【実施例】
【0361】
以下、実施例により本発明を具体的に説明するが、本発明はこれらによりなんら限定されるものではない。
【0362】
実施例1
式(5):
【0363】
【化50】
【0364】
(式中、CとCの間の結合はジスルフィド結合を表す。)
で表される化合物の合成
【0365】
工程1. H-Cys(Npys)-Arg-Met-Phe-Pro-Asn-Ala-Pro-Tyr-Leu-OHの合成
(C(Npys)RMFPNAPYLの合成)
Fmoc−Leu−Alko−樹脂(Alkoはp−アルコキシベンジルアルコール)282mg(渡辺化学製;0.71mmol/g、0.2mmol)を出発原料としFmoc/tBu法による固相合成によりペプチド鎖の組上げを行った。固相合成にはCS Bio社製CS336X型ペプチド合成機を用い、Fmoc基の脱保護は20%ピペリジンのDMF溶液で5分間および20分間処理することにより行った。保護アミノ酸のカップリングは1.05mmolの保護アミノ酸、1mmolのHBTU、2mmolのDIPEAのDMF溶液と1時間反応させることにより行った。得られた樹脂をDMFおよびエーテルで洗浄後減圧乾燥することにより、Boc-Cys(Npys)-Arg(Pmc)-Met-Phe-Pro-Asn(Trt)-Ala-Pro-Tyr(tBu)-Leu-Alko-樹脂630mgを得た。このペプチド樹脂にTFA/H
2O/TIS=95/2.5/2.5の混合液10mlを加え、室温にて2時間振とうした。樹脂を濾去後、反応液を減圧濃縮した。反応液を氷冷しジエチルエーテル50mlを加えた。生じた沈殿物を濾取しエーテルで洗浄後減圧乾燥することにより粗ペプチド217mgを得た。得られた粗ペプチド溶液を20%酢酸水7mlとアセトニトリル1mlの混合液に溶解し逆相HPLCにて精製した。
ポンプ:Shimadzu製;LC−8A型
カラム:YMC ODS−A 3cmφ×25cmL, 10μm
溶出液1:H
2O/0.1%TFA
溶出液2:CH
3CN/0.1%TFA
流速:20ml/min
検出:UV220nm
2液濃度15%で平衡化させたカラムに粗ペプチド溶液を注入した。その後2液濃度を10分間で37%に上昇させ、その後1分間あたり0.24%の割合で上昇させた。目的物を含む画分を集め凍結乾燥することにより、H-Cys(Npys)-Arg-Met-Phe-Pro-Asn-Ala-Pro-Tyr-Leu-OH 53mgを得た。
質量分析:LC−ESI/MS m/z =1366.1 [M+1]
+ (理論値=1366.6)
【0366】
工程2. (H-Cys-Tyr-Thr-Trp-Asn-Gln-Met-Asn-Leu-OH)(H-Cys-Arg-Met-Phe-Pro-Asn-Ala-Pro-Tyr-Leu-OH) disulfide bondの合成
〔すなわち式(5):
【0367】
【化51】
【0368】
(式中、CとCの間の結合はジスルフィド結合を表す。)
で表される化合物の合成〕
工程1で得たH-Cys(Npys)-Arg-Met-Phe-Pro-Asn-Ala-Pro-Tyr-Leu-OH 50mgと公知の方法(例えばWO07/063903)で合成したH-Cys-Tyr-Thr-Trp-Asn-Gln-Met-Asn-Leu-OH(すなわちCYTWNQMNL(配列番号:4)) 43mgを混合し、DMSO 1mLを加え、室温にて20分間攪拌した。反応液を0.1%TFA水 5mlで希釈し逆相HPLCにて精製した。
ポンプ:Shimadzu製;LC−8A型
カラム:YMC ODS−A 3cmφ×25cmL, 10μm
溶出液1:H
2O/0.1%TFA
溶出液2:CH
3CN/0.1%TFA
流速:20ml/min
検出:UV220nm
2液濃度25%で平衡化させたカラムに当該反応液を注入した。その後2液濃度を1分間あたり0.25%の割合で上昇させた。目的物を含む画分を集め凍結乾燥した後、逆相HPLCによる再精製、凍結乾燥を行うことにより、(H-Cys-Tyr-Thr-Trp-Asn-Gln-Met-Asn-Leu-OH)(H-Cys-Arg-Met-Phe-Pro-Asn-Ala-Pro-Tyr-Leu-OH) disulfide bond(すなわち式(5)で示される化合物) 21mgを得た。
質量分析:LC−ESI/MS m/z =1191.8 [M+2]
2+ (理論値=1191.9)
【0369】
実施例2
以下のアミノ酸配列:
CRMFPNAPYL (配列番号:13)
からなるペプチドの合成
【0370】
工程1. Fmoc−Leu−Alko−樹脂(Alkoはp−アルコキシベンジルアルコール)338mg(渡辺化学製;0.74mmol/g、0.25mmol)を出発原料とし、実施例1に記載の方法と同様な固相合成を2回行うことによりH-Cys(Trt)-Arg(Pmc)-Met-Phe-Pro-Asn(Trt)-Ala-Pro-Tyr(tBu)-Leu -Alko-樹脂 1.54gを得た。このペプチド樹脂にTFA/H
2O/TIS=95/2.5/2.5の混合液 15mlを加え、室温にて3時間振とうした。樹脂を濾去後、反応液を減圧濃縮した。反応液を氷冷しジエチルエーテル 50mlを加えた。生じた沈殿物を濾取しエーテルで洗浄後減圧乾燥することにより粗ペプチド637mgを得た。
質量分析:LC−ESI/MS m/z=1211.9 [M+1]
+ (理論値=1212.5)
【0371】
工程2. 工程1で得られた粗ペプチド321mgをTFA 10mlに溶解し、HPLC(Shimadzu製;LC6AD型)1液=H
2O/0.1%TFAで平衡化しているYMC−PACK ODS−A 3cmφ×25cmLのカラムにHPLCのポンプでチャージした。その状態で約20分間保ち、20分後、2液=CH
3CN/0.1%TFAの濃度を27%迄上昇した。その後、目的とするペプチドの溶出液を220nmのUVでモニターしながら、2液濃度を1分間あたり0.25%の割合で上昇させ、目的物を含む分画を集めた。凍結乾燥後に得られたペプチド100mgを再度同じ条件で逆相精製し、アセトニトリルを減圧留去し凍結乾燥することにより目的とするペプチド(CRMFPNAPYL (配列番号:13))37.2mgを得た。
ポンプ:Shimadzu製;LC−6A型
カラム:YMC ODS−A 3cmφ×25cmL, 10μm
溶出液1:H
2O/0.1%TFA
溶出液2:CH
3CN/0.1%TFA
流速:20ml/min検出:UV220nm
質量分析:LC−ESI/MS m/z =1212.0 [M+1]
+ (理論値=1211.6)
【0372】
実施例3〜5
実施例2と同様の方法で、配列番号:16、18または17のアミノ酸配列からなるペプチドを合成した。表54に、合成量および質量分析結果を示した。
【0373】
【表54】
【0374】
試験例1
ERAP1によるN末端アミノ酸のトリミングの経時変化
実施例2〜5にて合成した配列番号:13、16、18および17の各ペプチドについて、ERAP1(PLoS One November 2008, vol.3, Issue 11, e3658)によるN末端アミノ酸のトリミングを評価した。
30μlのERAP1(2.0mg/ml)PBSバッファー溶液を258μlのTris・HClバッファーに加えた。10mMの各ペプチドのDMSO溶液12.0μlを上述のERAP1溶液に加えて、良く混和した後に室温で静置した。1.0, 2.0, 4.0, 8.0時間後に50μlのサンプルを150μlのMeOHに加えて反応を停止し、25μlをUFLC(分析条件は以下に示す。)に打ち込み、目的とするペプチドのAUCを求めた。トリミングによって得られるペプチドを別に化学的に合成し、酵素の無い同様の条件で分析して得られたAUCを基にして、トリミングによって得られたペプチドの生成率を求めた。
分析条件
ポンプ:Shimadzu社製 UFLC
カラム:Shim−pack XR−ODS 3.0mmi.d.x75mm
溶液:0.1% TFA H
2O(A)− 0.1% TFA CH
3CN(B)
オーブン温度:40℃
流速:1.0ml/min
検出波長:λ=220nm
グラジエント:
1.0.0minから5.0minでB液濃度を1.0%から70%まで上昇
2.0.0minから5.0minでB液濃度を1.0%から50%まで上昇
目的のペプチド:
実施例2〜5にて合成したペプチドについて、ERAP1によるN末端アミノ酸のトリミングにより得られたペプチドのアミノ酸配列を、表55に示した。
【0375】
【表55】
【0376】
トリミングにより得られたペプチドの生成率の経時変化を、表56および
図1に示した。
【0377】
【表56】
【0378】
本トリミング結果は、いずれのCys延長ペプチド(配列番号:13、16、17および18)においても、延長されたN末端のCysをERAP−1が選択的に切断、すなわち、Cys延長ペプチドが、ペプチド配列に大きく依存されることなく、ERAP−1による適切なトリミングを受けて、最終的に目的の癌抗原ペプチド(配列番号:2、5、6および7)へ変換されることを強く示唆する。
【0379】
試験例2
HLA−A0201遺伝子導入マウスおよびHLA−A2402遺伝子導入マウスを用いた、in vivoでのCTL誘導能の評価
【0380】
実施例1で合成した式(5)で表される化合物のCTL誘導能を、HLA−A0201遺伝子導入マウスおよびHLA−A2402遺伝子導入マウスを用いたin vivoCTL誘導試験によって評価した。式(5):
【0381】
【化52】
【0382】
(式中、CとCの間の結合はジスルフィド結合を表す。)
で表される化合物は、前記の式(1)に照らすと、特に癌抗原ペプチドAがRMFPNAPYL(配列番号:2)であり且つ癌抗原ペプチドBがCYTWNQMNL(配列番号:4)である化合物である。RMFPNAPYL(配列番号:2)はHLA−A0201拘束性WT1ペプチドであり、CYTWNQMNL(配列番号:4)はHLA−A24拘束性エピトープWT1ペプチドである。
【0383】
HLA−A0201遺伝子導入マウス(C57BL/6CrHLA−A2.1DR1)は、マウスのMHCを欠損し、ヒトのMHCであるHLA−A0201とマウスMHCであるH−2D
bのキメラHLAおよびHLA−DRB1*0101を発現するマウスであり、本マウスを用いることで、HLA−A02陽性のヒトでCTLを誘導し得るペプチドの選択が可能である(Eur J Immunol.2004;34:3060−9)。一方、HLA−A2402遺伝子導入マウス (C57BL/6CrHLA−A2402/K
b)は、ヒトのMHCであるHLA−A2402とマウスMHCであるH−2K
bのキメラHLAを発現するマウスであり、本マウスを用いることで、HLA−A24陽性のヒトでCTLを誘導し得るペプチドの選択が可能である(Int J Cancer.2002;100:565−70)。
【0384】
式(5)で表される化合物の投与により、目的のペプチド(配列番号:2、4)に対するCTLが誘導されるか否かは、式(5)で表される化合物を投与した上記マウス由来の脾細胞をペプチド(配列番号:2、4)で再刺激を行った場合にIFNγを産生するか測定することで判断した。
【0385】
具体的には、式(5)で表される化合物をジメチルスルホキシド(DMSO)で40mg/mLに溶解し、さらに注射用水で5mg/mLに希釈したのち、等量の不完全フロイントアジュバント(IFA)と混合しエマルション化させた。エマルション化させた化合物を、マウスの尾根部皮内に250μg/siteで4箇所投与した。1週間後に、マウスをCO
2ガスにより安楽死させたのち脾臓を摘出し、脾細胞を調製した。IFNγ産生の測定には、IFNγ ELISPOT assay kitを用いた。脾細胞調製の前日に、ELISPOTプレートを抗マウスIFNγ抗体で処理し、当日に10%FBSを含むRPMI1640培地でブロッキングした。調製したHLA−A0201遺伝子導入マウス由来の脾細胞を0.15×10
6cells/wellで、HLA−A2402遺伝子導入マウス由来の脾細胞を1×10
6cells/wellで、ブロッキングしたELISPOTプレートに播種した。ペプチド(配列番号:2、4)をDMSOで40mg/mLに溶解し、さらに10%FBSを含むRPMI1640培地で40μg/mLに希釈した。希釈したペプチド(配列番号:2)を、最終濃度10μg/mLでHLA−A0201遺伝子導入マウス由来の脾細胞に添加した。また、希釈したペプチド(配列番号:4)を、最終濃度10μg/mLでHLA−A2402遺伝子導入マウス由来の脾細胞に添加した。ペプチドを添加した脾細胞を、20時間、37℃、5% CO
2下で培養することで、in vitroにおけるペプチド再刺激を加えた。培養後に上清を除き、ELISPOTプレートを、添付のプロトコールに従って発色させた。発色したスポット数は、ImmunoSpot Analyzer(C.T.L.社製)によって測定した。
【0386】
HLA−A0201遺伝子導入マウスを用いたIFNγ ELISPOT assayの結果を
図2に、HLA−A2402遺伝子導入マウスを用いたIFNγ ELISPOT assayの結果を
図3に示した。
各図において、縦軸は播種細胞数中に反応した細胞数を示す。
図2の黒棒および白棒はHLA−A0201遺伝子導入マウス由来の脾細胞を配列番号:2で表される目的のペプチドの存在下および非存在下で培養した結果を、
図3の黒棒および白棒はHLA−A2402遺伝子導入マウス由来の脾細胞を配列番号:4で表される目的のペプチドの存在下および非存在下で培養した結果を示す。即ち、黒棒と白棒の値の差が、式(5)で表される化合物の投与によってマウス生体内で誘導された目的の各ペプチド特異的CTLの数を示す。
各図中において白棒の値は認められていない。このことは目的のペプチド非存在下ではそれぞれの遺伝子導入マウスの脾細胞は全く反応しなかったことを示している。本試験の結果、HLA−A0201遺伝子導入マウス由来の脾細胞においては配列番号:2で表される目的のペプチド特異的なIFNγ産生が、HLA−A2402遺伝子導入マウス由来の脾細胞においては配列番号:4で表される目的のペプチド特異的なIFNγ産生が確認された。
【0387】
これより、式(5)で表される化合物は配列番号:2で表されるペプチド特異的なCTLおよび配列番号:4で表されるペプチド特異的なCTLを誘導し得ることが明らかとなった。式(5)で表される化合物は、マウス生体内でジスルフィド結合の切断とERAP−1による適切なトリミングを受けて、配列番号:2および配列番号:4のペプチドへ実際に生成されることが強く示唆された。
すなわち、本発明の化合物の一例である式(5)で表される化合物は、異なる2種のWT1ペプチドを式(1)に示されたようなジスルフィド結合を介して複合化されたコンジュゲート体であり、実際にin vivoにおいて異なる2種のCTLを誘導できるWT1癌抗原ペプチドコンジュゲートワクチンであることが、明らかとなった。
【0388】
参考例1〜7
実施例2と同様の方法で、配列番号:22、24、23、2、4、6および5の各アミノ酸配列からなる各ペプチドを合成した。表57に質量分析結果を示した。配列番号:22、24、23、2、4、6および5は本願発明の化合物ではないことから、いずれも参考例として記載した。
【0389】
【表57】
【0390】
実施例6〜9
実施例1と同様の方法で、式(3)、(6)、(7)および(8)で表される各化合物(コンジュゲート体)を合成した。表58に質量分析結果を示した。(各式中、CとCの間の結合はジスルフィド結合を表す。)
【0391】
【表58】
【0392】
試験例3
溶解度測定
工程1.等張緩衝液の調製
1.75%リン酸水素二ナトリウム水溶液と5.53%クエン酸水溶液を混合し、pH6.0および7.4の各緩衝液を調製した。
工程2.試験溶液の調製
被験物を1mg程度秤量し、等張緩衝液を0.5mL加えこれを試験溶液とした。調製した試験溶液は室温にて90分間振とう(振とう条件: TAITEC社製RECIPRO SHAKER SR-1N, Speed=8)後、遠心分離(15000rpm、5分間、室温)を行い、遠心分離後の上清を試験溶液とした。
工程3.標準液の調製
被験物約1mgを精秤し、0.1%TFA水/アセトニトリル=1/1にて溶解し、全量を10mLとし、これを被験物の標準液として用いた。
工程4.被験物の濃度測定
被験物の標準液および試験溶液をHPLC(分析条件は表59に記載)にて分析し、標準液のピーク面積比より被験物の溶解度を算出した。
HPLC測定条件
カラム:ChemcoPack Quicksorb(4.6 mmφ×150 mm, 5 μm) ケムコ株式会社製
移動相:A液;0.1%TFA水、B液;0.1%TFAアセトニトリル溶液
カラム温度:室温
流速:1mL/min
検出波長:UV 254nm,230nm(2波長検出)
サンプル注入量:10μL
【0393】
【表59】
【0394】
参考例1〜2および4〜7にて合成したペプチドならびに実施例1、7および9にて合成した化合物(コンジュゲート体)について、上記の溶解度測定を行い、各溶解度を表60に示した。
【0395】
【表60】
【0396】
試験例4
HLA−A0201遺伝子導入マウスを用いた、in vivoでのCTL誘導能の評価
【0397】
実施例6で合成した式(3)で表される化合物のCTL誘導能を、HLA−A0201遺伝子導入マウスを用いたin vivoCTL誘導試験によって評価した。式(3):
【0398】
【化53】
【0399】
(式中、CとCの間の結合はジスルフィド結合を表す。)
で表される化合物は、前記の式(1)に照らすと、特に癌抗原ペプチドAがRMFPNAPYL(配列番号:2)であり且つ癌抗原ペプチドBがSLGEQQYSV(配列番号:6)である化合物である。RMFPNAPYL(配列番号:2)およびSLGEQQYSV(配列番号:6)はHLA−A0201拘束性WT1ペプチドである。
【0400】
HLA−A0201遺伝子導入マウスについては、試験例2に記したとおりである。
【0401】
式(3)で表される化合物の投与により、目的のペプチド(配列番号:2、6)に対するCTLが誘導されるか否かは、式(3)で表される化合物を投与した上記マウス由来の脾細胞をペプチド(配列番号:2、6)で再刺激を行った場合にIFNγを産生するか測定することで判断した。
【0402】
具体的には、式(3)で表される化合物を注射用水で10mg/mLに溶解したのち、等量の不完全フロイントアジュバント(IFA)と混合しエマルション化させた。エマルション化させた化合物を、マウスの尾根部皮内に500μg/siteで2箇所投与した。1週間後に、マウスをCO
2ガスにより安楽死させたのち脾臓を摘出し、脾細胞を調製した。IFNγ産生の測定には、IFNγ ELISPOT assay kitを用いた。脾細胞調製の前日に、ELISPOTプレートを抗マウスIFNγ抗体で処理し、当日に10%FBSを含むRPMI1640培地でブロッキングした。調製したHLA−A0201遺伝子導入マウス由来の脾細胞を0.75×10
6cells/wellで、ブロッキングしたELISPOTプレートに播種した。ペプチド(配列番号:2、6)をDMSOで40mg/mLに溶解し、さらに10%FBSを含むRPMI1640培地で40μg/mLに希釈した。希釈したペプチド(配列番号:2、6)を、最終濃度10μg/mLでHLA−A0201遺伝子導入マウス由来の脾細胞に添加した。ペプチドを添加した脾細胞を、20時間、37℃、5% CO
2下で培養することで、in vitroにおけるペプチド再刺激を加えた。培養後に上清を除き、ELISPOTプレートを、添付のプロトコールに従って発色させた。発色したスポット数は、ImmunoSpot Analyzer(C.T.L.社製)によって測定した。
【0403】
HLA−A0201遺伝子導入マウスを用いたIFNγ ELISPOT assayの結果を
図4に示した。
図4において、縦軸は播種細胞数中に反応した細胞数を示す。
図4の黒棒、斜線棒はHLA−A0201遺伝子導入マウス由来の脾細胞を配列番号:2、6で表される各ペプチドをパルスしながら培養した結果を示し、白棒は非パルスで培養した結果を示す。即ち、黒棒または斜線棒と白棒の値の差がペプチド特異的CTLの数を示し、式(3)で表される化合物の投与によってマウス生体内において配列番号:2、6で表される各ペプチドに特異的なCTLが誘導されたことを示す。
図4において白棒の値は認められていない。このことは目的のペプチドをパルスしない場合にはHLA−A0201遺伝子導入マウスの脾細胞は全く反応しなかったことを示している。本試験の結果、HLA−A0201遺伝子導入マウス由来の脾細胞において配列番号:2、6で表されるペプチドに特異的なIFNγの産生が確認された。
【0404】
これより、式(3)で表される化合物は配列番号:2、6で表される各ペプチド特異的なCTLを誘導し得ることが明らかとなった。式(3)で表される化合物は、マウス生体内でジスルフィド結合の切断とERAP−1による適切なトリミングを受けて、配列番号:2および6で表されるペプチドへ実際に生成されることが強く示唆された。すなわち、本発明の化合物の一例である式(3)で表される化合物は、異なる2種のペプチドを式(1)に示されたようなジスルフィド結合を介して複合化されたコンジュゲート体であり、実際にin vivoにおいて異なる2種のCTLを誘導できるWT1癌抗原ペプチドコンジュゲートワクチンであることが、明らかとなった。
【0405】
試験例5
HLA−A0201遺伝子導入マウスを用いた、in vivoでのCTL誘導能の評価
【0406】
実施例7で合成した式(6)で表される化合物のCTL誘導能を、HLA−A0201遺伝子導入マウスを用いたin vivoCTL誘導試験によって評価した。式(6):
【0407】
【化54】
【0408】
(式中、CとCの間の結合はジスルフィド結合を表す。)
で表される化合物は、前記の式(1)に照らすと、特に癌抗原ペプチドAがRMFPNAPYL(配列番号:2)であり且つ癌抗原ペプチドCがCNKRYFKLSHLQMHSRKHTG(配列番号:24)である化合物である。RMFPNAPYL(配列番号:2)はHLA−A0201拘束性WT1ペプチドであり、CNKRYFKLSHLQMHSRKHTG (配列番号:24)はMHCクラスII拘束性WT1ペプチド(すなわちヘルパーペプチド)である。
【0409】
HLA−A0201遺伝子導入マウスについては、試験例2に記したとおりである。本マウスを用いることで、HLA−A02陽性のヒトでCTLを誘導し得るペプチドの選択が可能であることに加え、ヒトのHLA−DRB1*0101に結合してヘルパーT細胞を誘導し得るヘルパーペプチドのCTL誘導増強効果を評価することも可能である。
【0410】
式(6)で表される化合物の投与により、目的のペプチド(配列番号:2)に対するCTLおよびヘルパーペプチド(配列番号:24)反応性の細胞が誘導されるか否かは、式(6)で表される化合物を投与した上記マウス由来の脾細胞をペプチド(配列番号:2、24)で再刺激を行った場合にIFNγを産生するか測定することで判断した。また、式(6)で表される化合物を投与した上記マウス由来の脾細胞と、配列番号:2で表される化合物を投与した上記マウス由来の脾細胞を、ペプチド(配列番号:2)で再刺激を行った場合のIFNγ産生細胞数を比較した。
【0411】
具体的には、配列番号:2で表されるペプチドを注射用水で6mg/mLに溶解したのち、等量の不完全フロイントアジュバント(IFA)と混合しエマルション化させた。エマルション化させたペプチドを、マウスの尾根部皮内に150μg/siteで2箇所投与した。式(6)で表される化合物を注射用水で19.8mg/mLに溶解したのち、等量の不完全フロイントアジュバント(IFA)と混合しエマルション化させた。エマルション化させた化合物を、マウスの尾根部皮内に495μg/siteで2箇所投与した。式(6)で表される化合物のマウス1匹あたりの投与量に含まれる配列番号:2のペプチドの物質量は、配列番号:2で表されるペプチドのマウス1匹あたりの投与量に含まれる物質量と等しくなるよう調整した。1週間後に、マウスをCO
2ガスにより安楽死させたのち脾臓を摘出し、脾細胞を調製した。IFNγ産生の測定には、IFNγ ELISPOT assay kitを用いた。脾細胞調製の前日に、ELISPOTプレートを抗マウスIFNγ抗体で処理し、当日に10%FBSを含むRPMI1640培地でブロッキングした。調製したHLA−A0201遺伝子導入マウス由来の脾細胞を0.25×10
6cells/wellあるいは0.5×10
6cells/wellで、ブロッキングしたELISPOTプレートに播種した。ペプチド(配列番号:2、24)をDMSOで40mg/mLに溶解し、さらに10%FBSを含むRPMI1640培地で40μg/mLに希釈した。希釈したペプチド(配列番号:2、24)を、最終濃度10μg/mLでHLA−A0201遺伝子導入マウス由来の脾細胞に添加した。ペプチドを添加した脾細胞を、20時間、37℃、5% CO
2下で培養することで、in vitroにおけるペプチド再刺激を加えた。培養後に上清を除き、ELISPOTプレートを、添付のプロトコールに従って発色させた。発色したスポット数は、ImmunoSpot Analyzer(C.T.L.社製)によって測定した。
【0412】
HLA−A0201遺伝子導入マウスを用いたIFNγ ELISPOT assayの結果を
図5および6に示した。
図5および6において、縦軸は播種細胞数中に反応した細胞数を、横軸はマウスに投与した化合物またはペプチドを示す。
図5の黒棒はHLA−A0201遺伝子導入マウス由来の脾細胞を配列番号:2で表されるペプチドをパルスしながら培養した結果を示し、白棒は非パルスで培養した結果を示す。即ち、黒棒と白棒の値の差がペプチド特異的CTLの数を示し、配列番号:2で表されるペプチドまたは式(6)で表される化合物の投与によってマウス生体内において配列番号:2で表されるペプチドに特異的なCTLが誘導されたことを示す。
図5において白棒の値は認められていない。このことは目的のペプチドをパルスしない場合にはHLA−A0201遺伝子導入マウスの脾細胞は全く反応しなかったことを示している。本試験の結果、HLA−A0201遺伝子導入マウス由来の脾細胞において配列番号:2で表されるペプチドに特異的なIFNγの産生が確認された。また、
図5において式(6)で表される化合物の投与によって誘導された配列番号:2で表されるペプチドに特異的なIFNγ産生細胞の数は、配列番号:2で表されるペプチドの投与によって誘導されたペプチド特異的なIFNγ産生細胞の数より多かった。
さらに、
図6の黒棒はHLA−A0201遺伝子導入マウス由来の脾細胞を配列番号:24で表されるペプチドをパルスしながら培養した結果を示し、白棒は非パルスで培養した結果を示す。即ち、黒棒と白棒の値の差がペプチド反応性細胞の数を示し、式(6)で表される化合物の投与によってマウス生体内において配列番号:24で表されるヘルパーペプチド反応性の細胞が誘導され、配列番号:2で表される化合物の投与によってマウス生体内において配列番号:24で表されるペプチド反応性の細胞が誘導されなかったことを示す。
図6において白棒の値は認められていない。このことは目的のペプチドをパルスしない場合にはHLA−A0201遺伝子導入マウスの脾細胞は全く反応しなかったことを示している。
【0413】
これより、式(6)で表される化合物は配列番号:2で表されるペプチドに特異的なCTLと、配列番号:24で表されるヘルパーペプチドに反応性の細胞を誘導し得ることが明らかとなった。式(6)で表される化合物は、マウス生体内でジスルフィド結合の切断とERAP−1による適切なトリミングを受けて、配列番号:2および24で表されるペプチドへ実際に生成されることが強く示唆された。式(6)で表される化合物から生成された配列番号:24で表されるヘルパーペプチドに反応性の細胞が誘導されたことによって、配列番号:2で表されるペプチドに特異的なCTLの誘導が増強され、配列番号:2で表されるペプチドを投与した場合と比較して多くの配列番号:2で表されるペプチドに特異的なIFNγ産生細胞が認められたものと推察された。
すなわち、本発明の化合物の一例である式(6)で表される化合物は、異なる2種のペプチドを式(1)に示されたようなジスルフィド結合を介して複合化されたコンジュゲート体であり、実際にin vivoにおいてCTLおよびヘルパーペプチド反応性細胞を誘導できるWT1癌抗原ペプチドコンジュゲートワクチンであることが、明らかとなった。
【0414】
試験例6
HLA−A0201遺伝子導入マウスを用いた、in vivoでのCTL誘導能の評価
【0415】
実施例9で合成した式(8)で表される化合物のCTL誘導能を、HLA−A0201遺伝子導入マウスを用いたin vivoCTL誘導試験によって評価した。式(8):
【0416】
【化55】
【0417】
(式中、CとCの間の結合はジスルフィド結合を表す。)
で表される化合物は、前記の式(1)に照らすと、特に癌抗原ペプチドAがRMFPNAPYL(配列番号:2)であり且つ癌抗原ペプチドCがCNKRYFKLSHLQMHSRK(配列番号:22)である化合物である。RMFPNAPYL(配列番号:2)はHLA−A0201拘束性WT1ペプチドであり、CNKRYFKLSHLQMHSRK(配列番号:22)はMHCクラスII拘束性WT1ペプチド(すなわちヘルパーペプチド)である。
【0418】
HLA−A0201遺伝子導入マウスについては、試験例2、5に記したとおりである。
【0419】
式(8)で表される化合物の投与により、目的のペプチド(配列番号:2)に対するCTLおよびヘルパーペプチド(配列番号:22)反応性の細胞が誘導されるか否かは、式(8)で表される化合物を投与した上記マウス由来の脾細胞をペプチド(配列番号:2、22)で再刺激を行った場合にIFNγを産生するか測定することで判断した。また、式(8)で表される化合物を投与した上記マウス由来の脾細胞と、配列番号:2で表される化合物を投与した上記マウス由来の脾細胞を、ペプチド(配列番号:2)で再刺激を行った場合のIFNγ産生細胞数を比較した。
【0420】
具体的には、配列番号:2で表されるペプチドを注射用水で6mg/mLに溶解したのち、等量の不完全フロイントアジュバント(IFA)と混合しエマルション化させた。エマルション化させたペプチドを、マウスの尾根部皮内に150μg/siteで2箇所投与した。式(8)で表される化合物を注射用水で18mg/mLに溶解したのち、等量の不完全フロイントアジュバント(IFA)と混合しエマルション化させた。エマルション化させた化合物を、マウスの尾根部皮内に450μg/siteで2箇所投与した。式(8)で表される化合物のマウス1匹あたりの投与量に含まれる配列番号:2のペプチドの物質量は、配列番号:2で表されるペプチドのマウス1匹あたりの投与量に含まれる物質量と等しくなるよう調整した。1週間後に、マウスをCO
2ガスにより安楽死させたのち脾臓を摘出し、脾細胞を調製した。IFNγ産生の測定には、IFNγ ELISPOT assay kitを用いた。脾細胞調製の前日に、ELISPOTプレートを抗マウスIFNγ抗体で処理し、当日に10%FBSを含むRPMI1640培地でブロッキングした。調製したHLA−A0201遺伝子導入マウス由来の脾細胞を0.25×10
6cells/wellあるいは0.5×10
6cells/wellで、ブロッキングしたELISPOTプレートに播種した。ペプチド(配列番号:2、22)をDMSOで40mg/mLに溶解し、さらに10%FBSを含むRPMI1640培地で40μg/mLに希釈した。希釈したペプチド(配列番号:2、22)を、最終濃度10μg/mLでHLA−A0201遺伝子導入マウス由来の脾細胞に添加した。ペプチドを添加した脾細胞を、20時間、37℃、5% CO
2下で培養することで、in vitroにおけるペプチド再刺激を加えた。培養後に上清を除き、ELISPOTプレートを、添付のプロトコールに従って発色させた。発色したスポット数は、ImmunoSpot Analyzer(C.T.L.社製)によって測定した。
【0421】
HLA−A0201遺伝子導入マウスを用いたIFNγ ELISPOT assayの結果を
図7および8に示した。
図7および8において、縦軸は播種細胞数中に反応した細胞数を、横軸はマウスに投与した化合物またはペプチドを示す。
図7の黒棒はHLA−A0201遺伝子導入マウス由来の脾細胞を配列番号:2で表されるペプチドをパルスしながら培養した結果を示し、白棒は非パルスで培養した結果を示す。即ち、黒棒と白棒の値の差がペプチド特異的CTLの数を示し、配列番号:2で表されるペプチドまたは式(8)で表される化合物の投与によってマウス生体内において配列番号:2で表されるペプチドに特異的なCTLが誘導されたことを示す。
図7において白棒の値は認められていない。このことは目的のペプチドをパルスしない場合にはHLA−A0201遺伝子導入マウスの脾細胞は全く反応しなかったことを示している。本試験の結果、HLA−A0201遺伝子導入マウス由来の脾細胞において配列番号:2で表されるペプチドに特異的なIFNγの産生が確認された。また、
図7において式(8)で表される化合物の投与によって誘導された配列番号:2で表されるペプチドに特異的なIFNγ産生細胞の数は、配列番号:2で表されるペプチドの投与によって誘導されたペプチド特異的なIFNγ産生細胞の数より多かった。
さらに、
図8の黒棒はHLA−A0201遺伝子導入マウス由来の脾細胞を配列番号:22で表されるペプチドをパルスしながら培養した結果を示し、白棒は非パルスで培養した結果を示す。即ち、黒棒と白棒の値の差がペプチド反応性細胞の数を示し、式(8)で表される化合物の投与によってマウス生体内において配列番号:22で表されるヘルパーペプチド反応性の細胞が誘導され、配列番号:2で表されるペプチドの投与によってマウス生体内において配列番号:22で表されるペプチド反応性の細胞が誘導されなかったことを示す。
図8において白棒の値は認められていない。このことは目的のペプチドをパルスしない場合にはHLA−A0201遺伝子導入マウスの脾細胞は全く反応しなかったことを示している。
【0422】
これより、式(8)で表される化合物は配列番号:2で表されるペプチドに特異的なCTLと、配列番号:22で表されるヘルパーペプチドに反応性の細胞を誘導し得ることが明らかとなった。式(8)で表される化合物は、マウス生体内でジスルフィド結合の切断とERAP−1による適切なトリミングを受けて、配列番号:2および22で表されるペプチドへ実際に生成されることが強く示唆された。式(8)で表される化合物から生成された配列番号:22で表されるヘルパーペプチドに反応性の細胞が誘導されたことによって、配列番号:2で表されるペプチドに特異的なCTLの誘導が増強され、配列番号:2で表される化合物を投与した場合と比較して多くの配列番号:2で表されるペプチドに特異的なIFNγ産生細胞が認められたものと推察された。
すなわち、本発明の化合物の一例である式(8)で表される化合物は、異なる2種のペプチドを式(1)に示されたようなジスルフィド結合を介して複合化されたコンジュゲート体であり、実際にin vivoにおいてCTLおよびヘルパーペプチド反応性細胞を誘導できるWT1癌抗原ペプチドコンジュゲートワクチンであることが、明らかとなった。
【0423】
実施例10
実施例1と同様の方法で、式(9)で表される各化合物(コンジュゲート体)を合成した。表61に質量分析結果を示した。(式中、CとCの間の結合はジスルフィド結合を表す。)
【0424】
【表61】
【0425】
参考例8〜9
実施例2と同様の方法で、配列番号238〜239のアミノ酸配列からなるペプチドを合成した。表62に質量分析結果を示した。表に記載のペプチドは本発明の化合物ではないことから参考例として記載した。
【0426】
【表62】
【0427】
参考例10〜11
実施例2と同様の方法で、配列番号240〜241のアミノ酸配列からなるペプチドを合成した。表63に質量分析結果を示した。表に記載のペプチドは本発明の化合物ではないことから参考例として記載した。
【0428】
【表63】
【0429】
表63に示すペプチドは非特許文献Cancer Science January 2012, Vol. 103, no. 1, 150-153. を参考に合成した。
【0430】
試験例7
コンジュゲート体及びカクテル化ワクチンの安定性試験
【0431】
工程1
コンジュゲート体(式番号:(6))2.4 mgを120μL注射用水に溶解し、遮光下室温にて保存した。
工程2
カクテル化ワクチンとして配列番号:2で表されるペプチド1.1 mgを180 μLの注射用水に溶解し、これを123 μL用いて配列番号:24で表されるペプチド1.3 mgを溶解し、遮光下室温にて保存した。
工程3
工程1および工程2で得られた溶液2.5 μLを注射用水50 μLで希釈した後、HPLCによる分析(分析条件は以下に示す。)を行い、保存開始直後の面積値を100%として、コンジュゲート体及びペプチドの水溶液中の含有率を測定し、コンジュゲート体の含有率を表64に、カクテル化ワクチン中の各ペプチドの含有率を表65に記載した。
分析条件
ポンプ:Shimadzu社製 UFLC
カラム:Kinetex 2.6u C18 100A 3.0mmi.d.x75mm
移動相:A液;0.1%TFA水、B液;0.1%TFAアセトニトリル溶液
カラム温度:40 ℃
流速:1 mL/min
検出波長:UV 220、254 nm(2波長検出)
サンプル注入量:10 μL
【0432】
【表64】
【0433】
【表65】
【0434】
試験例7において式番号(6)で表されるコンジュゲート体は溶液調製後2週間時点で、式(6)で表される化合物が96%残存していた。これに対して、カクテル化ワクチンである配列番号2と配列番号24の混合溶液においては1日経過時点で配列番号24の含有率が65%まで低下し、2週間後には6%まで低下していた。これらの結果から、水溶液にて保存されたコンジュゲート体は同条件にて保存されたカクテル化ワクチンに比べ安定であることが示された。
【0435】
試験例8
HLA−A0201遺伝子導入マウスを用いた、in vivoでのCTL誘導能の評価
【0436】
実施例8で合成した式(7)で表される化合物のCTL誘導能を、HLA−A0201遺伝子導入マウスを用いたin vivoCTL誘導試験によって評価した。式(7):
【0437】
【化56】
【0438】
(式中、CとCの間の結合はジスルフィド結合を表す。)
で表される化合物は、前記の式(1)に照らすと、特に癌抗原ペプチドAがRMFPNAPYL(配列番号:2)であり且つ癌抗原ペプチドCがCNKRYFKLSHLQMHSRKH(配列番号:23)である化合物である。RMFPNAPYL(配列番号:2)はHLA−A0201拘束性WT1ペプチドであり、CNKRYFKLSHLQMHSRKH(配列番号:23)はMHCクラスII拘束性WT1ペプチド(すなわちヘルパーペプチド)である。
【0439】
HLA−A0201遺伝子導入マウスについては、試験例2、5に記したとおりである。
【0440】
式(7)で表される化合物の投与により、目的のペプチド(配列番号:2)に対するCTLおよびヘルパーペプチド(配列番号:23)反応性の細胞が誘導されるか否かは、式(7)で表される化合物を投与した上記マウス由来の脾細胞をペプチド(配列番号:2、23)で再刺激を行った場合にIFNγを産生するか測定することで判断した。また、式(7)で表される化合物を投与した上記マウス由来の脾細胞と、配列番号:2で表される化合物を投与した上記マウス由来の脾細胞を、ペプチド(配列番号:2)で再刺激を行った場合のIFNγ産生細胞数を比較した。
【0441】
具体的には、配列番号:2で表されるペプチドを注射用水で6mg/mLに溶解したのち、等量の不完全フロイントアジュバント(IFA)と混合しエマルション化させた。エマルション化させたペプチドを、マウスの尾根部皮内に150μg/siteで2箇所投与した。式(7)で表される化合物を注射用水で19mg/mLに溶解したのち、等量の不完全フロイントアジュバント(IFA)と混合しエマルション化させた。エマルション化させた化合物を、マウスの尾根部皮内に475μg/siteで2箇所投与した。式(7)で表される化合物のマウス1匹あたりの投与量に含まれる配列番号:2のペプチドの物質量は、配列番号:2で表されるペプチドのマウス1匹あたりの投与量に含まれる物質量と等しくなるよう調整した。1週間後に、マウスをCO
2ガスにより安楽死させたのち脾臓を摘出し、脾細胞を調製した。IFNγ産生の測定には、IFNγ ELISPOT assay kitを用いた。脾細胞調製の前日に、ELISPOTプレートを抗マウスIFNγ抗体で処理し、当日に10%FBSを含むRPMI1640培地でブロッキングした。調製したHLA−A0201遺伝子導入マウス由来の脾細胞を0.25×10
6cells/wellあるいは0.5×10
6cells/wellで、ブロッキングしたELISPOTプレートに播種した。ペプチド(配列番号:2、23)をDMSOで40mg/mLに溶解し、さらに10%FBSを含むRPMI1640培地で40μg/mLに希釈した。希釈したペプチド(配列番号:2、23)を、最終濃度10μg/mLでHLA−A0201遺伝子導入マウス由来の脾細胞に添加した。ペプチドを添加した脾細胞を、17時間、37℃、5% CO
2下で培養することで、in vitroにおけるペプチド再刺激を加えた。培養後に上清を除き、ELISPOTプレートを、添付のプロトコールに従って発色させた。発色したスポット数は、ImmunoSpot Analyzer(C.T.L.社製)によって測定した。
【0442】
HLA−A0201遺伝子導入マウスを用いたIFNγ ELISPOT assayの結果を
図9および10に示した。
図9および10において、縦軸は播種細胞数中に反応した細胞数を、横軸はマウスに投与した化合物またはペプチドを示す。
図9の黒棒はHLA−A0201遺伝子導入マウス由来の脾細胞を配列番号:2で表されるペプチドをパルスしながら培養した結果を示し、白棒は非パルスで培養した結果を示す。即ち、黒棒と白棒の値の差がペプチド特異的CTLの数を示し、配列番号:2で表されるペプチドまたは式(7)で表される化合物の投与によってマウス生体内において配列番号:2で表されるペプチドに特異的なCTLが誘導されたことを示す。
図9において白棒の値は認められていない。このことは目的のペプチドをパルスしない場合にはHLA−A0201遺伝子導入マウスの脾細胞は全く反応しなかったことを示している。本試験の結果、HLA−A0201遺伝子導入マウス由来の脾細胞において配列番号:2で表されるペプチドに特異的なIFNγの産生が確認された。また、
図9において式(7)で表される化合物の投与によって誘導された配列番号:2で表されるペプチドに特異的なIFNγ産生細胞の数は、配列番号:2で表されるペプチドの投与によって誘導されたペプチド特異的なIFNγ産生細胞の数より多かった。
さらに、
図10の黒棒はHLA−A0201遺伝子導入マウス由来の脾細胞を配列番号:23で表されるペプチドをパルスしながら培養した結果を示し、白棒は非パルスで培養した結果を示す。即ち、黒棒と白棒の値の差がペプチド反応性細胞の数を示し、式(7)で表される化合物の投与によってマウス生体内において配列番号:23で表されるヘルパーペプチド反応性の細胞が誘導され、配列番号:2で表されるペプチドの投与によってマウス生体内において配列番号:23で表されるペプチド反応性の細胞が誘導されなかったことを示す。
図10において白棒の値は認められていない。このことは目的のペプチドをパルスしない場合にはHLA−A0201遺伝子導入マウスの脾細胞は全く反応しなかったことを示している。
【0443】
これより、式(7)で表される化合物は配列番号:2で表されるペプチドに特異的なCTLと、配列番号:23で表されるヘルパーペプチドに反応性の細胞を誘導し得ることが明らかとなった。式(7)で表される化合物は、マウス生体内でジスルフィド結合の切断とERAP−1による適切なトリミングを受けて、配列番号:2および23で表されるペプチドへ実際に生成されることが強く示唆された。式(7)で表される化合物から生成された配列番号:23で表されるヘルパーペプチドに反応性の細胞が誘導されたことによって、配列番号:2で表されるペプチドに特異的なCTLの誘導が増強され、配列番号:2で表される化合物を投与した場合と比較して多くの配列番号:2で表されるペプチドに特異的なIFNγ産生細胞が認められたものと推察された。
すなわち、本発明の化合物の一例である式(7)で表される化合物は、異なる2種のペプチドを式(1)に示されたようなジスルフィド結合を介して複合化されたコンジュゲート体であり、実際にin vivoにおいてCTLおよびヘルパーペプチド反応性細胞を誘導できるWT1癌抗原ペプチドコンジュゲートワクチンであることが、明らかとなった。
【0444】
試験例9
HLA−A0201遺伝子導入マウスを用いた、in vivoでのCTL誘導能の評価
【0445】
実施例10で合成した式(9)で表される化合物のCTL誘導能を、HLA−A0201遺伝子導入マウスを用いたin vivoCTL誘導試験によって評価した。式(9):
【0446】
【化57】
【0447】
(式中、CとCの間の結合はジスルフィド結合を表す。)
で表される化合物は、前記の式(1)に照らすと、特に癌抗原ペプチドAがALLPAVPSL(配列番号:5)であり且つ癌抗原ペプチドCがCNKRYFKLSHLQMHSRKHG(配列番号:24)である化合物である。ALLPAVPSL(配列番号:5)はHLA−A0201およびHLA−A2402拘束性WT1ペプチドであり、CNKRYFKLSHLQMHSRKHG(配列番号:24)はMHCクラスII拘束性WT1ペプチド(すなわちヘルパーペプチド)である。
【0448】
HLA−A0201遺伝子導入マウスについては、試験例2、5に記したとおりである。
【0449】
式(9)で表される化合物の投与により、目的のペプチド(配列番号:5)に対するCTLおよびヘルパーペプチド(配列番号:24)反応性の細胞が誘導されるか否かは、式(9)で表される化合物を投与した上記マウス由来の脾細胞をペプチド(配列番号:5、24)で再刺激を行った場合にIFNγを産生するか測定することで判断した。また、式(9)で表される化合物を投与した上記マウス由来の脾細胞と、配列番号:5で表される化合物を投与した上記マウス由来の脾細胞を、ペプチド(配列番号:5)で再刺激を行った場合のIFNγ産生細胞数を比較した。
【0450】
具体的には、配列番号:5で表されるペプチドを注射用水で6mg/mLに溶解したのち、等量の不完全フロイントアジュバント(IFA)と混合しエマルション化させた。エマルション化させたペプチドを、マウスの尾根部皮内に150μg/siteで2箇所投与した。式(9)で表される化合物を注射用水で23.6mg/mLに溶解したのち、等量の不完全フロイントアジュバント(IFA)と混合しエマルション化させた。エマルション化させた化合物を、マウスの尾根部皮内に590μg/siteで2箇所投与した。式(9)で表される化合物のマウス1匹あたりの投与量に含まれる配列番号:5のペプチドの物質量は、配列番号:5で表されるペプチドのマウス1匹あたりの投与量に含まれる物質量と等しくなるよう調整した。1週間後に、マウスをCO
2ガスにより安楽死させたのち脾臓を摘出し、脾細胞を調製した。IFNγ産生の測定には、IFNγ ELISPOT assay kitを用いた。脾細胞調製の前日に、ELISPOTプレートを抗マウスIFNγ抗体で処理し、当日に10%FBSを含むRPMI1640培地でブロッキングした。調製したHLA−A0201遺伝子導入マウス由来の脾細胞を0.25×10
6cells/wellあるいは0.75×10
6cells/wellで、ブロッキングしたELISPOTプレートに播種した。ペプチド(配列番号:5、24)をDMSOで40mg/mLに溶解し、さらに10%FBSを含むRPMI1640培地で40μg/mLに希釈した。希釈したペプチド(配列番号:5、24)を、最終濃度10μg/mLでHLA−A0201遺伝子導入マウス由来の脾細胞に添加した。ペプチドを添加した脾細胞を、17時間、37℃、5% CO
2下で培養することで、in vitroにおけるペプチド再刺激を加えた。培養後に上清を除き、ELISPOTプレートを、添付のプロトコールに従って発色させた。発色したスポット数は、ImmunoSpot Analyzer(C.T.L.社製)によって測定した。
【0451】
HLA−A0201遺伝子導入マウスを用いたIFNγ ELISPOT assayの結果を
図11および12に示した。
図11および12において、縦軸は播種細胞数中に反応した細胞数を、横軸はマウスに投与した化合物またはペプチドを示す。
図11の黒棒はHLA−A0201遺伝子導入マウス由来の脾細胞を配列番号:5で表されるペプチドをパルスしながら培養した結果を示し、白棒は非パルスで培養した結果を示す。即ち、黒棒と白棒の値の差がペプチド特異的CTLの数を示し、配列番号:5で表されるペプチドまたは式(9)で表される化合物の投与によってマウス生体内において配列番号:5で表されるペプチドに特異的なCTLが誘導されたことを示す。
図11において白棒の値は認められていない。このことは目的のペプチドをパルスしない場合にはHLA−A0201遺伝子導入マウスの脾細胞は全く反応しなかったことを示している。本試験の結果、HLA−A0201遺伝子導入マウス由来の脾細胞において配列番号:5で表されるペプチドに特異的なIFNγの産生が確認された。また、
図11において式(9)で表される化合物の投与によって誘導された配列番号:5で表されるペプチドに特異的なIFNγ産生細胞の数は、配列番号:5で表されるペプチドの投与によって誘導されたペプチド特異的なIFNγ産生細胞の数より多かった。
さらに、
図12の黒棒はHLA−A0201遺伝子導入マウス由来の脾細胞を配列番号:24で表されるペプチドをパルスしながら培養した結果を示し、白棒は非パルスで培養した結果を示す。即ち、黒棒と白棒の値の差がペプチド反応性細胞の数を示し、式(9)で表される化合物の投与によってマウス生体内において配列番号:24で表されるヘルパーペプチド反応性の細胞が誘導され、配列番号:5で表されるペプチドの投与によってマウス生体内において配列番号:24で表されるペプチド反応性の細胞が誘導されなかったことを示す。
図12において白棒の値はほとんど認められていない。このことは目的のペプチドをパルスしない場合にはHLA−A0201遺伝子導入マウスの脾細胞は反応しなかったことを示している。
【0452】
これより、式(9)で表される化合物は配列番号:5で表されるペプチドに特異的なCTLと、配列番号:24で表されるヘルパーペプチドに反応性の細胞を誘導し得ることが明らかとなった。式(9)で表される化合物は、マウス生体内でジスルフィド結合の切断とERAP−1による適切なトリミングを受けて、配列番号:5および24で表されるペプチドへ実際に生成されることが強く示唆された。式(9)で表される化合物から生成された配列番号:24で表されるヘルパーペプチドに反応性の細胞が誘導されたことによって、配列番号:5で表されるペプチドに特異的なCTLの誘導が増強され、配列番号:5で表される化合物を投与した場合と比較して多くの配列番号:5で表されるペプチドに特異的なIFNγ産生細胞が認められたものと推察された。
すなわち、本発明の化合物の一例である式(9)で表される化合物は、異なる2種のペプチドを式(1)に示されたようなジスルフィド結合を介して複合化されたコンジュゲート体であり、実際にin vivoにおいてCTLおよびヘルパーペプチド反応性細胞を誘導できるWT1癌抗原ペプチドコンジュゲートワクチンであることが、明らかとなった。
【0453】
比較例1
HLA−A0201遺伝子導入マウスおよびHLA−A2402遺伝子導入マウスを用いた、in vivoでのCTL誘導能の評価
【0454】
実施例1で合成した式(5)で表される化合物、および、参考例8および9で合成した配列番号:238および239で表されるペプチドのCTL誘導能を、HLA−A0201遺伝子導入マウスおよびHLA−A2402遺伝子導入マウスを用いたin vivoCTL誘導試験によって評価した。式(5):
【0455】
【化58】
【0456】
(式中、CとCの間の結合はジスルフィド結合を表す。)
で表される化合物については、試験例2に記したとおりである。配列番号:238および239で表されるペプチドは、HLA−A0201拘束性WT1ペプチドであるRMFPNAPYL(配列番号:2)およびHLA−A2402拘束性WT1ペプチドであるCYTWNQMNL(配列番号:4)をアミド結合で連結した長鎖ペプチドである。
【0457】
HLA−A0201遺伝子導入マウスおよびHLA−A2402遺伝子導入マウスについては、試験例2に記したとおりである。
【0458】
式(5)で表される化合物および配列番号:238、239で表されるペプチドの投与により、目的のペプチド(配列番号:2、4)に対するCTLが誘導されるか否かは、式(5)で表される化合物および配列番号:238、239で表されるペプチドを投与した上記マウス由来の脾細胞をペプチド(配列番号:2、4)で再刺激を行った場合にIFNγを産生するか測定することで判断した。
【0459】
具体的には、式(5)で表される化合物および配列番号:238、239で表されるペプチドをそれぞれジメチルスルホキシド(DMSO)で40mg/mLに溶解し、さらに注射用水で5mg/mLに希釈したのち、等量の不完全フロイントアジュバント(IFA)と混合しエマルション化させた。エマルション化させた化合物を、マウスの尾根部皮内に250μg/siteで4箇所投与した。1週間後に、マウスをCO
2ガスにより安楽死させたのち脾臓を摘出し、脾細胞を調製した。IFNγ産生の測定には、IFNγ ELISPOT assay kitを用いた。脾細胞調製の前日に、ELISPOTプレートを抗マウスIFNγ抗体で処理し、当日に10%FBSを含むRPMI1640培地でブロッキングした。調製したHLA−A0201遺伝子導入マウス由来の脾細胞を0.25×10
6cells/wellで、HLA−A2402遺伝子導入マウス由来の脾細胞を1×10
6cells/wellで、ブロッキングしたELISPOTプレートに播種した。ペプチド(配列番号:2、4)をDMSOで40mg/mLに溶解し、さらに10%FBSを含むRPMI1640培地で40μg/mLに希釈した。希釈したペプチド(配列番号:2)を、最終濃度10μg/mLでHLA−A0201遺伝子導入マウス由来の脾細胞に添加した。また、希釈したペプチド(配列番号:4)を、最終濃度10μg/mLでHLA−A2402遺伝子導入マウス由来の脾細胞に添加した。ペプチドを添加した脾細胞を、18時間、37℃、5% CO
2下で培養することで、in vitroにおけるペプチド再刺激を加えた。培養後に上清を除き、ELISPOTプレートを、添付のプロトコールに従って発色させた。発色したスポット数は、ImmunoSpot Analyzer(C.T.L.社製)によって測定した。
【0460】
HLA−A0201遺伝子導入マウスを用いたIFNγ ELISPOT assayの結果を
図13に、HLA−A2402遺伝子導入マウスを用いたIFNγ ELISPOT assayの結果を
図14に示した。
各図において、縦軸は播種細胞数中に反応した細胞数を示す。
図13の黒棒および白棒はHLA−A0201遺伝子導入マウス由来の脾細胞を配列番号:2で表される目的のペプチドの存在下および非存在下で培養した結果を、
図14の黒棒および白棒はHLA−A2402遺伝子導入マウス由来の脾細胞を配列番号:4で表される目的のペプチドの存在下および非存在下で培養した結果を示す。即ち、黒棒と白棒の値の差が、式(5)で表される化合物および配列番号:238、239で表されるペプチドの投与によってマウス生体内で誘導された目的の各ペプチド特異的CTLの数を示す。
各図中において白棒の値は認められていない。このことは目的のペプチド非存在下ではそれぞれの遺伝子導入マウスの脾細胞は全く反応しなかったことを示している。本試験の結果、式(5)で表される化合物を投与したHLA−A0201遺伝子導入マウス由来の脾細胞においては配列番号:2で表される目的のペプチド特異的なIFNγ産生が、式(5)で表される化合物を投与したHLA−A2402遺伝子導入マウス由来の脾細胞においては配列番号:4で表される目的のペプチド特異的なIFNγ産生がそれぞれ確認された。一方で、配列番号238で表されるペプチドを投与したHLA−A0201遺伝子導入マウス由来の脾細胞においては配列番号:2で表される目的のペプチド特異的なIFNγ産生が確認されたものの、式(5)で表される化合物を投与したHLA−A2402遺伝子導入マウス由来の脾細胞と比較するとその数は非常に少なかった。配列番号238で表されるペプチドを投与したHLA−A2402遺伝子導入マウス由来の脾細胞においては配列番号:4で表される目的のペプチド特異的なIFNγ産生が確認された。配列番号239で表されるペプチドを投与したHLA−A0201遺伝子導入マウス由来の脾細胞においては配列番号:2で表される目的のペプチド特異的なIFNγ産生は認められたものの、式(5)で表される化合物を投与したHLA−A0201遺伝子導入マウス由来の脾細胞と比較するとその数は少なかった。配列番号239で表されるペプチドを投与したHLA−A2402遺伝子導入マウス由来の脾細胞においては配列番号:4で表される目的のペプチド特異的なIFNγ産生が確認された。
【0461】
これより、本発明の式(5)で表される化合物は配列番号:2で表されるペプチド特異的なCTLおよび配列番号:4で表されるペプチド特異的なCTLを双方とも効率よく誘導し得ることが明らかとなった。一方で、配列番号:238、239で表される長鎖ペプチドは、配列番号:2で表されるペプチド特異的なCTLおよび配列番号:4で表されるペプチド特異的なCTLを双方とも効率よく誘導することはできなかった。
【0462】
比較例2
HLA−A0201遺伝子導入マウスおよびHLA−A2402遺伝子導入マウスを用いた、in vivoでのCTL誘導能の評価
【0463】
実施例1で合成した式(5)で表される化合物、および、参考例10および11で合成した配列番号:240および241で表されるペプチドのCTL誘導能を、HLA−A0201遺伝子導入マウスおよびHLA−A2402遺伝子導入マウスを用いたin vivoCTL誘導試験によって評価した。式(5):
【0464】
【化59】
【0465】
(式中、CとCの間の結合はジスルフィド結合を表す。)
で表される化合物については、試験例2に記したとおりである。配列番号:240および241で表されるペプチドは、HLA−A0201拘束性WT1ペプチドであるRMFPNAPYL(配列番号:2)およびHLA−A2402拘束性WT1ペプチドであるCYTWNQMNL(配列番号:4)を、ペプチドスペーサーとして6個のグリシンを介してアミド結合で連結した長鎖ペプチドである。
【0466】
HLA−A0201遺伝子導入マウスおよびHLA−A2402遺伝子導入マウスについては、試験例2に記したとおりである。
【0467】
式(5)で表される化合物および配列番号:240、241で表されるペプチドの投与により、目的のペプチド(配列番号:2、4)に対するCTLが誘導されるか否かは、式(5)で表される化合物および配列番号:240、241で表されるペプチドを投与した上記マウス由来の脾細胞をペプチド(配列番号:2、4)で再刺激を行った場合にIFNγを産生するか測定することで判断した。
【0468】
具体的には、式(5)で表される化合物をジメチルスルホキシド(DMSO)で80mg/mLに溶解し、さらに注射用水で10mg/mLに希釈したのち、等量の不完全フロイントアジュバント(IFA)と混合しエマルション化させた。エマルション化させた化合物を、マウスの尾根部皮内に500μg/siteで2箇所投与した。また、配列番号:240、241で表されるペプチドをジメチルスルホキシド(DMSO)で80mg/mLに溶解し、さらに注射用水で11mg/mLに希釈したのち、等量の不完全フロイントアジュバント(IFA)と混合しエマルション化させた。エマルション化させた化合物を、マウスの尾根部皮内に550μg/siteで2箇所投与した。1週間後に、マウスをCO
2ガスにより安楽死させたのち脾臓を摘出し、脾細胞を調製した。IFNγ産生の測定には、IFNγ ELISPOT assay kitを用いた。脾細胞調製の前日に、ELISPOTプレートを抗マウスIFNγ抗体で処理し、当日に10%FBSを含むRPMI1640培地でブロッキングした。調製したHLA−A0201遺伝子導入マウス由来の脾細胞を0.25×10
6cells/wellで、HLA−A2402遺伝子導入マウス由来の脾細胞を1.5×10
6cells/wellで、ブロッキングしたELISPOTプレートに播種した。ペプチド(配列番号:2、4)をDMSOで40mg/mLに溶解し、さらに10%FBSを含むRPMI1640培地で40μg/mLに希釈した。希釈したペプチド(配列番号:2)を、最終濃度10μg/mLでHLA−A0201遺伝子導入マウス由来の脾細胞に添加した。また、希釈したペプチド(配列番号:4)を、最終濃度10μg/mLでHLA−A2402遺伝子導入マウス由来の脾細胞に添加した。ペプチドを添加した脾細胞を、17時間、37℃、5% CO
2下で培養することで、in vitroにおけるペプチド再刺激を加えた。培養後に上清を除き、ELISPOTプレートを、添付のプロトコールに従って発色させた。発色したスポット数は、ImmunoSpot Analyzer(C.T.L.社製)によって測定した。
【0469】
HLA−A0201遺伝子導入マウスを用いたIFNγ ELISPOT assayの結果を
図15に、HLA−A2402遺伝子導入マウスを用いたIFNγ ELISPOT assayの結果を
図16に示した。
各図において、縦軸は播種細胞数中に反応した細胞数を示す。
図15の黒棒および白棒はHLA−A0201遺伝子導入マウス由来の脾細胞を配列番号:2で表される目的のペプチドの存在下および非存在下で培養した結果を、
図16の黒棒および白棒はHLA−A2402遺伝子導入マウス由来の脾細胞を配列番号:4で表される目的のペプチドの存在下および非存在下で培養した結果を示す。即ち、黒棒と白棒の値の差が、式(5)で表される化合物および配列番号:240、241で表されるペプチドの投与によってマウス生体内で誘導された目的の各ペプチド特異的CTLの数を示す。
各図中において白棒の値は認められていない。このことは目的のペプチド非存在下ではそれぞれの遺伝子導入マウスの脾細胞は反応しなかったことを示している。本試験の結果、式(5)で表される化合物を投与したHLA−A0201遺伝子導入マウス由来の脾細胞においては配列番号:2で表される目的のペプチド特異的なIFNγ産生が、式(5)で表される化合物を投与したHLA−A2402遺伝子導入マウス由来の脾細胞においては配列番号:4で表される目的のペプチド特異的なIFNγ産生がそれぞれ確認された。一方で、配列番号240で表されるペプチドを投与したHLA−A0201遺伝子導入マウス由来の脾細胞においては配列番号:2で表される目的のペプチド特異的なIFNγ産生は極めて少なかったが、配列番号240で表される化合物を投与したHLA−A2402遺伝子導入マウス由来の脾細胞においては配列番号:4で表される目的のペプチド特異的なIFNγ産生が確認された。また、配列番号241で表されるペプチドを投与したHLA−A0201遺伝子導入マウス由来の脾細胞においては配列番号:2で表される目的のペプチド特異的なIFNγ産生は極めて少なく、配列番号241で表されるペプチドを投与したHLA−A2402遺伝子導入マウス由来の脾細胞においては配列番号:4で表される目的のペプチド特異的なIFNγ産生が確認されたものの、式(5)で表される化合物を投与したHLA−A2402遺伝子導入マウス由来の脾細胞と比較するとその数は非常に少なかった。
【0470】
これより、本発明の式(5)で表される化合物は配列番号:2で表されるペプチド特異的なCTLおよび配列番号:4で表されるペプチド特異的なCTLを双方とも効率よく誘導し得ることが明らかとなった。一方で、配列番号:240、241で表されるペプチドスペーサーを含む長鎖ペプチドは、配列番号:2で表されるペプチド特異的なCTLおよび配列番号:4で表されるペプチド特異的なCTLを双方とも効率よく誘導することはできなかった。
【0471】
試験例10
参考例3にて合成したペプチドならびに実施例6および9にて合成した化合物(コンジュゲート体)について、試験例3と同様の方法にて溶解度測定を行い、各溶解度を表66に示した。
【0472】
【表66】
【0473】
実施例11〜12
実施例2と同様の方法で、配列番号242〜243のアミノ酸配列からなるペプチドを合成した。表67に質量分析結果を示した。表67に記載のペプチドは本発明の化合物である。
【0474】
【表67】
【0475】
実施例13
実施例1と同様の方法で、式10で表される各化合物(コンジュゲート体)を合成した。表68に質量分析結果を示した。(式中、CとCの間の結合はジスルフィド結合を表す。)
【0476】
【表68】
【0477】
参考例12
実施例1と同様の方法で、式11で表される各化合物(コンジュゲート体)を合成した。表69に質量分析結果を示した。(式中、CとCの間の結合はジスルフィド結合を表す。)表に記載のペプチドは本発明の化合物ではないことから参考例として記載した。
【0478】
【表69】
【0479】
実施例14
式(12)
【0480】
【化60】
【0481】
(式中、CとCの間の結合はジスルフィド結合を表す。)
で表される化合物の合成
【0482】
工程1.Fmoc-Cys(Mmt)-Ala-SBnの合成(Mmtは4-Methoxytrityl)
(Fmoc−C(Mmt)A−SBnの合成)
Fmoc−Cys(Mmt)−OH(4.80g)、N,N−ジイソプロピルエチルアミン(2.56mL)、ヘキサフルオロリン酸(ベンゾトリアゾール-1-イルオキシ)トリピロリジノホスホニウム(4.50g)及び公知の方法(例えばJournal of Organic Chemistry, Vol. 64, No. 24 8761-8769)にて合成されたH−Ala−SBnのクロロホルム(20mL)溶液を室温にて1時間撹拌した。反応液をカラムクロマトグラフィー(溶出溶媒はヘキサン/酢酸エチル)にて精製することで目的化合物であるFmoc−C(Mmt)A−SBn(2.80g)を得た。
NMR:
1H NMR (CDCl
3)δ 7.72 (t, J = 7.6 Hz, 2H), 7.54 (d, J = 7.2 Hz, 1H), 7.38-7.34 (m, 7H), 7.29-7.25 (m, 6H), 7.23-7.15 (m, 7H), 6.76 (d, J = 8.8 Hz, 2H), 6.15 (d, J = 8.0 Hz, 1H), 4.95 (d, J = 7.2 Hz, 1H), 4.57 (quin, J = 7.6 Hz, 1H), 4.35 (d, J = 6.8 Hz, 2H) 4.19-4.17 (m, 1H), 4.04 (s, 2H), 3.73 (s, 3H), 2.72 (dd, J = 13.2, 8.4 Hz, 1H), 2.61 (d, J = 9.6 Hz, 1H), 1.31 (d, J = 7.2 Hz, 3H).
【0483】
工程2.H-Cys(Mmt)-Ala-Cys-Tyr-Thr-Trp-Asn-Gln-Met-Asn-Leu-OHの合成
(C(Mmt)ACYTWNQMNLの合成)
工程1で得たFmoc-Cys(Mmt)-Ala-SBn(11mg)と公知の方法(例えばWO07/063903)で合成したH-Cys-Tyr-Thr-Trp-Asn-Gln-Met-Asn-Leu-OH(21mg)、N,N−ジイソプロピルエチルアミン(200μL)、3,3’,3’’−フォスファネトリルトリプロパン酸塩酸塩(1mg)、4−メルカプトフェニル酢酸(1mg)及び0.1Mリン酸ナトリウム緩衝液(pH7.5、200μL)のDMF(400μL)溶液を室温にて4時間撹拌した。反応液にジエチルアミン(200μL)を加え更に15分撹拌した。反応液を逆相HPLCにて精製することで、目的化合物であるC(Mmt)ACYTWNQMNL(7mg)を得た。
質量分析:LC−ESI/MS m/z=810.2 [M+2H]
2+ (理論値=810.5)
【0484】
工程3.(H-Cys(Mmt)-Ala-Cys-Tyr-Thr-Trp-Asn-Gln-Met-Asn-Leu-OH)(H-Cys-Arg-Met-Phe-Pro-Asn-Ala-Pro-Tyr-Leu-OH) disulfide bondの合成
〔すなわち式(13):
【0485】
【化61】
【0486】
(式中、CとCの間の結合はジスルフィド結合を表す。)
で表される化合物の合成〕
工程2で得たH-Cys(Mmt)-Ala-Cys-Tyr-Thr-Trp-Asn-Gln-Met-Asn-Leu-OH(51mg)と実施例1工程1で得た(H-Cys(Npys)-Arg-Met-Phe-Pro-Asn-Ala-Pro-Tyr-Leu-OH(43mg)のDMF(4mL)溶液を室温にて2時間撹拌した。反応液を逆相HPLCにて精製することで目的化合物である(H-Cys(Mmt)-Ala-Cys-Tyr-Thr-Trp-Asn-Gln-Met-Asn-Leu-OH)(H-Cys-Arg-Met-Phe-Pro-Asn-Ala-Pro-Tyr-Leu-OH) disulfide bond〔すなわち式(13)で示される化合物〕を39mgを得た。
質量分析:LC−ESI/MS m/z=1414.4 [M+2H]
2+ (理論値=1415.2)
【0487】
工程4.H-Cys(SPy)-Asn-Lys-Arg-Tyr-Phe-Lys-Leu-Ser-His-Leu-Gln-Met-His-Ser-Arg-Lys-OHの合成
(C(SPy)NKRYFKLSHLQMHSRKの合成)
参考例1で得たH-Cys-Asn-Lys-Arg-Tyr-Phe-Lys-Leu-Ser-His-Leu-Gln-Met-His-Ser-Arg-Lys-OH(182mg)と2,2’−ジピリジルビスルフィド(0.2Mイソプロパノール溶液、544μL)の20%w/w酢酸水(4mL)溶液を室温にて17時間撹拌した。反応液を逆相HPLCにて精製することで目的化合物であるH-Cys(SPy)-Asn-Lys-Arg-Tyr-Phe-Lys-Leu-Ser-His-Leu-Gln-Met-His-Ser-Arg-Lys-OHを177mg得た。
質量分析:LC−ESI/MS m/z=1143.5 [M+2H]
2+ (理論値=1142.9)
【0488】
工程5.式(12):
【0489】
【化62】
【0490】
(式中、CとCの間の結合はジスルフィド結合を表す。)で表される化合物の合成
工程3で得た(H-Cys(Mmt)-Ala-Cys-Tyr-Thr-Trp-Asn-Gln-Met-Asn-Leu-OH)(H-Cys-Arg-Met-Phe-Pro-Asn-Ala-Pro-Tyr-Leu-OH) disulfide bond〔すなわち式(13)で示される化合物〕(9mg)、工程4で得たH-Cys(SPy)-Asn-Lys-Arg-Tyr-Phe-Lys-Leu-Ser-His-Leu-Gln-Met-His-Ser-Arg-Lys-OH(24mg)及びトリイソプロピルシラン(10μL)のトリフルオロ酢酸(190μL)溶液を室温にて1時間撹拌した。反応液を逆相HPLCにて精製することで目的化合物である式(12)で表される化合物を5mg得た。
質量分析:LC−ESI/MS m/z=1577.2 [M+3H]
3+ (理論値=1577.9)
【0491】
実施例15〜16
実施例14と同様の方法で、式14〜15で表される各化合物(コンジュゲート体)を合成した。表70に質量分析結果を示した。(式中、CとCの間の結合はジスルフィド結合を表す。)
【0492】
【表70】
【0493】
参考例13
実施例2と同様の方法で、配列番号244のアミノ酸配列からなるペプチドを合成した。表71に質量分析結果を示した。表に記載のペプチドは本発明の化合物ではないことから参考例として記載した。
【0494】
【表71】
【0495】
試験例11
HLA−A0201遺伝子導入マウスを用いた、in vivoでのCTL誘導能の評価
【0496】
実施例13で合成した式(10)で表される化合物のCTL誘導能を、HLA−A0201遺伝子導入マウスを用いたin vivoCTL誘導試験によって評価した。式(10):
【0497】
【化63】
【0498】
(式中、CとCの間の結合はジスルフィド結合を表す。)
で表される化合物は、前記の式(1)に照らすと、特に癌抗原ペプチドAがRMFPNAPYL(配列番号:2)であり且つ癌抗原ペプチドBがWAPVLDFAPPGASAYGSL(配列番号:244)である化合物である。RMFPNAPYL(配列番号:2)はHLA−A0201拘束性WT1ペプチドであり、WAPVLDFAPPGASAYGSL(配列番号:244)はMHCクラスII拘束性WT1ペプチド(すなわちヘルパーペプチド)である。
【0499】
HLA−A0201遺伝子導入マウスについては、試験例2、5に記したとおりである。
【0500】
式(10)で表される化合物の投与により、目的のペプチド(配列番号:2)に対するCTLが誘導されるか否かは、式(10)で表される化合物を投与した上記マウス由来の脾細胞をペプチド(配列番号:2)で再刺激を行った場合にIFNγを産生するか測定することで判断した。また、ヘルパーペプチド(配列番号:244)が生体内で作用しているか否かは、式(10)で表される化合物を投与した上記マウス由来の脾細胞と、配列番号:2で表されるペプチドを投与した上記マウス由来の脾細胞を、ペプチド(配列番号:2)で再刺激を行った場合のIFNγ産生細胞数を比較することで判断した。
【0501】
具体的には、配列番号:2で表される化合物をジメチルスルホキシド(DMSO)で80mg/mLに溶解し、さらに注射用水で3mg/mLに希釈したのち、等量の不完全フロイントアジュバント(IFA)と混合しエマルション化させた。エマルション化させた化合物を、マウスの尾根部皮内に150μg/siteで2箇所投与した。また、式(10)で表される化合物をジメチルスルホキシド(DMSO)で80mg/mLに溶解し、さらに注射用水で8.5mg/mLに希釈したのち、等量の不完全フロイントアジュバント(IFA)と混合しエマルション化させた。エマルション化させた化合物を、マウスの尾根部皮内に425μg/siteで2箇所投与した。式(10)で表される化合物のマウス1匹あたりの投与量に含まれる配列番号:2のペプチドの物質量は、配列番号:2で表されるペプチドのマウス1匹あたりの投与量に含まれる物質量と等しくなるよう調整した。また、各エマルションに含まれるDMSO濃度も一定にした。1週間後に、マウスをCO
2ガスにより安楽死させたのち脾臓を摘出し、脾細胞を調製した。IFNγ産生の測定には、IFNγ ELISPOT assay kitを用いた。脾細胞調製の前日に、ELISPOTプレートを抗マウスIFNγ抗体で処理し、当日に10%FBSを含むRPMI1640培地でブロッキングした。調製したHLA−A0201遺伝子導入マウス由来の脾細胞を0.125×10
6cells/wellで、ブロッキングしたELISPOTプレートに播種した。ペプチド(配列番号:2)をDMSOで40mg/mLに溶解し、さらに10%FBSを含むRPMI1640培地で40μg/mLに希釈した。希釈したペプチド(配列番号:2)を、最終濃度10μg/mLでHLA−A0201遺伝子導入マウス由来の脾細胞に添加した。ペプチドを添加した脾細胞を、19時間、37℃、5% CO
2下で培養することで、in vitroにおけるペプチド再刺激を加えた。培養後に上清を除き、ELISPOTプレートを、添付のプロトコールに従って発色させた。発色したスポット数は、ImmunoSpot Analyzer(C.T.L.社製)によって測定した。
【0502】
HLA−A0201遺伝子導入マウスを用いたIFNγ ELISPOT assayの結果を
図17に示した。
図17において、縦軸は播種細胞数中に反応した細胞数を、横軸はマウスに投与した化合物またはペプチドを示す。
図17の黒棒はHLA−A0201遺伝子導入マウス由来の脾細胞を配列番号:2で表されるペプチドをパルスしながら培養した結果を示し、白棒は非パルスで培養した結果を示す。即ち、黒棒と白棒の値の差がペプチド特異的CTLの数を示し、配列番号:2で表されるペプチドまたは式(10)で表される化合物の投与によってマウス生体内において配列番号:2で表されるペプチドに特異的なCTLが誘導されたことを示す。
図17において白棒の値は認められていない。このことは目的のペプチドをパルスしない場合にはHLA−A0201遺伝子導入マウスの脾細胞は全く反応しなかったことを示している。本試験の結果、HLA−A0201遺伝子導入マウス由来の脾細胞において配列番号:2で表されるペプチドに特異的なIFNγの産生が確認された。また、
図17において式(10)で表される化合物の投与によって誘導された配列番号:2で表されるペプチドに特異的なIFNγ産生細胞の数は、配列番号:2で表されるペプチドの投与によって誘導されたペプチド特異的なIFNγ産生細胞の数より多かった。
【0503】
これより、式(10)で表される化合物は配列番号:2で表されるペプチドに特異的なCTLを誘導し得ることが明らかとなった。また、式(10)で表される化合物を投与した場合に配列番号:2で表されるペプチドを投与した場合と比較して配列番号:2で表されるペプチドに特異的なIFNγ産生細胞が多く認められたのは、式(10)で表される化合物から生成された配列番号:244で表されるヘルパーペプチドに反応性の細胞が誘導されたことによって、配列番号:2で表されるペプチドに特異的なCTLの誘導が増強されたためと推察された。従って、式(10)で表される化合物は、マウス生体内でジスルフィド結合の切断とERAP−1による適切なトリミングを受けて、配列番号:2および244で表されるペプチドへ実際に生成されることが強く示唆された。
すなわち、本発明の化合物の一例である式(10)で表される化合物は、異なる2種のペプチドを式(1)に示されたようなジスルフィド結合を介して複合化されたコンジュゲート体であり、実際にin vivoにおいてCTLおよびヘルパーペプチド反応性細胞を誘導できるWT1癌抗原ペプチドコンジュゲートワクチンであることが明らかとなった。
【0504】
比較例3
HLA−A0201遺伝子導入マウスを用いた、in vivoでのCTL誘導能の評価
【0505】
参考例12で合成した式(11)で表される化合物のCTL誘導能を、HLA−A0201遺伝子導入マウスを用いたin vivoCTL誘導試験によって評価した。式(11):
【0506】
【化64】
【0507】
(式中、CとCの間の結合はジスルフィド結合を表す。)
で表される化合物は、前記の式(1)に照らすと、特に癌抗原ペプチドAがRMFPNAPYL(配列番号:2)であり且つ癌抗原ペプチドCがWAPVLDFAPPGASAYGSLC(配列番号:243)である化合物である。RMFPNAPYL(配列番号:2)はHLA−A0201拘束性WT1ペプチドであり、WAPVLDFAPPGASAYGSL(配列番号:244)はMHCクラスII拘束性WT1ペプチド(すなわちヘルパーペプチド)である。
【0508】
HLA−A0201遺伝子導入マウスについては、試験例2、5に記したとおりである。
【0509】
式(11)で表される化合物の投与により、目的のペプチド(配列番号:2)に対するCTLが誘導されるか否かは、式(11)で表される化合物を投与した上記マウス由来の脾細胞をペプチド(配列番号:2)で再刺激を行った場合にIFNγを産生するか測定することで判断した。また、ヘルパーペプチド(配列番号:244)が生体内で作用しているか否かは、式(11)で表される化合物を投与した上記マウス由来の脾細胞と、配列番号:2で表されるペプチドを投与した上記マウス由来の脾細胞を、ペプチド(配列番号:2)で再刺激を行った場合のIFNγ産生細胞数を比較することで判断した。
【0510】
試験例11と同様の方法でCTL誘導試験を行った。
【0511】
HLA−A0201遺伝子導入マウスを用いたIFNγ ELISPOT assayの結果を
図18に示した。
図18において、縦軸は播種細胞数中に反応した細胞数を、横軸はマウスに投与した化合物またはペプチドを示す。
図18の黒棒はHLA−A0201遺伝子導入マウス由来の脾細胞を配列番号:2で表されるペプチドをパルスしながら培養した結果を示し、白棒は非パルスで培養した結果を示す。即ち、黒棒と白棒の値の差がペプチド特異的CTLの数を示し、配列番号:2で表されるペプチドまたは式(11)で表される化合物の投与によってマウス生体内において配列番号:2で表されるペプチドに特異的なCTLが誘導されたことを示す。
図18において白棒の値は認められていない。このことは目的のペプチドをパルスしない場合にはHLA−A0201遺伝子導入マウスの脾細胞は全く反応しなかったことを示している。本試験の結果、HLA−A0201遺伝子導入マウス由来の脾細胞において配列番号:2で表されるペプチドに特異的なIFNγの産生が確認された。一方、
図18において式(11)で表される化合物の投与では、配列番号:2で表されるペプチドの投与によって誘導された配列番号:2で表されるペプチドに特異的なIFNγ産生細胞の増加は確認されなかった。
【0512】
試験例11と比較例3の結果より、MHCクラスII拘束性WT1ペプチドとしてWAPVLDFAPPGASAYGSL(配列番号:244)を用いる場合、前記式(1)において癌抗原ペプチドBがWAPVLDFAPPGASAYGSL(配列番号:244)である方が、癌抗原ペプチドCがWAPVLDFAPPGASAYGSLC(配列番号:243)に比べ、より好ましい発明の実施形態であることが示唆された。
【0513】
試験例12
HLA−A0201遺伝子導入マウスおよびHLA−A2402遺伝子導入マウスを用いた、in vivoでのCTL誘導能の評価
【0514】
実施例14で合成した式(12)で表される化合物のCTL誘導能を、HLA−A0201遺伝子導入マウスおよびHLA−A2402遺伝子導入マウスを用いたin vivoCTL誘導試験によって評価した。式(12):
【0515】
【化65】
【0516】
(式中、CとCの間の結合はジスルフィド結合を表す。)
で表される化合物に含まれるRMFPNAPYL(配列番号:2)はHLA−A0201拘束性WT1ペプチド、CYTWNQMNL(配列番号:4)はHLA−A2402拘束性WT1ペプチドであり、CNKRYFKLSHLQMHSRK(配列番号:22)はMHCクラスII拘束性WT1ペプチド(すなわちヘルパーペプチド)である。
【0517】
HLA−A0201遺伝子導入マウスおよびHLA−A2402遺伝子導入マウスについては、試験例2、5に記したとおりである。
【0518】
式(12)で表される化合物の投与により、目的のペプチド(配列番号:2、4)に対するCTLが誘導されるか否かは、式(12)で表される化合物を投与した上記マウス由来の脾細胞をペプチド(配列番号:2、4)で再刺激を行った場合にIFNγを産生するか測定することで判断した。また、ヘルパーペプチド(配列番号:22)が生体内で作用しているか否かは、式(12)で表される化合物を投与した上記マウス由来の脾細胞と、式(5)で表される化合物を投与した上記マウス由来の脾細胞を、ペプチド(配列番号:2、4)で再刺激を行った場合のIFNγ産生細胞数を比較することで判断した。
【0519】
具体的には、式(5)で表される化合物をジメチルスルホキシド(DMSO)で80mg/mLに溶解し、さらに注射用水で3mg/mLに希釈したのち、等量のモンタナイドISA51VGと混合してエマルション化させた。エマルション化させた化合物を、マウスの尾根部皮内に150μg/siteで2箇所投与した。また、式(12)で表される化合物をジメチルスルホキシド(DMSO)で80mg/mLに溶解し、さらに注射用水で6mg/mLに希釈したのち、等量のモンタナイドISA51VGと混合してエマルション化させた。エマルション化させた化合物を、マウスの尾根部皮内に300μg/siteで2箇所投与した。式(12)で表される化合物のマウス1匹あたりの投与量に含まれる式(5)の化合物の物質量は、式(5)で表される化合物のマウス1匹あたりの投与量に含まれる物質量と等しくなるよう調整した。また、各エマルションに含まれるDMSO濃度も一定にした。1週間後に、マウスをCO
2ガスにより安楽死させたのち脾臓を摘出し、脾細胞を調製した。IFNγ産生の測定には、IFNγ ELISPOT assay kitを用いた。脾細胞調製の前日に、ELISPOTプレートを抗マウスIFNγ抗体で処理し、当日に10%FBSを含むRPMI1640培地でブロッキングした。調製したHLA−A0201遺伝子導入マウス由来の脾細胞、およびHLA−A2402遺伝子導入マウス由来の脾細胞を各々0.25×10
6cells/wellで、ブロッキングしたELISPOTプレートに播種した。ペプチド(配列番号:2、4)をDMSOで40mg/mLに溶解し、さらに10%FBSを含むRPMI1640培地で40μg/mLに希釈した。希釈したペプチド(配列番号:2)を、最終濃度10μg/mLでHLA−A0201遺伝子導入マウス由来の脾細胞に添加した。また、希釈したペプチド(配列番号:4)を、最終濃度10μg/mLでHLA−A2402遺伝子導入マウス由来の脾細胞に添加した。ペプチドを添加した脾細胞を、17時間、37℃、5% CO
2下で培養することで、in vitroにおけるペプチド再刺激を加えた。培養後に上清を除き、ELISPOTプレートを、添付のプロトコールに従って発色させた。発色したスポット数は、ImmunoSpot Analyzer(C.T.L.社製)によって測定した。
【0520】
HLA−A0201遺伝子導入マウスを用いたIFNγ ELISPOT assayの結果を
図19に、HLA−A2402遺伝子導入マウスを用いたIFNγ ELISPOT assayの結果を
図20に示した。
各図において、縦軸は播種細胞数中に反応した細胞数を示す。
図19の黒棒および白棒はHLA−A0201遺伝子導入マウス由来の脾細胞を配列番号:2で表される目的のペプチドの存在下および非存在下で培養した結果を、
図20の黒棒および白棒はHLA−A2402遺伝子導入マウス由来の脾細胞を配列番号:4で表される目的のペプチドの存在下および非存在下で培養した結果を示す。即ち、黒棒と白棒の値の差が、式(5)および式(12)で表される化合物の投与によってマウス生体内で誘導された目的の各ペプチド特異的CTLの数を示す。
各図中において白棒の値は認められていない。このことは目的のペプチド非存在下ではそれぞれの遺伝子導入マウスの脾細胞は反応しなかったことを示している。本試験の結果、式(5)および式(12)で表される化合物を投与したHLA−A0201遺伝子導入マウス由来の脾細胞においては配列番号:2で表される目的のペプチド特異的なIFNγ産生が、式(5)および式(12)で表される化合物を投与したHLA−A2402遺伝子導入マウス由来の脾細胞においては配列番号:4で表される目的のペプチド特異的なIFNγ産生がそれぞれ確認された。また、
図19において式(12)で表される化合物の投与によって誘導された配列番号:2で表されるペプチドに特異的なIFNγ産生細胞の数は、式(5)で表される化合物の投与によって誘導されたペプチド特異的なIFNγ産生細胞の数より多かった。一方、
図20において式(12)で表される化合物の投与によって誘導された配列番号:4で表されるペプチドに特異的なIFNγ産生細胞の数は、式(5)で表される化合物の投与によって誘導されたペプチド特異的なIFNγ産生細胞の数と比べて大きな差は認められなかった。
【0521】
これより、式(12)で表される化合物は配列番号:2、4で表されるペプチドに特異的なCTLを誘導し得ることが明らかとなった。また、式(12)で表される化合物を投与した場合に式(5)で表される化合物を投与した場合と比較して配列番号:2で表されるペプチドに特異的なIFNγ産生細胞が多く認められたのは、式(12)で表される化合物から生成された配列番号:22で表されるヘルパーペプチドに反応性の細胞が誘導されたことによって、配列番号:2で表されるペプチドに特異的なCTLの誘導が増強されたためと推察された。一方、式(12)で表される化合物を投与した場合と式(5)で表される化合物を投与した場合を比較して配列番号:4で表されるペプチドに特異的なIFNγ産生細胞数に大きな差が認められなかったのは、HLA−A2402遺伝子導入マウスはヒトのMHCクラスIIを発現していないことから配列番号:22で表されるヘルパーペプチドに反応性の細胞が誘導されなかったためと推察された。従って、式(12)で表される化合物は、マウス生体内でジスルフィド結合の切断とERAP−1による適切なトリミングを受けて、配列番号:2、4および22で表されるペプチドへ実際に生成されることが強く示唆された。
すなわち、本発明の化合物の一例である式(12)で表される化合物は、異なる3種のペプチドをジスルフィド結合を介して複合化されたコンジュゲート体であり、実際にin vivoにおいてCTLおよびヘルパーペプチド反応性細胞を誘導できるWT1癌抗原ペプチドコンジュゲートワクチンであることが明らかとなった。
【0522】
試験例13
HLA−A0201遺伝子導入マウスおよびHLA−A2402遺伝子導入マウスを用いた、in vivoでのCTL誘導能の評価
【0523】
実施例15で合成した式(14)で表される化合物のCTL誘導能を、HLA−A0201遺伝子導入マウスおよびHLA−A2402遺伝子導入マウスを用いたin vivoCTL誘導試験によって評価した。式(14):
【0524】
【化66】
【0525】
(式中、CとCの間の結合はジスルフィド結合を表す。)
で表される化合物に含まれるRMFPNAPYL(配列番号:2)はHLA−A0201拘束性WT1ペプチド、CYTWNQMNL(配列番号:4)はHLA−A2402拘束性WT1ペプチドであり、WAPVLDFAPPGASAYGSL(配列番号:244)はMHCクラスII拘束性WT1ペプチド(すなわちヘルパーペプチド)である。
【0526】
HLA−A0201遺伝子導入マウスおよびHLA−A2402遺伝子導入マウスについては、試験例2、5に記したとおりである。
【0527】
式(14)で表される化合物の投与により、目的のペプチド(配列番号:2、4)に対するCTLが誘導されるか否かは、式(14)で表される化合物を投与した上記マウス由来の脾細胞をペプチド(配列番号:2、4)で再刺激を行った場合にIFNγを産生するか測定することで判断した。また、ヘルパーペプチド(配列番号:244)が生体内で作用しているか否かは、式(14)で表される化合物を投与した上記マウス由来の脾細胞と、式(5)で表される化合物を投与した上記マウス由来の脾細胞を、ペプチド(配列番号:2)で再刺激を行った場合のIFNγ産生細胞数を比較することで判断した。
【0528】
試験例12と同様の方法でCTL誘導試験を行った。ただし、式(14)で表される化合物はジメチルスルホキシド(DMSO)で80mg/mLに溶解し、さらに注射用水で5.6mg/mLに希釈したのち、等量のモンタナイドISA51VGと混合してエマルション化させた。エマルション化させた化合物を、マウスの尾根部皮内に280μg/siteで2箇所投与した。
【0529】
HLA−A0201遺伝子導入マウスを用いたIFNγ ELISPOT assayの結果を
図21に、HLA−A2402遺伝子導入マウスを用いたIFNγ ELISPOT assayの結果を
図22に示した。
各図において、縦軸は播種細胞数中に反応した細胞数を示す。
図21の黒棒および白棒はHLA−A0201遺伝子導入マウス由来の脾細胞を配列番号:2で表される目的のペプチドの存在下および非存在下で培養した結果を、
図22の黒棒および白棒はHLA−A2402遺伝子導入マウス由来の脾細胞を配列番号:4で表される目的のペプチドの存在下および非存在下で培養した結果を示す。即ち、黒棒と白棒の値の差が、式(5)および式(14)で表される化合物の投与によってマウス生体内で誘導された目的の各ペプチド特異的CTLの数を示す。
各図中において白棒の値は認められていない。このことは目的のペプチド非存在下ではそれぞれの遺伝子導入マウスの脾細胞は反応しなかったことを示している。本試験の結果、式(5)および式(14)で表される化合物を投与したHLA−A0201遺伝子導入マウス由来の脾細胞においては配列番号:2で表される目的のペプチド特異的なIFNγ産生が、式(5)および式(14)で表される化合物を投与したHLA−A2402遺伝子導入マウス由来の脾細胞においては配列番号:4で表される目的のペプチド特異的なIFNγ産生がそれぞれ確認された。また、
図21、22において式(14)で表される化合物の投与によって誘導された配列番号:2、4で表されるペプチドに特異的なIFNγ産生細胞の数は、式(5)で表される化合物の投与によって誘導されたペプチド特異的なIFNγ産生細胞の数より多かった。
【0530】
これより、式(14)で表される化合物は配列番号:2、4で表されるペプチドに特異的なCTLを誘導し得ることが明らかとなった。また、式(14)で表される化合物を投与した場合に式(5)で表される化合物を投与した場合と比較して配列番号:2で表されるペプチドに特異的なIFNγ産生細胞が多く認められたのは、式(14)で表される化合物から生成された配列番号:244で表されるヘルパーペプチドに反応性の細胞が誘導されたことによって、配列番号:2で表されるペプチドに特異的なCTLの誘導が増強されたためと推察された。一方、式(14)で表される化合物を投与した場合に式(5)で表される化合物を投与した場合と比較して配列番号:4で表されるペプチドに特異的なIFNγ産生細胞が多く認められたのは、HLA−A2402遺伝子導入マウスで発現するマウスMHCクラスIIに配列番号:244で表されるペプチドが結合し、ヘルパーペプチドに反応性の細胞が誘導されたことによって、配列番号:4で表されるペプチドに特異的なCTLの誘導が増強されたためと推察された。従って、式(14)で表される化合物は、マウス生体内でジスルフィド結合の切断とERAP−1による適切なトリミングを受けて、配列番号:2、4および244で表されるペプチドへ実際に生成されることが強く示唆された。
すなわち、本発明の化合物の一例である式(14)で表される化合物は、異なる3種のペプチドをジスルフィド結合を介して複合化されたコンジュゲート体であり、実際にin vivoにおいてCTLおよびヘルパーペプチド反応性細胞を誘導できるWT1癌抗原ペプチドコンジュゲートワクチンであることが明らかとなった。
【0531】
試験例14
HLA−A0201遺伝子導入マウスを用いた、in vivoでのCTL誘導能の評価
【0532】
実施例1で合成した式(5)で表される化合物と参考例1で合成した配列番号:22で表されるペプチドを混合したカクテルワクチンのCTL誘導能を、HLA−A0201遺伝子導入マウスを用いたin vivoCTL誘導試験によって評価した。式(5):
【0533】
【化67】
【0534】
(式中、CとCの間の結合はジスルフィド結合を表す。)
で表される化合物に含まれるRMFPNAPYL(配列番号:2)はHLA−A0201拘束性WT1ペプチド、CYTWNQMNL(配列番号:4)はHLA−A2402拘束性WT1ペプチドであり、CNKRYFKLSHLQMHSRK(配列番号:22)はMHCクラスII拘束性WT1ペプチド(すなわちヘルパーペプチド)である。
【0535】
HLA−A0201遺伝子導入マウスについては、試験例2、5に記したとおりである。
【0536】
式(5)で表される化合物の投与により、目的のペプチド(配列番号:2)に対するCTLが誘導されるか否かは、式(5)で表される化合物を投与した上記マウス由来の脾細胞をペプチド(配列番号:2)で再刺激を行った場合にIFNγを産生するか測定することで判断した。また、式(5)と混合したヘルパーペプチド(配列番号:22)が生体内で作用しているか否かは、式(5)で表される化合物を単独投与した上記マウス由来の脾細胞と、式(5)で表される化合物と配列番号:22で表されるペプチドのカクテルワクチンを投与した上記マウス由来の脾細胞を、ペプチド(配列番号:2)で再刺激を行った場合のIFNγ産生細胞数を比較することで判断した。
【0537】
具体的には、式(5)で表される化合物をジメチルスルホキシド(DMSO)で80mg/mLに溶解し、さらに注射用水で3mg/mLに希釈したのち、等量のモンタナイドISA51VGと混合してエマルション化させた。エマルション化させた化合物を、マウスの尾根部皮内に150μg/siteで2箇所投与した。また、式(5)で表される化合物と配列番号:22で表されるペプチドをジメチルスルホキシド(DMSO)で80mg/mLに溶解後、注射用水で希釈後の濃度が式(5)で表される化合物が3mg/mL、配列番号:22で表されるペプチドが2.7mg/mLになるよう混合した。この希釈液を等量のモンタナイドISA51VGと混合してエマルション化させた。この式(5)で表される化合物が150μg/site、配列番号:22で表されるペプチドが137μg/site含まれるカクテルワクチンをマウスの尾根部皮内に2箇所投与した。各エマルションに含まれるDMSO濃度は一定にした。1週間後に、マウスをCO
2ガスにより安楽死させたのち脾臓を摘出し、脾細胞を調製した。IFNγ産生の測定には、IFNγ ELISPOT assay kitを用いた。脾細胞調製の前日に、ELISPOTプレートを抗マウスIFNγ抗体で処理し、当日に10%FBSを含むRPMI1640培地でブロッキングした。調製したHLA−A0201遺伝子導入マウス由来の脾細胞を0.25×10
6cells/wellで、ブロッキングしたELISPOTプレートに播種した。ペプチド(配列番号:2)をDMSOで40mg/mLに溶解し、さらに10%FBSを含むRPMI1640培地で40μg/mLに希釈した。希釈したペプチド(配列番号:2)を、最終濃度10μg/mLでHLA−A0201遺伝子導入マウス由来の脾細胞に添加した。ペプチドを添加した脾細胞を、17時間、37℃、5% CO
2下で培養することで、in vitroにおけるペプチド再刺激を加えた。培養後に上清を除き、ELISPOTプレートを、添付のプロトコールに従って発色させた。発色したスポット数は、ImmunoSpot Analyzer(C.T.L.社製)によって測定した。
【0538】
HLA−A0201遺伝子導入マウスを用いたIFNγ ELISPOT assayの結果を
図23に示した。
図23において、縦軸は播種細胞数中に反応した細胞数を示す。
図23の黒棒および白棒はHLA−A0201遺伝子導入マウス由来の脾細胞を配列番号:2で表される目的のペプチドの存在下および非存在下で培養した結果を示す。即ち、黒棒と白棒の値の差が、式(5)で表される化合物およびヘルパーペプチド(配列番号:22)を含むカクテルワクチンの投与によってマウス生体内で誘導された目的の各ペプチド特異的CTLの数を示す。
図23において白棒の値は認められていない。このことは目的のペプチド非存在下ではそれぞれの遺伝子導入マウスの脾細胞は反応しなかったことを示している。本試験の結果、式(5)で表される化合物を単独投与、およびヘルパーペプチド(配列番号:22)を含むカクテルワクチンを投与したHLA−A0201遺伝子導入マウス由来の脾細胞においては配列番号:2で表される目的のペプチド特異的なIFNγ産生が確認された。また、
図23においてヘルパーペプチド(配列番号:22)を含むカクテルワクチンの投与によって誘導された配列番号:2で表されるペプチドに特異的なIFNγ産生細胞の数は、式(5)で表される化合物の単独投与によって誘導されたペプチド特異的なIFNγ産生細胞の数より多かった。
【0539】
これより、式(5)で表される化合物と配列番号:22で表されるペプチドを混合したカクテルワクチンは配列番号:2で表されるペプチドに特異的なCTLを誘導し得ることが明らかとなった。また式(5)で表される化合物を単独投与した場合と比較してカクテルワクチンを投与した場合に配列番号:2で表されるペプチドに特異的なIFNγ産生細胞が多く認められたのは、カクテルワクチンに含まれる配列番号:22で表されるヘルパーペプチドに反応性の細胞が誘導されたことによって、配列番号:2で表されるペプチドに特異的なCTLの誘導が増強されたためと推察された。従って、式(5)で表される化合物とヘルパーペプチドを含むカクテルワクチンは式(5)で表される化合物の単独投与と比べて、マウス生体内で強くCTLを誘導することができることが明らかとなった。
【0540】
試験例15
HLA−A0201遺伝子導入マウスを用いた、in vivoでのCTL誘導能の評価
【0541】
実施例1で合成した式(5)で表される化合物と参考例13で合成した配列番号:244で表されるペプチドを混合したカクテルワクチンのCTL誘導能を、HLA−A0201遺伝子導入マウスを用いたin vivoCTL誘導試験によって評価した。式(5):
【0542】
【化68】
【0543】
(式中、CとCの間の結合はジスルフィド結合を表す。)
で表される化合物に含まれるRMFPNAPYL(配列番号:2)はHLA−A0201拘束性WT1ペプチド、CYTWNQMNL(配列番号:4)はHLA−A2402拘束性WT1ペプチドであり、WAPVLDFAPPGASAYGSL(配列番号:244)はMHCクラスII拘束性WT1ペプチド(すなわちヘルパーペプチド)である。
【0544】
HLA−A0201遺伝子導入マウスについては、試験例2、5に記したとおりである。
【0545】
式(5)で表される化合物の投与により、目的のペプチド(配列番号:2)に対するCTLが誘導されるか否かは、式(5)で表される化合物を投与した上記マウス由来の脾細胞をペプチド(配列番号:2)で再刺激を行った場合にIFNγを産生するか測定することで判断した。また、式(5)と混合したヘルパーペプチド(配列番号:244)が生体内で作用しているか否かは、式(5)で表される化合物を単独投与した上記マウス由来の脾細胞と、式(5)で表される化合物と配列番号:244で表されるペプチドのカクテルワクチンを投与した上記マウス由来の脾細胞を、ペプチド(配列番号:2)で再刺激を行った場合のIFNγ産生細胞数を比較することで判断した。
【0546】
試験例14と同様の方法でCTL誘導試験を行った。ただし、カクテルワクチンは式(5)で表される化合物と配列番号:244で表されるペプチドをジメチルスルホキシド(DMSO)で80mg/mLに溶解後、注射用水で希釈後の濃度が式(5)で表される化合物が3mg/mL、配列番号:244で表されるペプチドが2.3mg/mLになるよう混合した。この希釈液を等量のモンタナイドISA51VGと混合してエマルション化させた。この式(5)で表される化合物が150μg/site、配列番号:244で表されるペプチドが115μg/site含まれるカクテルワクチンをマウスの尾根部皮内に2箇所投与した。
【0547】
HLA−A0201遺伝子導入マウスを用いたIFNγ ELISPOT assayの結果を
図24に示した。
図24において、縦軸は播種細胞数中に反応した細胞数を示す。
図24の黒棒および白棒はHLA−A0201遺伝子導入マウス由来の脾細胞を配列番号:2で表される目的のペプチドの存在下および非存在下で培養した結果を示す。即ち、黒棒と白棒の値の差が、式(5)で表される化合物およびヘルパーペプチド(配列番号:244)を含むカクテルワクチンの投与によってマウス生体内で誘導された目的の各ペプチド特異的CTLの数を示す。
図24において白棒の値は認められていない。このことは目的のペプチド非存在下ではそれぞれの遺伝子導入マウスの脾細胞は反応しなかったことを示している。本試験の結果、式(5)で表される化合物を単独投与、およびヘルパーペプチド(配列番号:244)を含むカクテルワクチンを投与したHLA−A0201遺伝子導入マウス由来の脾細胞においては配列番号:2で表される目的のペプチド特異的なIFNγ産生が確認された。また、
図24においてヘルパーペプチド(配列番号:244)を含むカクテルワクチンの投与によって誘導された配列番号:2で表されるペプチドに特異的なIFNγ産生細胞の数は、式(5)で表される化合物の単独投与によって誘導されたペプチド特異的なIFNγ産生細胞の数より多かった。
【0548】
これより、式(5)で表される化合物と配列番号:244で表されるペプチドを混合したカクテルワクチンは配列番号:2で表されるペプチドに特異的なCTLを誘導し得ることが明らかとなった。また式(5)で表される化合物を単独投与した場合と比較してカクテルワクチンを投与した場合に配列番号:2で表されるペプチドに特異的なIFNγ産生細胞が多く認められたのは、カクテルワクチンに含まれる配列番号:244で表されるヘルパーペプチドに反応性の細胞が誘導されたことによって、配列番号:2で表されるペプチドに特異的なCTLの誘導が増強されたためと推察された。従って、式(5)で表される化合物とヘルパーペプチドを含むカクテルワクチンは式(5)で表される化合物の単独投与と比べて、マウス生体内で強くCTLを誘導することができることが明らかとなった。
【0549】
2つのWT1抗原ペプチドを含有するワクチンを作成する場合の一例として、2つの異なるペプチドを一つの製剤にするカクテル化ワクチンがあげられる。カクテル化ワクチンを作成する際、問題となるのが混合する癌抗原ペプチドの物性が一つの問題となる。表60及び表66に示した通り、2つWT1抗原ペプチドをカクテル化する際には溶解度、すなわち物性の異なる2つのペプチドを一つの製剤にすることになる。これに対し、本発明のコンジュゲート体は2つのWT1抗原ペプチドをジスルフィド結合により結合した化合物であり、単一の溶解度すなわち物性を示した。このことは本発明のコンジュゲート体が単一の物性である上に試験例2に示すように2つのWT1抗原ペプチドに対する応答する性質を有することを示している。この点において、本発明のコンジュゲート体はカクテル化ワクチンのように2つのWT1抗原ペプチド同士の相互作用などを考慮することなく2つのWT1抗原ペプチドに対する応答を引き起こすことができる化合物であることが示された。
【0550】
試験例16
HLA−A0201遺伝子導入マウスを用いた、in vivoでのCTL誘導能の評価
【0551】
実施例1で合成した式(5)で表される化合物と参考例2で合成した配列番号:24で表されるペプチドを混合したカクテルワクチンのCTL誘導能を、HLA−A0201遺伝子導入マウスを用いたin vivoCTL誘導試験によって評価した。式(5):
【0552】
【化69】
【0553】
(式中、CとCの間の結合はジスルフィド結合を表す。)
で表される化合物に含まれるRMFPNAPYL(配列番号:2)はHLA−A0201拘束性WT1ペプチド、CYTWNQMNL(配列番号:4)はHLA−A2402拘束性WT1ペプチドであり、CNKRYFKLSHLQMHSRKTG(配列番号:24)はMHCクラスII拘束性WT1ペプチド(すなわちヘルパーペプチド)である。
【0554】
HLA−A0201遺伝子導入マウスについては、試験例2、5に記したとおりである。
【0555】
式(5)で表される化合物の投与により、目的のペプチド(配列番号:2)に対するCTLが誘導されるか否かは、式(5)で表される化合物を投与した上記マウス由来の脾細胞をペプチド(配列番号:2)で再刺激を行った場合にIFNγを産生するか測定することで判断した。また、式(5)と混合したヘルパーペプチド(配列番号:24)が生体内で作用しているか否かは、式(5)で表される化合物を単独投与した上記マウス由来の脾細胞と、式(5)で表される化合物と配列番号:24で表されるペプチドのカクテルワクチンを投与した上記マウス由来の脾細胞を、ペプチド(配列番号:2)で再刺激を行った場合のIFNγ産生細胞数を比較することで判断した。
【0556】
具体的には、式(5)で表される化合物をジメチルスルホキシド(DMSO)で80mg/mLに溶解し、さらに注射用水で3mg/mLに希釈したのち、等量のモンタナイドISA51VGと混合してエマルション化させた。エマルション化させた化合物を、マウスの尾根部皮内に150μg/siteで2箇所投与した。また、式(5)で表される化合物と配列番号:24で表されるペプチドをジメチルスルホキシド(DMSO)で80mg/mLに溶解後、注射用水で希釈後の濃度が式(5)で表される化合物が3mg/mL、配列番号:24で表されるペプチドが3.11mg/mLになるよう混合した。この希釈液を等量のモンタナイドISA51VGと混合してエマルション化させた。この式(5)で表される化合物が150μg/site、配列番号:24で表されるペプチドが156μg/site含まれるカクテルワクチンをマウスの尾根部皮内に2箇所投与した。各エマルションに含まれるDMSO濃度は一定にした。1週間後に、マウスをCO
2ガスにより安楽死させたのち脾臓を摘出し、脾細胞を調製した。IFNγ産生の測定には、IFNγ ELISPOT assay kitを用いた。脾細胞調製の前日に、ELISPOTプレートを抗マウスIFNγ抗体で処理し、当日に10%FBSを含むRPMI1640培地でブロッキングした。調製したHLA−A0201遺伝子導入マウス由来の脾細胞を0.25×10
6cells/wellで、ブロッキングしたELISPOTプレートに播種した。ペプチド(配列番号:2)をDMSOで40mg/mLに溶解し、さらに10%FBSを含むRPMI1640培地で40μg/mLに希釈した。希釈したペプチド(配列番号:2)を、最終濃度10μg/mLでHLA−A0201遺伝子導入マウス由来の脾細胞に添加した。ペプチドを添加した脾細胞を、19時間、37℃、5% CO
2下で培養することで、in vitroにおけるペプチド再刺激を加えた。培養後に上清を除き、ELISPOTプレートを、添付のプロトコールに従って発色させた。発色したスポット数は、ImmunoSpot Analyzer(C.T.L.社製)によって測定した。
【0557】
HLA−A0201遺伝子導入マウスを用いたIFNγ ELISPOT assayの結果を
図25に示した。
図25において、縦軸は播種細胞数中に反応した細胞数を示す。
図25の黒棒および白棒はHLA−A0201遺伝子導入マウス由来の脾細胞を配列番号:2で表される目的のペプチドの存在下および非存在下で培養した結果を示す。即ち、黒棒と白棒の値の差が、式(5)で表される化合物およびヘルパーペプチド(配列番号:24)を含むカクテルワクチンの投与によってマウス生体内で誘導された目的の各ペプチド特異的CTLの数を示す。
図25において白棒の値は認められていない。このことは目的のペプチド非存在下ではそれぞれの遺伝子導入マウスの脾細胞は反応しなかったことを示している。本試験の結果、式(5)で表される化合物を単独投与、およびヘルパーペプチド(配列番号:24)を含むカクテルワクチンを投与したHLA−A0201遺伝子導入マウス由来の脾細胞においては配列番号:2で表される目的のペプチド特異的なIFNγ産生が確認された。また、
図25においてヘルパーペプチド(配列番号:24)を含むカクテルワクチンの投与によって誘導された配列番号:2で表されるペプチドに特異的なIFNγ産生細胞の数は、式(5)で表される化合物の単独投与によって誘導されたペプチド特異的なIFNγ産生細胞の数より多かった。
【0558】
これより、式(5)で表される化合物と配列番号:24で表されるペプチドを混合したカクテルワクチンは配列番号:2で表されるペプチドに特異的なCTLを誘導し得ることが明らかとなった。また式(5)で表される化合物を単独投与した場合と比較してカクテルワクチンを投与した場合に配列番号:2で表されるペプチドに特異的なIFNγ産生細胞が多く認められたのは、カクテルワクチンに含まれる配列番号:24で表されるヘルパーペプチドに反応性の細胞が誘導されたことによって、配列番号:2で表されるペプチドに特異的なCTLの誘導が増強されたためと推察された。従って、式(5)で表される化合物とヘルパーペプチドを含むカクテルワクチンは式(5)で表される化合物の単独投与と比べて、マウス生体内で強くCTLを誘導できることが明らかとなった。
【0559】
試験例17
HLA−A0201遺伝子導入マウスを用いた、in vivoでのCTL誘導能の評価
【0560】
実施例11で合成した配列番号:242は配列番号:244のN末端システイン延長体である。また、配列番号:244は試験例15に示したカクテルワクチンにおいてCTL誘導の増強効果を示している。そこで本試験では実施例1で合成した式(5)で表される化合物と配列番号:242で表されるペプチドを混合したカクテルワクチンのCTL誘導能を、HLA−A0201遺伝子導入マウスを用いたin vivoCTL誘導試験によって評価した。式(5):
【0561】
【化70】
【0562】
(式中、CとCの間の結合はジスルフィド結合を表す。)
で表される化合物に含まれるRMFPNAPYL(配列番号:2)はHLA−A0201拘束性WT1ペプチド、CYTWNQMNL(配列番号:4)はHLA−A2402拘束性WT1ペプチドであり、CWAPVLDFAPPGASAYGSL(配列番号:242)に含まれるWAPVLDFAPPGASAYGSL(配列番号:244)はMHCクラスII拘束性WT1ペプチド(すなわちヘルパーペプチド)である。
【0563】
HLA−A0201遺伝子導入マウスについては、試験例2、5に記したとおりである。
【0564】
式(5)で表される化合物の投与により、目的のペプチド(配列番号:2)に対するCTLが誘導されるか否かは、式(5)で表される化合物を投与した上記マウス由来の脾細胞をペプチド(配列番号:2)で再刺激を行った場合にIFNγを産生するか測定することで判断した。また、式(5)と混合したヘルパーペプチド(配列番号:242)が生体内で作用しているか否かは、式(5)で表される化合物を単独投与した上記マウス由来の脾細胞と、式(5)で表される化合物と配列番号:242で表されるペプチドのカクテルワクチンを投与した上記マウス由来の脾細胞を、ペプチド(配列番号:2)で再刺激を行った場合のIFNγ産生細胞数を比較することで判断した。
【0565】
試験例16と同様の方法でCTL誘導試験を行った。ただし、カクテルワクチンは式(5)で表される化合物と配列番号:242で表されるペプチドをジメチルスルホキシド(DMSO)で80mg/mLに溶解後、注射用水で希釈後の濃度が式(5)で表される化合物が3mg/mL、配列番号:242で表されるペプチドが2.42mg/mLになるよう混合した。この希釈液を等量のモンタナイドISA51VGと混合してエマルション化させた。この式(5)で表される化合物が150μg/site、配列番号:242で表されるペプチドが121μg/site含まれるカクテルワクチンをマウスの尾根部皮内に2箇所投与した。
【0566】
HLA−A0201遺伝子導入マウスを用いたIFNγ ELISPOT assayの結果を
図26に示した。
図26において、縦軸は播種細胞数中に反応した細胞数を示す。
図26の黒棒および白棒はHLA−A0201遺伝子導入マウス由来の脾細胞を配列番号:2で表される目的のペプチドの存在下および非存在下で培養した結果を示す。即ち、黒棒と白棒の値の差が、式(5)で表される化合物およびヘルパーペプチド(配列番号:242)を含むカクテルワクチンの投与によってマウス生体内で誘導された目的の各ペプチド特異的CTLの数を示す。
図26において白棒の値は認められていない。このことは目的のペプチド非存在下ではそれぞれの遺伝子導入マウスの脾細胞は反応しなかったことを示している。本試験の結果、式(5)で表される化合物を単独投与、およびヘルパーペプチド(配列番号:242)を含むカクテルワクチンを投与したHLA−A0201遺伝子導入マウス由来の脾細胞においては配列番号:2で表される目的のペプチド特異的なIFNγ産生が確認された。また、
図26においてヘルパーペプチド(配列番号:242)を含むカクテルワクチンの投与によって誘導された配列番号:2で表されるペプチドに特異的なIFNγ産生細胞の数は、式(5)で表される化合物の単独投与によって誘導されたペプチド特異的なIFNγ産生細胞の数より多かった。
【0567】
これより、式(5)で表される化合物と配列番号:242で表されるペプチドを混合したカクテルワクチンは配列番号:2で表されるペプチドに特異的なCTLを誘導し得ることが明らかとなった。また式(5)で表される化合物を単独投与した場合と比較してカクテルワクチンを投与した場合に配列番号:2で表されるペプチドに特異的なIFNγ産生細胞が多く認められたのは、カクテルワクチン中の配列番号:242で表されるペプチドに含まれる配列番号:244で表されるヘルパーペプチドに反応性の細胞が誘導されたことによって、配列番号:2で表されるペプチドに特異的なCTLの誘導が増強されたためと推察された。従って、式(5)で表される化合物とヘルパーペプチドを含むカクテルワクチンは式(5)で表される化合物の単独投与と比べて、マウス生体内で強くCTLを誘導できることが明らかとなった。
【0568】
試験例18
HLA−A0201遺伝子導入マウスを用いた、in vivoでのCTL誘導能の評価
【0569】
実施例12で合成した配列番号:243は配列番号:244のC末端システイン延長体である。また、配列番号:244は試験例15に示したカクテルワクチンにおいてCTL誘導の増強効果を示している。そこで本試験では実施例1で合成した式(5)で表される化合物と配列番号:243で表されるペプチドを混合したカクテルワクチンのCTL誘導能を、HLA−A0201遺伝子導入マウスを用いたin vivoCTL誘導試験によって評価した。式(5):
【0570】
【化71】
【0571】
(式中、CとCの間の結合はジスルフィド結合を表す。)
で表される化合物に含まれるRMFPNAPYL(配列番号:2)はHLA−A0201拘束性WT1ペプチド、CYTWNQMNL(配列番号:4)はHLA−A2402拘束性WT1ペプチドであり、WAPVLDFAPPGASAYGSLC(配列番号:243)に含まれるWAPVLDFAPPGASAYGSL(配列番号:244)はMHCクラスII拘束性WT1ペプチド(すなわちヘルパーペプチド)である。
【0572】
HLA−A0201遺伝子導入マウスについては、試験例2、5に記したとおりである。
【0573】
式(5)で表される化合物の投与により、目的のペプチド(配列番号:2)に対するCTLが誘導されるか否かは、式(5)で表される化合物を投与した上記マウス由来の脾細胞をペプチド(配列番号:2)で再刺激を行った場合にIFNγを産生するか測定することで判断した。また、式(5)と混合したヘルパーペプチド(配列番号:243)が生体内で作用しているか否かは、式(5)で表される化合物を単独投与した上記マウス由来の脾細胞と、式(5)で表される化合物と配列番号:243で表されるペプチドのカクテルワクチンを投与した上記マウス由来の脾細胞を、ペプチド(配列番号:2)で再刺激を行った場合のIFNγ産生細胞数を比較することで判断した。
【0574】
試験例16と同様の方法でCTL誘導試験を行った。ただし、カクテルワクチンは式(5)で表される化合物と配列番号:243で表されるペプチドをジメチルスルホキシド(DMSO)で80mg/mLに溶解後、注射用水で希釈後の濃度が式(5)で表される化合物が3mg/mL、配列番号:243で表されるペプチドが2.42mg/mLになるよう混合した。この希釈液を等量のモンタナイドISA51VGと混合してエマルション化させた。この式(5)で表される化合物が150μg/site、配列番号:243で表されるペプチドが121μg/site含まれるカクテルワクチンをマウスの尾根部皮内に2箇所投与した。
【0575】
HLA−A0201遺伝子導入マウスを用いたIFNγ ELISPOT assayの結果を
図27に示した。
図27において、縦軸は播種細胞数中に反応した細胞数を示す。
図27の黒棒および白棒はHLA−A0201遺伝子導入マウス由来の脾細胞を配列番号:2で表される目的のペプチドの存在下および非存在下で培養した結果を示す。即ち、黒棒と白棒の値の差が、式(5)で表される化合物およびヘルパーペプチド(配列番号:243)を含むカクテルワクチンの投与によってマウス生体内で誘導された目的の各ペプチド特異的CTLの数を示す。
図27において白棒の値は認められていない。このことは目的のペプチド非存在下ではそれぞれの遺伝子導入マウスの脾細胞は反応しなかったことを示している。本試験の結果、式(5)で表される化合物を単独投与、およびヘルパーペプチド(配列番号:243)を含むカクテルワクチンを投与したHLA−A0201遺伝子導入マウス由来の脾細胞においては配列番号:2で表される目的のペプチド特異的なIFNγ産生が確認された。また、
図27においてヘルパーペプチド(配列番号:243)を含むカクテルワクチンの投与によって誘導された配列番号:2で表されるペプチドに特異的なIFNγ産生細胞の数は、式(5)で表される化合物の単独投与によって誘導されたペプチド特異的なIFNγ産生細胞の数より多かった。
【0576】
これより、式(5)で表される化合物と配列番号:243で表されるペプチドを混合したカクテルワクチンは配列番号:2で表されるペプチドに特異的なCTLを誘導し得ることが明らかとなった。また式(5)で表される化合物を単独投与した場合と比較してカクテルワクチンを投与した場合に配列番号:2で表されるペプチドに特異的なIFNγ産生細胞が多く認められたのは、カクテルワクチン中の配列番号:243で表されるペプチドに含まれる配列番号:244で表されるヘルパーペプチドに反応性の細胞が誘導されたことによって、配列番号:2で表されるペプチドに特異的なCTLの誘導が増強されたためと推察された。従って、式(5)で表される化合物とヘルパーペプチドを含むカクテルワクチンは式(5)で表される化合物の単独投与と比べて、マウス生体内で強くCTLを誘導できることが明らかとなった。
【0577】
2つのWT1抗原ペプチドを含有するワクチンを作成する場合の一例として、2つの異なるペプチドを一つの製剤にするカクテル化ワクチンがあげられる。カクテル化ワクチンを作成する際、問題となるのが混合する癌抗原ペプチドの物性が一つの問題となる。表60及び表66に示した通り、2つWT1抗原ペプチドをカクテル化する際には溶解度、すなわち物性の異なる2つのペプチドを一つの製剤にすることになる。これに対し、本発明のコンジュゲート体は2つのWT1抗原ペプチドをジスルフィド結合により結合した化合物であり、単一の溶解度すなわち物性を示した。このことは本発明のコンジュゲート体が単一の物性である上に試験例2に示すように2つのWT1抗原ペプチドに対する応答する性質を有することを示している。この点において、本発明のコンジュゲート体はカクテル化ワクチンのように2つのWT1抗原ペプチド同士の相互作用などを考慮することなく2つのWT1抗原ペプチドに対する応答を引き起こすことができる化合物であることが示された。
【0578】
試験例19
フィルター濾過を経た後に、HLA−A2402遺伝子導入マウスを用いた、in vivoでのCTL誘導能の評価
ジスルフィド結合を介して形成した配列番号4のホモダイマーおよび式(5)で表される化合物を3−10mg/mLとなるように注射用水にて溶解する。各化合物の薬理活性を、CTL誘導活性を指標としてHLA−A2402遺伝子導入マウス (C57BL/6CrHLA−A2402/K
b)を利用して評価する。HLA−A2402遺伝子導入マウスに投与するにあたり、注射用水で溶解した化合物をタンパク質低結合性のフィルター(注射剤の滅菌処理を目的としたグレードのメンブランフィルター)にて濾過滅菌したのち、不完全フロイントアジュバントと混合しエマルション化させる。
エマルション化させた化合物はHLA−A2402遺伝子導入マウスの尾根部皮内に投与する。投与1週間後、マウスをCO
2ガスにより安楽死させたのち脾臓あるいは鼠蹊部リンパ節を摘出し、脾細胞あるいはリンパ節細胞を調製する。IFNγ産生の測定には、IFNγ ELISPOT assay kitを用いる。細胞調製の前日に、ELISPOTプレートを抗マウスIFNγ抗体で処理し、当日に10%FBSを含むRPMI1640培地でブロッキングする。調製したマウス由来の細胞をブロッキングしたELISPOTプレートに播種する。ペプチド(配列番号:4)をDMSOで40mg/mLに溶解し、さらに10%FBSを含むRPMI1640培地で40μg/mLに希釈する。希釈したペプチド(配列番号:4)を、最終濃度10μg/mLでHLA−A2402遺伝子導入マウス由来の脾細胞あるいはリンパ節細胞に添加する。ペプチドを添加した細胞を、16−20時間、37℃、5% CO
2下で培養することで、in vitroにおけるペプチド再刺激を加える。培養後に上清を除いたのち、ELISPOTプレートを、添付のプロトコールに従って発色させる。発色したスポット数は、ImmunoSpot Analyzer(C.T.L.社製)によって測定する。