1つ以上有する熱音響機関と、
前記ボイラからのブロー水を前記加熱器に通流させるブロー水通流路と、
湯水を前記冷却器に通流させた後に前記ボイラへ導く湯水通流路と、
冷媒が保有する冷熱が放熱され利用される冷熱利用部と前記吸熱器との間で冷媒を循環させる冷媒循環路とを備え、
前記ボイラは、温熱源にて発生する温熱を保有する熱媒を通流可能な伝熱部を内部に備え、
前記伝熱部と前記加熱器とに記載の順に熱媒を通流する熱媒通流路を備え、
前記ブロー水通流路を通流するブロー水の流量を調整する第1流量調整弁を備え、
前記第1流量調整弁の弁開度は、前記加熱器へブロー水を間欠供給すべく、所定時間毎に開放状態と閉止状態とが切り替え制御される点にある。
上記特徴構成によれば、まずもって、ブロー水通流路を介して原動機の加熱器へブロー水を通流させると共に、湯水通流路を介して原動機の冷却器へ湯水を通流させる形態で、加熱器と冷却器との間で比較的大きい温度差を形成し、加熱器と冷却器との間の第1再生器から当該温度差に応じた音響エネルギを有する音波を発生することができる。
このように発生した音波は、音響筒を伝播して音響ヒートポンプ部に導かれ、第2再生器にて音響エネルギを消費する形態で、放熱器にて作動媒体から外部へ放熱させる温度よりも吸熱器にて外部から作動媒体へ吸熱させる温度を低くできるから、外部から供給される湯水(例えば、20℃程度)を放熱器へ通流させると共に冷媒を吸熱器へ通流させることで、当該冷媒を湯水よりも低い温度で冷却能力を発揮し得る温度にまで降温できる。
即ち、当該構成を採用することにより、蒸気発生装置において余剰となることが多い排熱(ブロー水が保有する排熱)を、冷熱に変換することができ、冷熱利用部で有効に利用することができるようになる。
因みに、上記特徴構成によれば、外部から供給される湯水は、冷却器へ通流して加熱器の熱をくみ上げた後に、ボイラへ供給されるため、十分に予熱された状態でボイラへ補給される。
また、本発明のような熱音響機関は、可動部のない簡易な構成のため故障等が発生する虞がほとんどなく、メンテナンスの必要がほとんどなく、経済性が高い装置を実現できる。
更に、上記特徴構成によれば、湯水を加熱する熱媒(例えば、燃焼排ガス)を、ボイラの伝熱部へ通流させた後に、熱音響機関の原動機の加熱部へ通流させるから、ボイラのブロー水の保有する排熱に加え、ボイラから排出される他の排熱についても熱音響機関にて音響エネルギへ変換することができ、当該音響エネルギを冷熱エネルギ等へ変換して有効に利用することで、蒸気発生装置の全体のエネルギ効率をより一層向上することができる。
更に、上述したように、温熱源にて発生する温熱を保有する熱媒を加熱器へ供給する構成を採用する場合、ボイラが蒸気発生運転中であるときには、加熱器へは熱媒により常に熱が供給される構成が採用される。このため、加熱器へブロー水を連続的に供給しない場合であっても、熱音響機関の原動機にて音響エネルギを安定して発生させることができる。
即ち、上記特徴構成を有する蒸気発生装置にあっては、ボイラとして、間欠的にブロー水を排出する従来の蒸気発生ボイラであっても、その排熱から良好に冷熱を発生することができる。
以上より、メンテナンス性が高く比較的簡易な構成で、ボイラからの排熱(特に、ブロー水の保有する排熱)としての温熱エネルギを良好に回収できると共に、回収した温熱エネルギを冷熱エネルギ等の需要のあるエネルギへ適切に変換できる蒸気発生装置を実現できる。
【0016】
蒸気発生装置の更なる特徴構成は、
音波の振動から電力を発生させる電力発生機を備える点にある。
【0017】
上記特徴構成によれば、熱音響機関にて発生した音響エネルギを冷熱エネルギのみならず、電力にも変換でき、需要に応じた多様な形態で、エネルギを出力できる。当該電力は、蒸気発生装置の補機等で利用できる。
【発明を実施するための形態】
【0019】
当該実施形態に係る蒸気発生装置100は、メンテナンス性が高く比較的簡易な構成で、ボイラ10からの排熱としての温熱エネルギを良好に回収できると共に、回収した温熱エネルギを冷熱エネルギ等の需要のあるエネルギへ適切に変換できる蒸気発生装置に関する。
【0020】
以下、当該実施形態に係る蒸気発生装置100を、
図1に基づいて説明する。
蒸気発生装置100は、
図1に示すように、外部から供給される温水を内部に貯留可能であると共に、エンジン(図示せず、温熱源の一例)にて発生する温熱により内部の湯水を加熱して蒸気を発生させるボイラ10を備え、更に、作動媒体(例えば、ヘリウム)が充填され音波が伝播する音響筒T(当該実施形態では、1つ)に、作動媒体を外部から加熱する加熱器71と作動媒体を外部から冷却する冷却器72と加熱器71と冷却器72との間で音波の音響エネルギを増幅する第1再生器73とから成る原動機70を少なくとも1つ以上(当該実施形態では、1つ)有すると共に、作動媒体が外部から吸熱する吸熱器81と作動媒体が外部へ放熱する放熱器82と吸熱器81と放熱器82との間で音波が音響エネルギを消費する形態で圧縮及び膨張する第2再生器83とから成る音響ヒートポンプ部80を少なくとも1つ以上(当該実施形態では、1つ)有する熱音響機関90と、ボイラ10からのブロー水Bを加熱器71に通流させるブロー水通流路L1と、湯水Wを放熱器82及び冷却器72に記載の順に通流させた後にボイラへ導く湯水通流路L2と、冷媒が保有する冷熱が放熱され利用される冷熱利用部30と吸熱器81との間で冷媒を循環させる冷媒循環路L3とを備えている。
【0021】
〔ボイラに係る構成〕
ボイラ10は、湯水Wの流量を調整する第2流量調整弁V2を備える湯水通流路L2が接続され、且つエンジン(図示せず)からの燃焼排ガスE(熱媒の一例)を通流する排ガス通流路L4に連通接続される伝熱コイルEX1(伝熱部の一例)を内部に備え、且つ内部で伝熱コイルEX1により湯水Wが加熱されることにより発生した蒸気Stを外部へ導く蒸気通流路L5が接続されるボイラドラム10aを備える。
蒸気通流路L5は、負荷器20に連通接続され、負荷器20へ蒸気を供給する。負荷器20は、ドレン通流路L6を介してドレン貯留タンク22に連通接続されていると共に、当該ドレン通流路L6には、スチームトラップ21が設けられている。
更に、ドレン貯留タンク22は、ドレン還流路L7を介してボイラドラム10aと連通接続されており、当該ドレン還流路L7は、ドレン水を圧送する第1圧送ポンプP1を備えると共に、ドレン水と燃焼排ガスEとを熱交換する第2熱交換器EX2にドレン水を通流させる形態で配設されている。
因みに、第2熱交換器EX2は、燃焼排ガスEの通流方向で、伝熱コイルEX1の下流側に設けられている。
【0022】
当該構成により、ボイラドラム10aにて発生した蒸気Stは、負荷器20に供給され、当該負荷器20からの蒸気混じりのドレン水が、スチームトラップ21にて蒸気が除去された後に、ドレン貯留タンク22へ貯留され、貯留されたドレン水が、第2熱交換器EX2により燃焼排ガスEの排熱を回収した後に、ボイラドラム10aへ戻されることとなる。
【0023】
当該ボイラドラム10aに供給される湯水Wは、ボイラドラム10a等への腐食やスケール付着を防止するべく、脱酸素剤(防食剤)やスケール防止剤等のボイラ薬品が添加されている。ボイラドラム10a内の湯水Wにおいては、蒸気Stの発生に伴って、脱酸素剤(防食剤)やスケール防止剤が徐々に濃縮される。ボイラドラム10aの内部において、ボイラ薬品の濃度を一定以下に保つべく、ボイラドラム10aには、ボイラドラム10aからのブロー水Bを排出するブロー水通流路L1が設けられており、当該実施形態にあっては、ブロー水通流路L1には、ブロー水Bの流量を調整する第1流量調整弁V1が設けられている。
【0024】
〔熱音響機関に係る構成〕
熱音響機関90は、
図1に示すように、作動媒体が充填され音波が伝播する第1ループ管T1と第2ループ管T2とが連結管にて連結されて構成された音響筒Tを備え、当該実施形態においては、第1ループ管T1に単一の原動機70が設けられると共に第2ループ管T2に単一の音響ヒートポンプ部80が設けられている。
【0025】
以下、作動媒体を外部から加熱する加熱器71と作動媒体を外部から冷却する冷却器72と加熱器71と冷却器72との間で音波の音響エネルギを増幅する第1再生器73とから成る原動機70について説明を加える。
【0026】
加熱器71は、詳細な図示は省略するが、ブロー水通流路L1を通流するブロー水Bを通流するジャケット部(図示せず)と、当該ジャケット部から音響筒Tの内部に延びるフィン(図示せず)とから成る。加熱器71は、フィンがジャケット部を通流するブロー水Bにて加熱され、当該フィンから音響筒Tの内部の作動流体へ温熱を伝導する形態で、作動流体を加熱する。
【0027】
冷却器72は、湯水通流路L2の湯水Wを通流するジャケット部(図示せず)と、当該ジャケット部から音響筒Tの内部に延びるフィン(図示せず)とから成る。冷却器72は、フィンがジャケット部を通流する湯水Wにて冷却され、当該フィンから音響筒Tの内部の作動流体へ冷熱を伝導する形態で、作動流体を冷却する。
【0028】
加熱器71と冷却器72との間に設けられる第1再生器73は、例えば、音響筒Tの筒軸心方向に直交する方向に板面を沿わせた状態で、当該筒軸心方向に沿って複数並べられる薄板状部材(図示せず)から構成されている。
当該薄板状部材は、例えば、厚さが50μm以上100μm以下で、300枚〜600枚程度設けられる。当該薄板状部材には、筒軸心方向に沿う方向に貫通する多数の貫通孔(図示せず)が、その直径が200μm〜300μm程度で、設けられる。
【0029】
作動流体は、音響筒Tの内部において、その筒軸心方向で、微小な揺らぎを生じる状態で、存在している。換言すると、作動流体を伝搬する音波は、加熱器71と冷却器72との両者間において、一方側から他方側への進行波と、他方側から一方側への進行波とを形成する。
作動流体を伝搬する音波は、冷却器72から加熱器71の側への進行波を形成する場合、加熱器71近傍での第1再生器73としての薄板状部材の複数の貫通孔を通過するときに当該貫通孔の内壁に接触して加熱されると共に、加熱器71のフィンにて直接加熱されることで、膨張する。一方、作動流体を伝搬する音波は、加熱器71から冷却器72の側への進行波を形成する場合、冷却器72の近傍での第1再生器73としての薄板状部材の複数の貫通孔を通過するときに当該貫通孔の内壁に接触して冷却されると共に、冷却器72のフィンにて直接冷却されることで、収縮する。
これにより、進行波としての音波が自己励起振動を起こし、その音響エネルギが増幅される形態で、熱エネルギが音波の音響エネルギに変換される。
【0030】
作動媒体としては、音波を伝播する気体から構成することができる。ここで、第1再生器73での熱交換が迅速になされることが望ましいため、作動媒体としては、熱拡散係数の高いヘリウム、水素が望ましい。また、発電を目的とする場合には、分子量の高い気体が望ましいため、アルゴン等の気体を混合しても良い。尚、熱的に安定していることから、当該実施形態では、作動媒体としてヘリウムを用いている。
【0031】
原動機70にて増幅された音波の音響エネルギは、音響筒Tの第1ループ管T1から第2ループ管T2の音響ヒートポンプ部80へ伝搬する。
音響ヒートポンプ部80は、作動媒体が外部から吸熱する吸熱器81と作動媒体が外部へ放熱する放熱器82と吸熱器81と放熱器82との間で音波が音響エネルギを消費する形態で圧縮及び膨張する第2再生器83とから成る。
【0032】
詳細な図示は省略するが、吸熱器81は、冷媒循環路L3を循環する冷媒Cを通流するジャケット部(図示せず)と、当該ジャケット部から音響筒Tの内部に延びるフィン(図示せず)とから成る。吸熱器81では、フィンがジャケット部を通流する冷媒Cから吸熱し、音響筒Tの内部の作動媒体がフィンから吸熱する。
ここで、冷媒循環路L3は、第2圧送ポンプP2にて冷媒Cを圧送する形態で、吸熱器81と冷媒Cの保有する冷熱が放熱され利用される冷熱利用部30との間で冷媒を循環させるものである。
【0033】
放熱器82は、湯水通流路L2の湯水Wを通流するジャケット部(図示せず)と、当該ジャケット部から音響筒Tの内部に延びるフィン(図示せず)とから成る。放熱器82では、音響筒Tの内部の作動媒体がフィンに放熱し、当該放熱された熱がジャケット部を通流する湯水Wへ放熱される形態で、湯水Wが予熱される。
因みに、湯水通流路L2は、放熱器82と冷却器72とに記載の順に湯水Wを通流させた後に、ボイラドラム10aへ湯水Wを供給するように配設されている。
【0034】
ここで、音響ヒートポンプ部80は、作動流体を伝搬する音波が、吸熱器81から放熱器82の側への進行波を形成する場合に圧縮し、放熱器82から吸熱器81の側へ進行波を形成する場合に膨張するように、その吸熱器81と第2再生器83と放熱器82とが音響筒Tにおける適切な位置に配置されている。
これにより、作動流体を伝搬する音波が吸熱器81から放熱器82の側への進行波を形成する場合、第2再生器83にて圧縮しながら吸熱して昇温し、放熱器82にて高温となった状態で放熱する。これにより、放熱器82ではジャケット部を通流する湯水Wが、吸熱器81のジャケット部を通流する冷媒Cよりも高温の作動媒体と熱交換する形態で予熱される。
一方、作動流体を伝搬する音波が放熱器82から吸熱器81の側への進行波を形成する場合、第2再生器83にて膨張しながら放熱して降温し、吸熱器81にて低温となった状態で吸熱する。これにより、吸熱器81ではジャケット部を通流する冷媒Cは、十分に低温となった作動媒体に吸熱される形態で、降温することとなる。
因みに、上述の如く、第2再生器83にて圧縮しながら吸熱する工程、及び膨張しながら放熱する工程において、音波の音響エネルギが消費され、音波は減衰するが、音響エネルギは、原動機70から逐次補充されるので、音響ヒートポンプ部80のヒートポンプ機能が維持されることとなる。
【0035】
吸熱器81と放熱器82との間に設けられる第2再生器83は、その形状や材質については、第1再生器73と変わるところがない。
尚、音響筒Tの筒径、筒長さ、形状等は、特に、第1再生器73及び第2再生器83の貫通孔の孔径に基づいて、原動機70の熱エネルギから音響エネルギへの変換効率、音響ヒートポンプ部80の音響エネルギから熱エネルギへの変換効率が高くなるように、適宜設定される。
【0036】
さて、当該実施形態にあっては、原動機70にて経時的に連続して音響エネルギを発生するべく、ブロー水通流路L1を通流するブロー水Bの流量を調整する第1流量調整弁V1の開度を、加熱器71へブロー水Bを連続供給可能な開度に調整され、更に、湯水通流路L2を通流する湯水Wの流量を調整する第2流量調整弁V2の開度を、冷却器72へ湯水Wを連続供給可能な開度に調整されている。
更には、加熱器71にてブロー水Bから放熱される熱量は、所定の単位時間(例えば、数秒単位の時間)で、冷却器72にて湯水Wが吸熱する熱量と略等しくなるように、ブロー水Bの流量と湯水Wの流量とが制御されることが好ましい。
尚、第1流量調整弁V1及び第2流量調整弁V2の弁開度は、人為操作により調整される構成を採用しても構わないし、制御装置(図示せず)による制御指令により、調整される構成を採用しても構わない。
【0037】
次に、当該実施形態に係る蒸気発生装置100における冷熱利用部30へ供給できる冷熱量を試算したシミュレーション結果について説明する。
当該シミュレーションの試算条件として、作動媒体はヘリウムとし、音響筒Tの内部圧力は0.95MPaとし、原動機70での熱音変換効率はカルノー効率の30%とし、音響ヒートポンプ部80の音熱変換効率は5.4%とし、熱交換における損失、音響エネルギの損失は、考慮しないものとした。また、ブロー水Bは、300kg/hで排出され、加熱器71における入口温度が200℃で出口温度が60℃で、加熱器71での放熱量が50kWとした。湯水Wは、1000kg/hで供給され、放熱器82における入口温度が20℃で出口温度が37℃で、放熱器82での湯水Wの吸熱量が20kWとし、冷却器72における入口温度が37℃で出口温度が78℃で、冷却器72での湯水Wの吸熱量が47kWとし、ボイラドラム10aへは、78℃で1000kg/hで湯水Wを供給することとした。
この結果、冷媒Cに水を用いた場合は、冷媒循環路L3を循環する流量を3500kg/hとして、吸熱器81における入口温度が17℃で出口温度が13℃、吸熱器81での冷媒Cの放熱量を17kWとでき、同様に、冷熱利用部30での冷媒Cの吸熱量を17kWとできると試算した。
【0038】
〔別実施形態〕
(1)本願に係る蒸気発生装置100にあっては、
図2に示すように、燃焼排ガスEを加熱器71へ通流するように構成しても構わない。
当該構成にあっては、排ガス通流路L4は、ボイラ10の伝熱コイルEX1、加熱器71、及び第2熱交換器EX2に記載の順に燃焼排ガスEを通流する状態で備えられる。
即ち、当該構成にあっては、加熱器71では、燃焼排ガスEの排熱と、ボイラ10のブロー水の排熱との双方により、作動媒体が加熱されることになる。
【0039】
また、上記実施形態にあっては、第1流量調整弁V1の弁開度は、加熱器71へブロー水を連続供給可能な弁開度に調整される構成例を示した。
しかしながら、例えば、上述の如く、加熱器71へ燃焼排ガスE等の排熱供給媒体が通流する構成を採用する場合にあっては、燃焼排ガスEにより常に加熱器71へ排熱が供給されることになるから、第1流量調整弁V1の弁開度は、加熱器71へブロー水を間欠供給するような開度に調整されても構わない。換言すれば、第1流量調整弁V1は、所定時間毎に開放状態とお閉止状態とを切り換え制御されても構わない。
【0040】
(2)本願に係る蒸気発生装置100では、
図3に示すように、音波の振動から電力を発生する電力発生機40を備える構成を採用しても構わない。
説明を追加すると、電力発生機40は、
図3に示すように、音響筒Tの第2ループ管T2の筒内部において、一の回転翼40cと、当該回転翼40cを挟む状態で設けられる一対の固定翼40a、40bを備えている。当該構成においては、回転翼40cは、一方の固定翼40aにて旋回され回転翼40cへ向かう音波と、他方の固定翼40bにて旋回され回転翼40cへ向かう音波との双方により、回転力を付与されることとなるが、一対の固定翼40a、40bは、両者により旋回される音波が回転翼40cへ付与する回転力の回転方向が同一方向となるように設けられている。
更に、回転翼40cには、誘導発電機としての回転子(図示せず)が設けられると共に、音響筒Tの筒軸心方向で回転翼40cが設けられている部位で音響筒Tの筒外径部位には、誘導発電機としての固定子40dが設けられおり、回転翼40cと共に回転子が回転することで固定子40dとしてのコイルにて誘導起電力eを発生する。
当該構成を採用することにより、音響筒Tの内部で発生する音波の振動エネルギが、電気エネルギに変換される。
【0041】
(3)上記実施形態では、温熱源として、エンジンを備える構成例を示したが、温熱源は、別にエンジン以外であっても構わない。
例えば、温熱源が工場の排熱であり、当該工場からの排熱を保有する熱媒にてボイラ10にて湯水を加熱する構成を採用しても構わない。
また、例えば、温熱源として、ボイラ10のボイラドラム10a内を直接加熱する燃焼装置を備える構成を採用しても構わない。
【0042】
(4)上記実施形態にあっては、湯水Wは湯水通流路L2のみを介してボイラドラム10aへ供給される構成例を示した。
しかしながら、上記湯水通流路L2とは別に補助湯水通流路(図示せず)を備える構成を採用しても構わない。
当該構成を採用することにより、湯水通流路L2及び補助湯水通流路の双方にて供給される湯水の全量は、ボイラ10にて要求される蒸気発生量に追従する形態で制御し、湯水通流路L2を通流する湯水量については、原動機70において、ブロー水にて供給される温熱量と略等しい冷熱量を供給可能な湯水量に制御できる。
【0043】
(5)上記実施形態にあっては、音響筒Tは、第1ループ管T1と第2ループ管T2とを連結管にて連結する構成としたが、別に単一のループ管から構成しても構わない。即ち、単一のループ管から成る音響筒Tに対し、原動機70と音響ヒートポンプ部80との双方を備える構成を採用しても構わない。
また、本願の熱音響機関は、原動機70と音響ヒートポンプ部80とを有する音響筒Tが、複数設けられている構成も含むものである。
更に、一の音響筒Tに対して、原動機70と音響ヒートポンプ部80、更には電力発生機40とを複数設ける構成も含むものである。
【0044】
(6)上記実施形態において、ボイラ10としては、排ガスボイラを構成例として示したが、還流ボイラなどのボイラも好適に適用可能である。
【0046】
尚、上記実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能であり、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。