(58)【調査した分野】(Int.Cl.,DB名)
耐熱高分子フィルムと無機基板の積層体であって、耐熱高分子フィルムと無機基板との初期剥離強度と、窒素環境下450℃の熱処理を行った後に室温まで冷却した際の剥離強度が以下の関係式を満たし、
0.05≦F0≦3.00
dFt=(Ft-F0)/t
-0.15≦dFt≦+0.15
0.02≦Ft
なお、ここに
F0[N/cm] : 初期剥離強度
t[hr] : 窒素環境下450℃での熱処理時間 1〜3の範囲の整数
Ft[N/cm] : 熱処理t 時間後の剥離強度であり、
耐熱高分子フィルムと無機基板との初期剥離強度と、窒素環境下510℃の熱処理を行った後に室温まで冷却した際の剥離強度が以下の関係式を満たし、
0.05≦F0≦3.00
dFs=(Fs-F0)/s
-0.15≦dFs≦+0.15
0.02≦Fs
なお、ここに
F0[N/cm] : 初期剥離強度
s[hr] : 窒素環境下510℃での熱処理時間 1〜3の範囲の整数
Fs[N/cm] : 熱処理s時間後の剥離強度であり、
前記耐熱高分子フィルムと無機基板の間にシランカップリング剤層を有し、
下記(1)〜(4)のいずれかを満たす積層体。
(1)前記シランカップリング剤層と無機基板の間に、モリブデン、タングステンから選択される少なくとも一種以上の金属の薄膜層を有する
(2)前記シランカップリング剤層と無機基板の間に、アルミニウム酸化物層を有する
(3)前記シランカップリング剤層と無機基板の間に、アルミニウムと珪素の複合酸化物層を有する
(4)前記シランカップリング剤層と無機基板の間に、シランカップリング剤層と接する側に少なくとも、酸化アルミニウム、窒化アルミニウム、酸化珪素、窒化珪素、アルミニウムと珪素の複合酸化物から選択される一種以上の材料を含む薄膜層と、無機基板と接する側に少なくともモリブデン、タングステン、クロム、ニッケル-クロム合金から選択される一種以上の材料を含む薄膜層とを有する
【発明を実施するための形態】
【0019】
<無機基板>
本発明においては高分子フィルムの支持体として無機基板を用いる。また、高分子フィルム上に電子デバイスを形成して、フレキシブル電子デバイスを製造する場合においても、無機基板は高分子フィルム材料を仮支持するために用いられる。
無機基板としては無機物からなる基板として用いることのできる板状のものであればよく、例えば、ガラス板、セラミック板、半導体ウエハ、金属等を主体としているもの、および、これらガラス板、セラミック板、半導体ウエハ、金属の複合体として、これらを積層したもの、これらが分散されているもの、これらの繊維が含有されているものなどが挙げられる。
【0020】
前記ガラス板としては、石英ガラス、高ケイ酸ガラス(96%シリカ)、ソーダ石灰ガラス、鉛ガラス、アルミノホウケイ酸ガラス、ホウケイ酸ガラス(パイレックス(登録商標))、ホウケイ酸ガラス(無アルカリ)、ホウケイ酸ガラス(マイクロシート)、アルミノケイ酸塩ガラス等が含まれる。これらの中でも、線膨張係数が5ppm/K以下のものが望ましく、市販品であれば、液晶用ガラスであるコーニング社製の「コーニング(登録商標)7059」や「コーニング(登録商標)1737」、「EAGLE」、旭硝子社製の「AN100」、日本電気硝子社製の「OA10」、SCHOTT社製の「AF32」などが望ましい。
【0021】
前記半導体ウエハとしては、特に限定されないが、シリコンウエハ、ゲルマニウム、シリコン−ゲルマニウム、ガリウム−ヒ素、アルミニウム−ガリウム−インジウム、窒素−リン−ヒ素−アンチモン、SiC、InP(インジウム燐)、InGaAs、GaInNAs、LT、LN、ZnO(酸化亜鉛)やCdTe(カドミウムテルル)、ZnSe(セレン化亜鉛)などのウエハが挙げられる。本発明で好ましく用いられるウエハはシリコンウエハであり、特に好ましくは8インチ以上のサイズの鏡面研磨シリコンウエハである。
【0022】
前記金属としては、W、Mo、Pt、Fe、Ni、Auといった単一元素金属や、インコネル、モネル、ニモニック、炭素銅、Fe−Ni系インバー合金、スーパーインバー合金、といった合金等が含まれる。また、これら金属に、他の金属層、セラミック層を付加してなる多層金属板も含まれる。この場合、付加層との全体の線膨張係数(CTE)が低ければ、主金属層にCu、Alなども用いられる。付加金属層として使用される金属としては、高分子フィルムとの密着性を強固にするもの、拡散がないこと、耐薬品性や耐熱性が良いこと等の特性を有するものであれば限定されるものではないが、Cr、Ni、TiN、Mo含有Cuなどが好適な例として挙げられる。
【0023】
前記無機基板の平面部分は、充分に平坦である事が望ましい。具体的には、表面粗さのP−V値が50nm以下、より好ましくは20nm以下、さらに好ましくは5nm以下である。これより粗いと、高分子フィルム層と無機基板との剥離強度が不充分となる場合がある。
前記無機基板の厚さは特に制限されないが、取り扱い性の観点より10mm以下の厚さが好ましく、3mm以下がより好ましく、1.3mm以下がさらに好ましい。厚さの下限については特に制限されないが、好ましくは0.07mm以上、より好ましくは0.15mm以上、さらに好ましくは0.3mm以上である。
【0024】
前記無機基板の面積は、高分子フィルム積層基板やフレキシブル電子デバイスの生産効率・コストの観点より、大面積であることが好ましい。具体的には、1000cm2以上であることが好ましく、1500cm2以上であることがより好ましく、2000cm2以上であることがさらに好ましい。
【0025】
<耐熱高分子フィルム>
本発明の耐熱高分子とは、融点が400℃以上、好ましくは500℃以上であり、ガラス転移温度が250℃以上、好ましくは320℃以上、さらに好ましくは380℃以上の高分子である。以下、煩雑さを避けるために単に高分子とする。本発明における融点とガラス転移温度は、示差熱分析(DSC)により求めるものである。なお、融点が500℃を越える場合には、該当温度にて加熱した際の熱変形挙動を目し観察することで融点に達しているか否かを判断して良い。
【0026】
本発明における高分子フィルムとしては、ポリイミド・ポリアミドイミド・ポリエーテルイミド・フッ素化ポリイミドといった芳香族ポリイミド、脂環族ポリイミドなどのポリイミド系樹脂、ポリエチレン・ポリプロピレン・ポリエチレンテレフタレート・ポリブチレンテレフタレート・ポリエチレン−2,6−ナフタレートといった全芳香族ポリエステル、半芳香族ポリエステルなどの共重合ポリエステル、ポリメチルメタクリレートに代表される共重合(メタ)アクリレート、ポリカーボネート、ポリアミド、ポリスルフォン、ポリエーテルスルフォン、ポリエーテルケトン、酢酸セルロース、硝酸セルロース、芳香族ポリアミド、ポリ塩化ビニル、ポリフェノール、ポリアリレート、ポリフェニレンスルフィド、ポリフェニレンオキシド、ポリスチレン等のフィルムを例示できる。
ただし、本発明は450℃以上の熱処理を伴うプロセスに用いられることが大前提であるため、例示された高分子フィルムの中から実際に適用できる物は限られる。本発明に好ましく用いられる高分子フィルムは、所謂スーパーエンジニアリングプラスチックを用いたフィルムであり、好ましくは芳香族ポリイミドフィルムであり、芳香族アミドフィルムでアリ、芳香族アミドイミドフィルムであり、芳香族ベンゾオキサゾールフィルムであり、芳香族ベンゾチアゾールフィルムであり、芳香族ベンゾイミダゾールフィルムである。
【0027】
以下にポリイミド系樹脂フィルムについての詳細を説明する。一般にポリイミド系樹脂フィルムは、溶媒中でジアミン類とテトラカルボン酸類とを反応させて得られるポリアミド酸(ポリイミド前駆体)溶液を、ポリイミドフィルム作製用支持体に塗布、乾燥してグリーンフィルム(以下では「ポリアミド酸フィルム」ともいう)となし、さらにポリイミドフィルム作製用支持体上で、あるいは該支持体から剥がした状態でグリーンフィルムを高温熱処理して脱水閉環反応を行わせることによって得られる。
【0028】
ポリアミド酸を構成するジアミン類としては、特に制限はなく、ポリイミド合成に通常用いられる芳香族ジアミン類、脂肪族ジアミン類、脂環式ジアミン類等を用いることができる。耐熱性の観点からは、芳香族ジアミン類が好ましく、芳香族ジアミン類の中では、ベンゾオキサゾール構造を有する芳香族ジアミン類がより好ましい。ベンゾオキサゾール構造を有する芳香族ジアミン類を用いると、高い耐熱性とともに、高弾性率、低熱収縮性、低線膨張係数を発現させることが可能になる。ジアミン類は、単独で用いてもよいし二種以上を併用してもよい。
【0029】
ベンゾオキサゾール構造を有する芳香族ジアミン類としては、特に限定はなく、例えば、5−アミノ−2−(p−アミノフェニル)ベンゾオキサゾール、6−アミノ−2−(p−アミノフェニル)ベンゾオキサゾール、5−アミノ−2−(m−アミノフェニル)ベンゾオキサゾール、6−アミノ−2−(m−アミノフェニル)ベンゾオキサゾール、2,2’−p−フェニレンビス(5−アミノベンゾオキサゾール)、2,2’−p−フェニレンビス(6−アミノベンゾオキサゾール)、1−(5−アミノベンゾオキサゾロ)−4−(6−アミノベンゾオキサゾロ)ベンゼン、2,6−(4,4’−ジアミノジフェニル)ベンゾ[1,2−d:5,4−d’]ビスオキサゾール、2,6−(4,4’−ジアミノジフェニル)ベンゾ[1,2−d:4,5−d’]ビスオキサゾール、2,6−(3,4’−ジアミノジフェニル)ベンゾ[1,2−d:5,4−d’]ビスオキサゾール、2,6−(3,4’−ジアミノジフェニル)ベンゾ[1,2−d:4,5−d’]ビスオキサゾール、2,6−(3,3’−ジアミノジフェニル)ベンゾ[1,2−d:5,4−d’]ビスオキサゾール、2,6−(3,3’−ジアミノジフェニル)ベンゾ[1,2−d:4,5−d’]ビスオキサゾール等が挙げられる。
【0030】
上述したベンゾオキサゾール構造を有する芳香族ジアミン類以外の芳香族ジアミン類としては、例えば、2,2’−ジメチル−4,4’−ジアミノビフェニル、1,4−ビス[2−(4−アミノフェニル)−2−プロピル]ベンゼン(ビスアニリン)、1,4−ビス(4−アミノ−2−トリフルオロメチルフェノキシ)ベンゼン、2,2’−ジトリフルオロメチル−4,4’−ジアミノビフェニル、4,4’−ビス(4−アミノフェノキシ)ビフェニル、4,4’−ビス(3−アミノフェノキシ)ビフェニル、ビス[4−(3−アミノフェノキシ)フェニル]ケトン、ビス[4−(3−アミノフェノキシ)フェニル]スルフィド、ビス[4−(3−アミノフェノキシ)フェニル]スルホン、2,2−ビス[4−(3−アミノフェノキシ)フェニル]プロパン、2,2−ビス[4−(3−アミノフェノキシ)フェニル]−1,1,1,3,3,3−ヘキサフルオロプロパン、m−フェニレンジアミン、o−フェニレンジアミン、p−フェニレンジアミン、m−アミノベンジルアミン、p−アミノベンジルアミン、3,3’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルスルフィド、3,3’−ジアミノジフェニルスルホキシド、3,4’−ジアミノジフェニルスルホキシド、4,4’−ジアミノジフェニルスルホキシド、3,3’−ジアミノジフェニルスルホン、3,4’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルスルホン、3,3’−ジアミノベンゾフェノン、3,4’−ジアミノベンゾフェノン、4,4’−ジアミノベンゾフェノン、3,3’−ジアミノジフェニルメタン、3,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルメタン、
ビス[4−(4−アミノフェノキシ)フェニル]メタン、1,1−ビス[4−(4−アミノフェノキシ)フェニル]エタン、1,2−ビス[4−(4−アミノフェノキシ)フェニル]エタン、1,1−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、1,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、1,3−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、1,1−ビス[4−(4−アミノフェノキシ)フェニル]ブタン、1,3−ビス[4−(4−アミノフェノキシ)フェニル]ブタン、1,4−ビス[4−(4−アミノフェノキシ)フェニル]ブタン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]ブタン、2,3−ビス[4−(4−アミノフェノキシ)フェニル]ブタン、2−[4−(4−アミノフェノキシ)フェニル]−2−[4−(4−アミノフェノキシ)−3−メチルフェニル]プロパン、2,2−ビス[4−(4−アミノフェノキシ)−3−メチルフェニル]プロパン、2−[4−(4−アミノフェノキシ)フェニル]−2−[4−(4−アミノフェノキシ)−3,5−ジメチルフェニル]プロパン、2,2−ビス[4−(4−アミノフェノキシ)−3,5−ジメチルフェニル]プロパン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]−1,1,1,3,3,3−ヘキサフルオロプロパン、1,4−ビス(3−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、4,4’−ビス(4−アミノフェノキシ)ビフェニル、ビス[4−(4−アミノフェノキシ)フェニル]ケトン、ビス[4−(4−アミノフェノキシ)フェニル]スルフィド、ビス[4−(4−アミノフェノキシ)フェニル]スルホキシド、ビス[4−(4−アミノフェノキシ)フェニル]スルホン、ビス[4−(3−アミノフェノキシ)フェニル]エーテル、ビス[4−(4−アミノフェノキシ)フェニル]エーテル、1,3−ビス[4−(4−アミノフェノキシ)ベンゾイル]ベンゼン、1,3−ビス[4−(3−アミノフェノキシ)ベンゾイル]ベンゼン、1,4−ビス[4−(3−アミノフェノキシ)ベンゾイル]ベンゼン、4,4’−ビス[(3−アミノフェノキシ)ベンゾイル]ベンゼン、1,1−ビス[4−(3−アミノフェノキシ)フェニル]プロパン、1,3−ビス[4−(3−アミノフェノキシ)フェニル]プロパン、3,4’−ジアミノジフェニルスルフィド、2,2−ビス[3−(3−アミノフェノキシ)フェニル]−1,1,1,3,3,3−ヘキサフルオロプロパン、ビス[4−(3−アミノフェノキシ)フェニル]メタン、1,1−ビス[4−(3−アミノフェノキシ)フェニル]エタン、1,2−ビス[4−(3−アミノフェノキシ)フェニル]エタン、ビス[4−(3−アミノフェノキシ)フェニル]スルホキシド、4,4’−ビス[3−(4−アミノフェノキシ)ベンゾイル]ジフェニルエーテル、4,4’−ビス[3−(3−アミノフェノキシ)ベンゾイル]ジフェニルエーテル、
4,4’−ビス[4−(4−アミノ−α,α−ジメチルベンジル)フェノキシ]ベンゾフェノン、4,4’−ビス[4−(4−アミノ−α,α−ジメチルベンジル)フェノキシ]ジフェニルスルホン、ビス[4−{4−(4−アミノフェノキシ)フェノキシ}フェニル]スルホン、1,4−ビス[4−(4−アミノフェノキシ)フェノキシ−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(4−アミノフェノキシ)フェノキシ−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(4−アミノ−6−トリフルオロメチルフェノキシ)−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(4−アミノ−6−フルオロフェノキシ)−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(4−アミノ−6−メチルフェノキシ)−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(4−アミノ−6−シアノフェノキシ)−α,α−ジメチルベンジル]ベンゼン、3,3’−ジアミノ−4,4’−ジフェノキシベンゾフェノン、4,4’−ジアミノ−5,5’−ジフェノキシベンゾフェノン、3,4’−ジアミノ−4,5’−ジフェノキシベンゾフェノン、3,3’−ジアミノ−4−フェノキシベンゾフェノン、4,4’−ジアミノ−5−フェノキシベンゾフェノン、3,4’−ジアミノ−4−フェノキシベンゾフェノン、3,4’−ジアミノ−5’−フェノキシベンゾフェノン、3,3’−ジアミノ−4,4’−ジビフェノキシベンゾフェノン、4,4’−ジアミノ−5,5’−ジビフェノキシベンゾフェノン、3,4’−ジアミノ−4,5’−ジビフェノキシベンゾフェノン、3,3’−ジアミノ−4−ビフェノキシベンゾフェノン、4,4’−ジアミノ−5−ビフェノキシベンゾフェノン、3,4’−ジアミノ−4−ビフェノキシベンゾフェノン、3,4’−ジアミノ−5’−ビフェノキシベンゾフェノン、
1,3−ビス(3−アミノ−4−フェノキシベンゾイル)ベンゼン、1,4−ビス(3−アミノ−4−フェノキシベンゾイル)ベンゼン、1,3−ビス(4−アミノ−5−フェノキシベンゾイル)ベンゼン、1,4−ビス(4−アミノ−5−フェノキシベンゾイル)ベンゼン、1,3−ビス(3−アミノ−4−ビフェノキシベンゾイル)ベンゼン、1,4−ビス(3−アミノ−4−ビフェノキシベンゾイル)ベンゼン、1,3−ビス(4−アミノ−5−ビフェノキシベンゾイル)ベンゼン、1,4−ビス(4−アミノ−5−ビフェノキシベンゾイル)ベンゼン、2,6−ビス[4−(4−アミノ−α,α−ジメチルベンジル)フェノキシ]ベンゾニトリル、および前記芳香族ジアミンの芳香環上の水素原子の一部もしくは全てが、ハロゲン原子、炭素数1〜3のアルキル基またはアルコキシル基、シアノ基、またはアルキル基またはアルコキシル基の水素原子の一部もしくは全部がハロゲン原子で置換された炭素数1〜3のハロゲン化アルキル基またはアルコキシル基で置換された芳香族ジアミン等が挙げられる。
【0031】
前記脂肪族ジアミン類としては、例えば、1,2−ジアミノエタン、1,4−ジアミノブタン、1,5−ジアミノペンタン、1,6−ジアミノヘキサン、1,8−ジアミノオクタン等が挙げられる。
前記脂環式ジアミン類としては、例えば、1,4−ジアミノシクロヘキサン、4,4’−メチレンビス(2,6−ジメチルシクロヘキシルアミン)等が挙げられる。
芳香族ジアミン類以外のジアミン(脂肪族ジアミン類および脂環式ジアミン類)の合計量は、全ジアミン類の20質量%以下が好ましく、より好ましくは10質量%以下、さらに好ましくは5質量%以下である。換言すれば、芳香族ジアミン類は全ジアミン類の80質量%以上が好ましく、より好ましくは90質量%以上、さらに好ましくは95質量%以上である。
【0032】
ポリアミド酸を構成するテトラカルボン酸類としては、ポリイミド合成に通常用いられる芳香族テトラカルボン酸類(その酸無水物を含む)、脂肪族テトラカルボン酸類(その酸無水物を含む)、脂環族テトラカルボン酸類(その酸無水物を含む)を用いることができる。中でも、芳香族テトラカルボン酸無水物類、脂環族テトラカルボン酸無水物類が好ましく、耐熱性の観点からは芳香族テトラカルボン酸無水物類がより好ましく、光透過性の観点からは脂環族テトラカルボン酸類がより好ましい。これらが酸無水物である場合、分子内に無水物構造は1個であってもよいし2個であってもよいが、好ましくは2個の無水物構造を有するもの(二無水物)がよい。テトラカルボン酸類は単独で用いてもよいし、二種以上を併用してもよい。
【0033】
脂環族テトラカルボン酸類としては、例えば、シクロブタンテトラカルボン酸、1,2,4,5−シクロヘキサンテトラカルボン酸、3,3’,4,4’−ビシクロヘキシルテトラカルボン酸等の脂環族テトラカルボン酸、およびこれらの酸無水物が挙げられる。これらの中でも、2個の無水物構造を有する二無水物(例えば、シクロブタンテトラカルボン酸二無水物、1,2,4,5−シクロヘキサンテトラカルボン酸二無水物、3,3’,4,4’−ビシクロヘキシルテトラカルボン酸二無水物等)が好適である。なお、脂環族テトラカルボン酸類は単独で用いてもよいし、二種以上を併用してもよい。
脂環式テトラカルボン酸類は、透明性を重視する場合には、例えば、全テトラカルボン酸類の80質量%以上が好ましく、より好ましくは90質量%以上、さらに好ましくは95質量%以上である。
【0034】
芳香族テトラカルボン酸類としては、特に限定されないが、ピロメリット酸残基(すなわちピロメリット酸由来の構造を有するもの)であることが好ましく、その酸無水物であることがより好ましい。このような芳香族テトラカルボン酸類としては、例えば、ピロメリット酸二無水物、3,3',4,4'−ビフェニルテトラカルボン酸二無水物、4,4'−オキシジフタル酸二無水物、3,3',4,4'−ベンゾフェノンテトラカルボン酸二無水物、3,3',4,4'−ジフェニルスルホンテトラカルボン酸二無水物、2,2−ビス[4−(3,4−ジカルボキシフェノキシ)フェニル]プロパン酸無水物等が挙げられる。
芳香族テトラカルボン酸類は、耐熱性を重視する場合には、例えば、全テトラカルボン酸類の80質量%以上が好ましく、より好ましくは90質量%以上、さらに好ましくは95質量%以上である。
【0035】
シランカップリング剤層上への高分子の溶液や高分子前駆体溶液の塗布は、例えば、スピンコート、ドクターブレード、アプリケーター、コンマコーター、スクリーン印刷法、スリットコート、リバースコート、ディップコート、カーテンコート、スリットダイコート等従来公知の溶液の塗布手段を適宜用いることができる。
例えば、ポリイミド系樹脂フィルムは、溶媒中でジアミン類とテトラカルボン酸類とを反応させて得られるポリアミド酸(ポリイミド前駆体)溶液を無機基板に所定の厚さとなるように塗布し、乾燥した後に、高温熱処理して脱水閉環反応を行わせる熱イミド化法又は無水酢酸等を脱水剤とし、ピリジン等を触媒として用いる化学イミド化法を行うことによって得ることができる。
【0036】
本発明の高分子フィルムの厚さは3μm以上が好ましく、より好ましくは11μm以上であり、さらに好ましくは24μm以上であり、より一層好ましくは45μm以上である。高分子フィルムの厚さの上限は特に制限されないが、フレキシブル電子デバイスとして用いるためには250μm以下であることが好ましく、より好ましくは150μm以下であり、さらに好ましくは90μm以下である。
【0037】
本発明の高分子フィルムの30℃から500℃の間の平均のCTEは、好ましくは、−5ppm/℃〜+20ppm/℃であり、より好ましくは−5ppm/℃〜+15ppm/℃であり、さらに好ましくは1ppm/℃〜+10ppm/℃である。CTEが前記範囲であると、一般的な支持体(無機基板)との線膨張係数の差を小さく保つことができ、熱を加えるプロセスに供しても高分子フィルムと無機基板とが剥がれることを回避できる。ここにCTEとは温度に対して可逆的な伸縮を表すファクターである。
【0038】
本発明の高分子フィルムの30℃から500℃の間の熱収縮率は、±0.9%であることが好ましく、さらに好ましくは±0.6%である。本発明における熱収縮率は温度に対して非可逆的な伸縮を表すファクターである。
【0039】
本発明における高分子フィルムの引張破断強度は、60MPa以上が好ましく、より好ましくは120MP以上であり、さらに好ましくは240MPa以上である。引張破断強度の上限は特に制限されないが、事実上1000MPa程度未満である。なお、前記高分子フィルムの引張破断強度とは、高分子フィルムの流れ方向(MD方向)の引張破断強度及び幅方向(TD方向)の引張破断強度の平均値を指す。
【0040】
本発明における高分子フィルムの厚さ斑は、20%以下であることが好ましく、より好ましくは12%以下、さらに好ましくは7%以下、特に好ましくは4%以下である。厚さ斑が20%を超えると、狭小部へ適用し難くなる傾向がある。なお、フィルムの厚さ斑は、例えば接触式の膜厚計にて被測定フィルムから無作為に10点程度の位置を抽出してフィルム厚を測定し、下記式に基づき求めることができる。
フィルムの厚さ斑(%)
=100×(最大フィルム厚−最小フィルム厚)÷平均フィルム厚
【0041】
本発明における高分子フィルムは、その製造時において幅が300mm以上、長さが10m以上の長尺高分子フィルムとして巻き取られた形態で得られるものが好ましく、巻取りコアに巻き取られたロール状高分子フィルムの形態のものがより好ましい。
【0042】
高分子フィルムにおいては、ハンドリング性および生産性を確保する為、高分子フィルム中に粒子径が10〜1000nm程度の滑材(粒子)を、0.03〜3質量%程度、添加・含有させて、高分子フィルム表面に微細な凹凸を付与して滑り性を確保することが好ましい。
【0043】
<高分子フィルムの表面活性化処理>
本発明において用いられる高分子フィルムには表面活性化処理を行うことが好ましい。高分子フィルムに表面活性化処理を行うことによって、高分子フィルムの表面は官能基が存在する状態(いわゆる活性化した状態)に改質され、無機基板に対する接着性が向上する。
本発明における表面活性化処理とは、乾式又は湿式の表面処理である。乾式の表面処理としては、例えば、真空プラズマ処理、常圧プラズマ処理、紫外線・電子線・X線などの活性エネルギー線を表面に照射する処理、コロナ処理、火炎処理、イトロ処理等を挙げることができる。湿式の表面処理としては、例えば、高分子フィルム表面を酸ないしアルカリ溶液に接触させる処理を挙げることができる。
【0044】
本発明においては複数の表面活性化処理を組み合わせて行っても良い。かかる表面活性化処理は高分子フィルム表面を清浄化し、さらに活性な官能基を生成する。生成された官能基は、シランカップリング剤層と水素結合や化学反応などにより結びつき、高分子フィルム層とシランカップリング剤層とを強固に接着することが可能となる。
【0045】
本発明においてシランカップリング剤とは、無機基板と高分子フィルム層との間に物理的ないし化学的に介在し、両者間の接着力を高める作用を有する化合物を意味する。
カップリング剤は、特に限定されるものではないが、アミノ基あるいはエポキシ基を持ったシランカップリング剤が好ましい。シランカップリング剤の好ましい具体例としては、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−トリエトキシシリル−N−(1,3−ジメチル−ブチリデン)プロピルアミン、2−(3,4−エポキシシクロへキシル)エチルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、3−グリシドキシプロピルトリエトキシシラン、ビニルトリクロルシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、3−グリシドキシプロピルトリエトキシシラン、p−スチリルトリメトキシシラン、3−メタクリロキシプロピルメチルジメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルメチルジエトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシラン、N−フェニル−3−アミノプロピルトリメトキシシラン、N−(ビニルベンジル)−2−アミノエチル−3−アミノプロピルトリメトキシシラン塩酸塩、3−ウレイドプロピルトリエトキシシラン、3−クロロプロピルトリメトキシシラン、3−メルカプトプロピルメチルジメトキシシラン、3−メルカプトプロピルトリメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド、3−イソシアネートプロピルトリエトキシシラン、トリス−(3−トリメトキシシリルプロピル)イソシアヌレート、クロロメチルフェネチルトリメトキシシラン、クロロメチルトリメトキシシラン、アミノフェニルトリメトキシシラン、アミノフェネチルトリメトキシシラン、アミノフェニルアミノメチルフェネチルトリメトキシシランなどが挙げられる。
【0046】
本発明で用いることのできるシランカップリング剤としては、前記のほかに、n−プロピルトリメトキシシラン、ブチルトリクロロシラン、2−シアノエチルトリエトキシシラン、シクロヘキシルトリクロロシラン、デシルトリクロロシラン、ジアセトキシジメチルシラン、ジエトキシジメチルシラン、ジメトキシジメチルシラン、ジメトキシジフェニルシラン、ジメトキシメチルフェニルシラン、ドデシルリクロロシラン、ドデシルトリメトキシラン、エチルトリクロロシラン、ヘキシルトリメトキシシラン、オクタデシルトリエトキシシラン、オクタデシルトリメトキシシラン、n−オクチルトリクロロシラン、n−オクチルトリエトキシシラン、n−オクチルトリメトキシシラン、トリエトキシエチルシラン、トリエトキシメチルシラン、トリメトキシメチルシラン、トリメトキシフェニルシラン、ペンチルトリエトキシシラン、ペンチルトリクロロシラン、トリアセトキシメチルシラン、トリクロロヘキシルシラン、トリクロロメチルシラン、トリクロロオクタデシルシラン、トリクロロプロピルシラン、トリクロロテトラデシルシラン、トリメトキシプロピルシラン、アリルトリクロロシラン、アリルトリエトキシシラン、アリルトリメトキシシラン、ジエトキシメチルビニルシラン、ジメトキシメチルビニルシラン、トリクロロビニルシラン、トリエトキシビニルシラン、ビニルトリス(2−メトキシエトキシ)シラン、トリクロロ−2−シアノエチルシラン、ジエトキシ(3−グリシジルオキシプロピル)メチルシラン、3−グリシジルオキシプロピル(ジメトキシ)メチルシラン、3−グリシジルオキシプロピルトリメトキシシランなどを使用することもできる。
【0047】
本発明では、1つの分子中に1個のケイ素原子を有するシランカップリング剤が特に好ましく、例えば、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−トリエトキシシリル−N−(1,3−ジメチル−ブチリデン)プロピルアミン、2−(3,4−エポキシシクロへキシル)エチルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、3−グリシドキシプロピルトリエトキシシラン、アミノフェニルトリメトキシシラン、アミノフェネチルトリメトキシシラン、アミノフェニルアミノメチルフェネチルトリメトキシシランなどが挙げられる。プロセスで特に高い耐熱性が要求される場合、Siとアミノ基の間を芳香族基でつないだものが望ましい。
本発明で用いることのできるカップリング剤としては、前記のシランカップリング剤以外のカップリング剤も用いることができる、例えば、1−メルカプト−2−プロパノール、3−メルカプトプロピオン酸メチル、3−メルカプト−2−ブタノール、3−メルカプトプロピオン酸ブチル、3−(ジメトキシメチルシリル)−1−プロパンチオール、4−(6−メルカプトヘキサロイル)ベンジルアルコール、11−アミノ−1−ウンデセンチオール、11−メルカプトウンデシルホスホン酸、11−メルカプトウンデシルトリフルオロ酢酸、2,2’−(エチレンジオキシ)ジエタンチオール、11−メルカプトウンデシルトリ(エチレングリコール)、(1−メルカプトウンデイック−11−イル)テトラ(エチレングリコール)、1−(メチルカルボキシ)ウンデック−11−イル)ヘキサ(エチレングリコール)、ヒドロキシウンデシルジスルフィド、カルボキシウンデシルジスルフィド、ヒドロキシヘキサドデシルジスルフィド、カルボキシヘキサデシルジスルフィド、テトラキス(2−エチルヘキシルオキシ)チタン、チタンジオクチロキシビス(オクチレングリコレート)、ジルコニウムトリブトキシモノアセチルアセトネート、ジルコニウムモノブトキシアセチルアセトネートビス(エチルアセトアセテート)、ジルコニウムトリブトキシモノステアレート、アセトアルコキシアルミニウムジイソプロピレート、3−グリシジルオキシプロピルトリメトキシシラン、2,3−ブタンジチオール、1−ブタンチオール、2−ブタンチオール、シクロヘキサンチオール、シクロペンタンチオール、1−デカンチオール、1−ドデカンチオール、3−メルカプトプロピオン酸−2−エチルヘキシル、3−メルカプトプロピオン酸エチル、1−ヘプタンチオール、1−ヘキサデカンチオール、ヘキシルメルカプタン、イソアミルメルカプタン、イソブチルメルカプタン、3−メルカプトプロピオン酸、3−メルカプトプロピオン酸−3−メトキシブチル、2−メチル−1−ブタンチオール、1−オクタデカンチオール、1−オクタンチオール、1−ペンタデカンチオール、1−ペンタンチオール、1−プロパンチオール、1−テトラデカンチオール、1−ウンデカンチオール、1−(12−メルカプトドデシル)イミダゾール、1−(11−メルカプトウンデシル)イミダゾール、1−(10−メルカプトデシル)イミダゾール、1−(16−メルカプトヘキサデシル)イミダゾール、1−(17−メルカプトヘプタデシル)イミダゾール、1−(15−メルカプト)ドデカン酸、1−(11−メルカプト)ウンデカン酸、1−(10−メルカプト)デカン酸などを使用することもできる。
【0048】
<シランカップリング剤層の形成方法>
シランカップリング剤層の形成方法としては、シランカップリング剤溶液を塗布する方法や蒸着法などを用いることが出来る。シランカップリング剤層は高分子フィルム、無機基板のいずれにの表面に行っても良く、両方の表面に行っても良い。無機基板に別途薄膜層が形成される場合には薄膜層の上に形成しても良い。
シランカップリング剤溶液を塗布する方法としては、シランカップリング剤をアルコールなどの溶媒で希釈した溶液を用いて、スピンコート法、カーテンコート法、ディップコート法、スリットダイコート法、グラビアコート法、バーコート法、コンマコート法、アプリケーター法、スクリーン印刷法、スプレーコート法等の従来公知の溶液の塗布手段を適宜用いることができる。シランカップリング剤溶液を塗布する方法を用いた場合、塗布後に速やかに乾燥し、さらに100±30℃程度で数十秒〜10分程度の熱処理を行うことが好ましい。熱処理により、シランカップリング剤と被塗布面の表面とが化学反応により結合される。
【0049】
また、シランカップリング剤層を蒸着法によって形成することもでき、具体的には、基材をシランカップリング剤の蒸気、すなわち実質的に気体状態のシランカップリング剤に暴露して形成する。シランカップリング剤の蒸気は、液体状態のシランカップリング剤を40℃〜シランカップリング剤の沸点程度までの温度に加温することによって得ることが出来る。シランカップリング剤の沸点は、化学構造によって異なるが、概ね100〜250℃の範囲である。ただし200℃以上の加熱は、シランカップリング剤の有機基側の副反応を招く恐れがあるため好ましくない。
シランカップリング剤を加温する環境は、加圧下、常圧下、減圧下のいずれでも構わないが、シランカップリング剤の気化を促進する場合には常圧下ないし減圧下が好ましい。多くのシランカップリング剤は可燃性液体であるため、密閉容器内にて、好ましくは容器内を不活性ガスで置換した後に気化作業を行うことが好ましい。
基材をシランカップリング剤に暴露する時間は特に制限されないが、20時間以内が好ましく、より好ましくは60分以内、さらに好ましくは15分以内、最も好ましくは1分以内である。
基材をシランカップリング剤に暴露する間の基材の温度は、シランカップリング剤の種類と、求めるシランカップリング剤層の厚さにより−50℃から200℃の間の適正な温度に制御することが好ましい。
シランカップリング剤に暴露された基材は、好ましくは、暴露後に、70℃〜200℃、さらに好ましくは75℃〜150℃に加熱される。かかる加熱によって、基材表面の水酸基などと、シランカップリング剤のアルコキシ基やシラザン基が反応し、シランカップリング剤処理が完了する。加熱に要する時間は10秒以上10分以内である。暴露後の加熱温度が高すぎたり、暴露後の加熱時間が長すぎる場合にはシランカップリング剤の劣化が生じる場合がある。また暴露後の加熱時間が短すぎると処理効果が得られない。なお、シランカップリング剤に暴露中の基材温度が既に80℃以上である場合には、暴露後の加熱を省略することも出来る。
本発明では、蒸着法を用いて、基材のシランカップリング剤層を形成させたい面を下向きに保持してシランカップリング剤蒸気に暴露することが好ましい。シランカップリング剤溶液を塗布する方法では、必然的に塗布中および塗布前後に基材の塗布面が上を向くため、作業環境下の浮遊異物などが基材表面に沈着する可能性を否定できない。しかしながら蒸着法では基材のシランカップリング剤層を形成させたい面を下向きに保持することが出来るため、環境中の異物が基材の表面(あるいは薄膜表面)やシランカップリング剤層の表面に付着する可能性が低くなる。
なおシランカップリング剤処理前の基材表面を短波長UV/オゾン照射などの手段により清浄化したり液体洗浄剤で清浄化するのが好ましい。
【0050】
シランカップリング剤層の膜厚は、基材、高分子フィルム等と比較しても極めて薄く、機械設計的な観点からは無視される程度の厚さであり、原理的には最低限、単分子層オーダーの厚さがあれば十分である。一般には400nm未満であり、200nm以下が好ましく、さらに実用上は100nm以下が好ましく、より好ましくは50nm以下、さらに好ましくは10nm以下である。ただし、計算上5nm以下の領域になるとシランカップリング剤層が均一な塗膜としてではなく、クラスター状に存在するおそれがある。なお、シランカップリング剤層の膜厚は、エリプソメトリー法または塗布時のシランカップリング剤溶液の濃度と塗布量から計算して求めることができる。
【0051】
<薄膜>
本発明においては、シランカップリング剤層と無機基板の間にモリブデン、タングステン、クロムから選択される少なくとも一種の金属薄膜が、無機板の少なくとも片面の一部に連続又は不連続に形成されていることが好ましい。以下の例示は無機基板の片面側にのみ高分子フィルムを貼りつける形態を前提に説明するが、無機基板の両面に高分子フィルムを貼りつける形態も本発明の範囲内である。
【0052】
本発明において単独の金属薄膜として用いられるのはモリブデン、タングステンから選択される少なくとも一種の金属の薄膜である。本発明で、各々の単独の金属薄膜を用いる場合には、少なくとも最表面が純度85%以上、好ましくは純度92%以上、更に好ましくは純度98%以上の金属薄膜を用いる事が好ましい。また、例外として、モリブデンとタングステンからなる合金を用いる事も出来る。この場合モリブデンとタングステンの合金比はモリブデン:タングステン=1:99〜99:1(元素比)まで幅広く用いる事ができる。
また薄膜の厚さは3nm以上5μm以下が好ましく、さらに12nm以上3μm以下が好ましく、さらに36nm以上1.2μm以下であることが好ましい。
【0053】
薄膜を形成する手法については、特に制限されず、成膜源の種類、特性に応じて、蒸着、スパッタリング、反応性スパッタリング、イオンビームスパッタリング、CVD等の公知の薄膜形成手段を用いることができる。
本発明では金属薄膜を形成後に酸素プラズマ処理、陽極酸化処理、大気圧プラズマ処理などで表面の不導体層を強化することもできる。
【0054】
本発明における別の好ましい態様として、シランカップリング剤層と無機基板の間にアルミニウム酸化物の薄膜層が挿入されている形態を例示できる。かかるアルミニウム酸化物の薄膜層は無機板の少なくとも片面の一部に連続又は不連続に形成されていることが好ましい。本発明では少なくとも最表面が純度85%以上、好ましくは純度92%以上、更に好ましくは純度98%以上のアルミニウム酸化物を用いる事が好ましい。また薄膜の厚さは3nm以上5μm以下が好ましく、さらに12nm以上3μm以下が好ましく、さらに36nm以上1.2μm以下であることが好ましい。
【0055】
本発明における別の好ましい態様として、シランカップリング剤層と無機基板の間にアルミニウム窒化物の薄膜層が挿入されている形態を例示できる。かかるアルミニウム窒化物の薄膜層は無機板の少なくとも片面の一部に連続又は不連続に形成されていることが好ましい。本発明では少なくとも最表面が純度85%以上、好ましくは純度92%以上、更に好ましくは純度98%以上のアルミニウム窒化物を用いる事が好ましい。また薄膜の厚さは3nm以上5μm以下が好ましく、さらに12nm以上3μm以下が好ましく、さらに36nm以上1.2μm以下であることが好ましい。
【0056】
本発明における別の好ましい態様として、シランカップリング剤層と無機基板の間に珪素化合物の薄膜が挿入されている形態を例示できる。かかる珪素化合物の薄膜層は無機板の少なくとも片面の一部に連続又は不連続に形成されていることが好ましい。本発明における好ましい珪素化合物としては窒化珪素、酸化珪素である。また薄膜の厚さは3nm以上5μm以下が好ましく、さらに12nm以上3μm以下が好ましく、さらに36nm以上1.2μm以下であることが好ましい。窒化珪素薄膜はCVD法、反応性スパッタリング法等を用いてい形成することができる。また酸化珪素薄膜は蒸着法、反応性スパッタリング法、珪素薄膜を後処理で酸化させる方法などを用いる事ができる。
【0057】
本発明における別の好ましい態様として、シランカップリング剤層と無機基板の間にアルミニウムとシリコンの複合酸化物の薄膜が挿入されている形態を例示できる。かかるアルミニウムとシリコン(珪素)の複合酸化物の薄膜層は無機板の少なくとも片面の一部に連続又は不連続に形成されていることが好ましい。本発明の薄膜にて好ましいアルミニウムとシリコンの比率はアルミニウム/シリコン=90/10〜30/70(元素比)であり、好ましくは90/10〜50/50である。シリコン比率がこの範囲を超えて大きくなると、シランカップリング剤との相互作用が強くなりすぎて剥離に支障が出る場合がある。また薄膜の厚さは3nm以上5μm以下が好ましく、さらに12nm以上3μm以下が好ましく、さらに36nm以上1.2μm以下であることが好ましい。
【0058】
薄膜を形成する手法については、特に制限されず、成膜源の種類、特性に応じて、蒸着、スパッタリング、反応性スパッタリング、イオンビームスパッタリング、CVD等の公知の薄膜形成手段を用いることができる。本発明では、金属アルミニウムないし金属シリコン薄膜を形成後に酸素プラズマ処理、陽極酸化処理、大気圧プラズマ処理などでアルミニウムを酸化させる方法、反応性スパッタリングを用いて複合酸化物薄膜を堆積させる方法、反応性イオンクラスター法を用いる方法等を例示できる。また金属アルミニウムの反応性スパッタリングと酸化珪素の蒸着ないしスパッタリングを併用することも可能である。
【0059】
本発明における、シランカップリング剤層と無機基板の間に挿入される薄膜層は、以上例示した各々の薄膜層を単独ないし、複数を重ねて挿入することができる。本発明では、無機基板にモリブデン、タングステン、クロム、ニッケルークロム合金から選択される少なくとも一種の金属薄膜を形成し、さらにその後に酸化アルミニウムの薄膜層、アルミニウム窒化物の薄膜層、珪素化合物の薄膜層、アルミニウムとシリコンの複合酸化物薄膜層から選択される少なくとも一種の薄膜層を形成した、多層薄膜層を挿入することが好ましい。すなわち本発明で好ましい層構成は、
高分子フィルム層/シランカップリング剤層/酸化物層/金属層/無機基板、
高分子フィルム層/シランカップリング剤層/窒化物層/金属層/無機基板、
である。ここに酸化物層は、酸化アルミニウムの薄膜層、酸化珪素の薄膜層、アルミニウムとシリコンの複合酸化物薄膜層から選ばれる一種以上の薄膜層であり、窒化物層は、アルミニウム窒化物の薄膜層、窒化珪素薄膜層から選択される一種以上の薄膜層であり、金属層は、モリブデン、タングステン、クロム、ニッケル−クロム合金から選択される一種以上の金属薄膜ないしは、これらの合金薄膜層である。ニッケル−クロム合金を用いる場合に好ましい合金組成は、 ニッケル/クロム=75/25〜10/90(元素比)である。
【0060】
<加圧加熱処理>
本発明の積層体は、シランカップリング剤層を設けた無機基板と前記高分子フィルムとを重ね合わせて加圧加熱処理することにより作製される。
【0061】
加圧加熱処理は、例えば、大気圧雰囲気下あるいは真空中で、プレス、ラミネート、ロールラミネート等を、加熱しながら行えばよい。またフレキシブルなバッグに入れた状態で加圧加熱する方法も応用できる。生産性の向上や、高い生産性によりもたらされる低加工コスト化の観点からは、大気雰囲気下でのプレスまたはロールラミネートが好ましく、特にロールを用いて行う方法(ロールラミネート等)が好ましい。
【0062】
加圧加熱処理の際の圧力としては、1MPa〜20MPaが好ましく、さらに好ましくは3MPa〜10MPaである。圧力が高すぎると、無機基板を破損する虞があり、圧力が低すぎると、密着しない部分が生じ、接着が不充分になる場合がある。加圧加熱処理の際の温度としては、150℃〜400℃、さらに好ましくは250℃〜350℃である。高分子フィルムがポリイミドフィルムである場合には、温度が高すぎると、ポリイミドフィルムにダメージを与える虞があり、温度が低すぎると、密着力が弱くなる傾向がある。
また加圧加熱処理は、上述のように大気圧雰囲気中で行うこともできるが、全面の安定した剥離強度を得る為には、真空下で行うことが好ましい。このとき真空度は、通常の油回転ポンプによる真空度で充分であり、10Torr以下程度あれば充分である。
加圧加熱処理に使用することができる装置としては、真空中でのプレスを行うには、例えば井元製作所製の「11FD」等を使用でき、真空中でのロール式のフィルムラミネーターあるいは真空にした後に薄いゴム膜によりガラス全面に一度に圧力を加えるフィルムラミネーター等の真空ラミネートを行うには、例えば名機製作所製の「MVLP」等を使用できる。
【0063】
前記加圧加熱処理は加圧プロセスと加熱プロセスとに分離して行うことが可能である。この場合、まず、比較的低温(例えば120℃未満、より好ましくは95℃以下の温度)で高分子フィルムと無機基板とを加圧(好ましくは0.2〜50MPa程度)して両者の密着確保し、その後、低圧(好ましくは0.2MPa未満、より好ましくは0.1MPa以下)もしくは常圧にて比較的高温(例えば120℃以上、より好ましくは120〜250℃、さらに好ましくは150〜230℃)で加熱することにより、密着界面の化学反応が促進されて高分子フィルムと無機基板とを積層できる。
【0064】
以上により、本発明における以下(1)または(2)の積層体を得ることが出来る。
(1)
耐熱高分子フィルムと無機基板の積層体であって、耐熱高分子フィルムと無機基板との初期剥離強度と、窒素環境下450℃の熱処理を行った後に室温まで冷却した際の剥離強度が以下の関係式を満たすことを特長とする積層体。
0.05≦F0≦3.00
dFt=(Ft−F0)/t
−0.15≦dFt≦+0.15
0.02≦Ft
なお、ここに
F0[N/cm] : 初期剥離強度
t[hr] : 窒素環境下450℃での熱処理時間 1〜3の範囲の整数
Ft[N/cm] : 熱処理t時間後の剥離強度
(2)
耐熱高分子フィルムと無機基板の積層体であって、耐熱高分子フィルムと無機基板との初期剥離強度と、窒素環境下510℃の熱処理を行った後に室温まで冷却した際の剥離強度が以下の関係式を満たすことを特長とする積層体。
0.05≦F0≦3.00
dFs=(Fs−F0)/s
−0.15≦dFs≦+0.15
0.02≦Fs
なお、ここに
F0[N/cm] : 初期剥離強度
s[hr] : 窒素環境下510℃での熱処理時間 1〜3の範囲の整数
Fs[N/cm] : 熱処理s時間後の剥離強度
【0065】
本発明では前記(1)と(2)を独立に満たしても、両立させても良い。また、本発明では好ましくは下記(3)を独立に、または(1)、(2)の片方ないし両方と両立させても良い。
(3)
耐熱高分子フィルムと無機基板の積層体であって、耐熱高分子フィルムと無機基板との初期剥離強度と、窒素環境下530℃の熱処理を行った後に室温まで冷却した際の剥離強度が以下の関係式を満たすことを特長とする積層体。
0.05≦F0≦3.00
dFu=(Fu−F0)/u
−0.15≦dFu≦+0.15
0.02≦Fu
なお、ここに
F0[N/cm] : 初期剥離強度
u[hr] : 窒素環境下530℃での熱処理時間 1〜3の範囲の整数
Fu[N/cm] : 熱処理u時間後の剥離強度
【0066】
本発明では、本発明の薄膜層を形成する個所をパターン的に分割して形成することにより、高分子フィルムを無機基板から容易に分離できる領域である易剥離部と容易に分離できない領域である良好接着部とを形成することができる。このようにパターン化を行った場合、高分子フィルムが積層された面から、前記パターンの縁に沿って切り込みを入れると、易剥離部を容易に基板から剥離することができる。すなわち、本発明の要件を満たす部分が易剥離部となる。
【0067】
<薄膜のパターン化>
薄膜層のパターン化手段については一般的なマスキング法、あるいは前面に薄膜を形成した後にレジストを用いてのエッチング法、リフトオフ法など一般的な手段で可能である。パターン形状は、積層するデバイスの種類等に応じて適宜設定すればよく、特に限定されず、必要なデバイスの形状が平面上に単独ないし多面状にタイリングされているパターンとすればよい。
【0068】
良好接着部における無機基板と高分子フィルムとの剥離強度は、易剥離部における無機基板と高分子フィルムとの剥離強度の2倍以上であり、3倍以上であることが好ましく、さらに好ましくは5倍以上である。また、当該強度比は前記倍数以上で且つ100倍以下であることが好ましく、より好ましくは50倍以下である。なお、剥離強度の測定方法については後述する。
良好接着部における無機基板と高分子フィルムとの剥離強度は、易剥離部における無機基板と高分子フィルムとの剥離強度の2倍未満であると、高分子フィルムを無機基板から剥離する際に、良好接着部と易剥離部との剥離強度差を利用してデバイス形成部を低ストレスにて剥離する事が困難となり、フレキシブル電子デバイスの収率を低下させてしまうおそれがある。逆に良好接着部と易剥離部との剥離強度差が大きすぎると、易剥離部が無機基板から剥離したり、易剥離部にウキ、ブリスター(塗膜の膨れ)等が発生する原因となる場合がある。
良好接着部の剥離強度が0.8N/cm以上であることが好ましく、より好ましくは1.5N/cm以上、さらに好ましくは2.4N/cm以上、最も好ましくは3.2N/cm以上である。
【0069】
なお本発明においては、先に述べた易剥離部の剥離強度が、好ましくは500℃ 10分間の熱処理を行った後においても十分に低い状態を維持するが好ましい。かかる条件を満足することにより、実際の加工プロセス中にて420℃以上、好ましくは460℃以上、なお好ましくは510℃以上の高温が用いられる場合についても、良好な易剥離性を維持できる。
【0070】
<フレキシブル電子デバイスの製造方法>
本発明の積層体を用いると、既存の電子デバイス製造用の設備、プロセスを用いて積層体の高分子フィルム上に電子デバイスを形成し、積層体から高分子フィルムごと剥離することで、フレキシブルな電子デバイスを作製することができる。
本発明における電子デバイスとは、電気配線を担う片面、両面、あるいは多層構造を有する配線基板、トランジスタ、ダイオードなどの能動素子や、抵抗、キャパシタ、インダクタなどの受動デバイスを含む電子回路、他、圧力、温度、光、湿度などをセンシングするセンサー素子、バイオセンサー素子、発光素子、液晶表示、電気泳動表示、自発光表示などの画像表示素子、無線、有線による通信素子、演算素子、記憶素子、MEMS素子、太陽電池、薄膜トランジスタなどをいう。
【0071】
本発明のデバイス構造体の製造方法においては、上述した方法で作製された積層体の高分子フィルム上にデバイスを形成した後、前記積層体の易剥離部の高分子フィルムに切り込みを入れて該高分子フィルムを前記無機基板から剥離する。
前記積層体の易剥離部の高分子フィルムに切り込みを入れる方法としては、刃物などの切削具によって高分子フィルムを切断する方法や、レーザーと積層体を相対的にスキャンさせることにより高分子フィルムを切断する方法、ウォータージェットと積層体を相対的にスキャンさせることにより高分子フィルムを切断する方法、半導体チップのダイシング装置により若干ガラス層まで切り込みつつ高分子フィルムを切断する方法などがあるが、特に方法は限定されるものではない。例えば、上述した方法を採用するにあたり、切削具に超音波を重畳させたり、往復動作や上下動作などを付け加えて切削性能を向上させる等の手法を適宜採用することもできる。
【0072】
デバイス付きの高分子フィルムを無機基板から剥離する方法としては、特に制限されないが、ピンセットなどで端から捲る方法、高分子フィルムの切り込み部分の1辺に粘着テープを貼着させた後にそのテープ部分から捲る方法、高分子フィルムの切り込み部分の1辺を真空吸着した後にその部分から捲る方法等が採用できる。なお、剥離の際に、高分子フィルムの切り込み部分に曲率が小さい曲がりが生じると、その部分のデバイスに応力が加わることになりデバイスを破壊するおそれがあるため、極力曲率の大きな状態で剥がすことが望ましい。例えば、曲率の大きなロールに巻き取りながら捲るか、あるいは曲率の大きなロールが剥離部分に位置するような構成の機械を使って捲ることが望ましい。
また、剥離する部分に予め別の補強基材を貼りつけて、補強基材ごと剥離する方法も有用である。剥離するフレキシブル電子デバイスが、表示デバイスのバックプレーンである場合、あらかじめ表示デバイスのフロントプレーンを貼りつけて、無機基板上で一体化した後に両者を同時に剥がし、フレキシブルな表示デバイスを得ることも可能である。
【0073】
<無機基板のリサイクル>
本発明の高分子フィルム積層基板においては、電子デバイスを剥離した後、高分子フィルム積層基板から残存する高分子フィルムを完全に除去し、簡便な洗浄処理等を行う事により、無機基板を再利用することができる。これは、易剥離部における薄膜とシランカップリング剤層との接着力が均一で安定しており、高分子フィルム層の剥離がスムースに行えるために、無機基板側に剥離残渣がほとんど残らないことによる。このことは高分子フィルムを剥離する際の剥離面が、薄膜表面(薄膜とシランカップリング剤層との界面)になるためと考えられる。このため、高分子フィルムを剥離した後では、無機基板に薄膜が形成された状態(以下、この状態の無機基板を薄膜積層無機基板という)を維持している。
【実施例】
【0074】
以下に実施例を挙げて本発明をより具体的に説明するが、本発明は、下記実施例によって限定されるものではなく、前・後記の趣旨に適合しうる範囲で適宜変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。
以下の実施例における物性の評価方法は下記の通りである。
【0075】
<ポリアミド酸溶液の還元粘度>
ポリマー濃度が0.2g/dlとなるようにN,N−ジメチルアセトアミドに溶解した溶液についてウベローデ型の粘度管を用いて30℃で測定した。
【0076】
<高分子フィルムの厚さ>
高分子フィルムの厚さは、マイクロメーター(ファインリューフ社製「ミリトロン1245D」)を用いて測定した。
【0077】
<高分子フィルムの厚さ斑>
高分子フィルムの厚さ斑は、マイクロメーター(ファインリューフ社製「ミリトロン1245D」)を用いて、被測定フィルムから無作為に10点を抽出してフィルム厚を測定し、得られた10個の値の最大値(最大フィルム厚)、最小値(最小フィルム厚)、および平均値(平均フィルム厚)から、下記式に基づき算出した。
フィルムの厚さ斑(%)=100×(最大フィルム厚−最小フィルム厚)÷平均フィルム厚
【0078】
<高分子フィルムの引張弾性率、引張破断強度および引張破断伸度>
測定対象とする高分子フィルムから、流れ方向(MD方向)及び幅方向(TD方向)がそれぞれ100mm×10mmである短冊状の試験片を切り出し、引張試験機(島津製作所社製「オートグラフ(登録商標);機種名AG−5000A」)を用い、引張速度50mm/分、チャック間距離40mmの条件で、MD方向、TD方向それぞれについて、引張弾性率、引張破断強度および引張破断伸度を測定した。
【0079】
<高分子フィルムの線膨張係数(CTE)>
測定対象とする高分子フィルムの流れ方向(MD方向)および幅方向(TD方向)について、下記条件にて伸縮率を測定し、15℃の間隔(30℃〜45℃、45℃〜60℃、…)での伸縮率/温度を測定し、この測定を500℃まで行って、MD方向およびTD方向で測定した全測定値の平均値を線膨張係数(CTE)として算出した。
機器名 ; MACサイエンス社製「TMA4000S」
試料長さ ; 20mm
試料幅 ; 2mm
昇温開始温度 ; 30℃
昇温終了温度 ; 500℃
昇温速度 ; 5℃/分
雰囲気 ; アルゴン
初荷重 ; 34.5g/mm2
【0080】
<ガラス転移温度>
DSC示差熱分析装置を用いて、室温から500℃までの範囲での構造変化に起因する吸放熱の有無から高分子フィルムのガラス転移温度を求めた。いずれの高分子フィルムにおいてもガラス転移温度は観察されなかった。
【0081】
<高分子フィルムの評価:滑り性>
高分子フィルム2枚を、異なる面同士で重ね合わせ(すなわち、同じ面同士ではなく、フィルムロールとして巻いた場合の巻き外面と巻き内面とを重ね合わせ)、重ねた高分子フィルムを親指と人差し指で挟み、軽く摺り合わせたときに、高分子フィルムと高分子フィルムが滑る場合を「○」又は「良好」、滑らない場合を「×」又は「不良」と評価した。なお、巻き外面同士あるいは巻き内面同士では滑らない場合もあるが、これは評価項目とはしない。
【0082】
<シランカップリング剤層の厚さ>
シランカップリング剤層(SC層)の厚さ(nm)は、別途、洗浄したSiウエハ上に各実施例、比較例と同様の方法でシランカップリング剤を塗布乾燥させて得たサンプルを作製し、このSiウエハ上に形成したシランカップリング剤層の膜厚について、エリプソメトリー法にて、分光エリプソメータ(Photal社製「FE−5000」)を用いて下記の条件で測定した。
反射角度範囲 ; 45°から80°
波長範囲 ; 250nmから800nm
波長分解能 ; 1.25nm
スポット径 ; 1mm
tanΨ ; 測定精度±0.01
cosΔ ; 測定精度±0.01
測定 ; 方式回転検光子法
偏向子角度 ; 45°
入射角度 ; 70°固定
検光子 ; 11.25°刻みで0〜360°
波長 ; 250nm〜800nm
非線形最小2乗法によるフィッティングで膜厚を算出した。このとき、モデルとしては、Air/薄膜/Siのモデルで、
n=C3/λ4+C2/λ2+C1
k=C6/λ4+C5/λ2+C4
の式で波長依存C1〜C6を求めた。
【0083】
<剥離強度>
積層体の無機基板と高分子フィルムとの剥離強度(180度剥離強度)は、JIS C6471に記載の180度剥離法に従い、下記条件で測定した。
装置名 : 島津製作所社製「オートグラフ(登録商標)AG−IS」
測定温度 : 室温
剥離速度 : 50mm/分
雰囲気 : 大気
測定サンプル幅 : 10mm
なお、測定は、積層体作製直後と、窒素置換したイナートオーブン中にて450℃にて1時間、2時間3時間の熱処理、510℃にて1時間、2時間、3時間の熱処理、530℃にて1時間、2時間、3時間の熱処理の後に行った。
【0084】
<熱処理後の外観品位>
初期、および窒素置換したイナートオーブン中にて450℃にて1時間、2時間3時間の熱処理、510℃にて1時間、2時間、3時間の熱処理、530℃にて1時間、2時間、3時間の熱処理の後に積層体の外観品位について目視評価した。
【0085】
<ポリイミドフィルムの製造>
〔製造例1〕
(ポリアミド酸溶液の調製)
窒素導入管、温度計、攪拌棒を備えた反応容器内を窒素置換した後、3,3',4,4'−ビフェニルテトラカルボン酸二無水物(BPDA)398質量部と、パラフェニレンジアミン(PDA)147質量部とを、4600質量部のN、N−ジメチルアセトアミドに溶解させて加え、滑材としてコロイダルシリカをジメチルアセトアミドに分散してなる分散体(日産化学工業製「スノーテックス(登録商標)DMAC−ST30」)をシリカ(滑材)がポリアミド酸溶液中のポリマー固形分総量に対して0.15質量%になるように加え、25℃の反応温度で24時間攪拌して、表1に示す還元粘度を有する褐色で粘調なポリアミド酸溶液V1を得た。
【0086】
(ポリイミドフィルムの作製)
前記で得られたポリアミド酸溶液V1を、スリットダイを用いて幅1050mmの長尺ポリエステルフィルム(東洋紡社製「A−4100」)の平滑面(無滑材面)上に、最終膜厚(イミド化後の膜厚)が25μmとなるように塗布し、105℃にて20分間乾燥した後、ポリエステルフィルムから剥離して、幅920mmの自己支持性のポリアミド酸フィルムを得た。
次いで、得られた自己支持性ポリアミド酸フィルムをピンテンターによって、150℃〜420℃の温度領域で段階的に昇温させて(1段目180℃×5分、2段目270℃×10分、3段目420℃×5分間)熱処理を施してイミド化させ、両端のピン把持部分をスリットにて落とし、幅850mmの長尺ポリイミドフィルムF1(1000m巻き)を得た。得られたフィルムF1の特性を表1に示す。
【0087】
〔製造例2〕
(ポリアミド酸溶液の調製)
窒素導入管、温度計、攪拌棒を備えた反応容器内を窒素置換した後、5−アミノ−2−(p−アミノフェニル)ベンゾオキサゾール(DAMBO)223質量部と、N,N−ジメチルアセトアミド4416質量部とを加えて完全に溶解させ、次いで、ピロメリット酸二無水物(PMDA)217質量部とともに、滑材として前記コロイダルシリカ分散体をシリカ(滑材)がポリアミド酸溶液中のポリマー固形分総量に対して0.12質量%になるように加え、25℃の反応温度で24時間攪拌して、表1に示す還元粘度を有する褐色で粘調なポリアミド酸溶液V2を得た。
【0088】
(ポリイミドフィルムの作製)
ポリアミド酸溶液V1に代えて、前記で得られたポリアミド酸溶液V2を用い、ピンテンターによって、150℃〜485℃の温度領域で段階的に昇温させた(1段目150℃×5分、2段目220℃×5分、3段目485℃×10分間)以外は製造例1と同様に操作し、幅850mmの長尺ポリイミドフィルムF2(1000m巻き)を得た。得られたフィルムF2の特性を表1に示す。
〔製造例3〕
(ポリアミド酸溶液の調製)
製造例2において、前記コロイダルシリカ分散体を添加しなかった以外は同様に操作し、ポリアミド酸溶液V3を得た。
【0089】
(ポリイミドフィルムの作製)
前記で得られたポリアミド酸溶液V3をコンマコーターを用いて幅1050mmの長尺ポリエステルフィルム(東洋紡績株式会社製「A−4100」)の平滑面(無滑材面)上に、最終膜厚(イミド化後の膜厚)が約5μmとなるように塗布し、次いでポリアミド酸溶液V2をスリットダイを用いて、最終膜厚がV3を含めて38μmとなるように塗布し、105℃にて25分間乾燥した後、ポリエステルフィルムから剥離して、幅920mmの自己支持性のポリアミド酸フィルムを得た。
次いで、得られた自己支持性ポリアミド酸フィルムをピンテンターによって、180℃〜495℃の温度領域で段階的に昇温させて(1段目180℃×5分、2段目220℃×5分、3段目495℃×10分間)熱処理を施してイミド化させ、両端のピン把持部分をスリットにて落とし、幅850mmの長尺ポリイミドフィルムF3(1000m巻き)を得た。得られたフィルムF3の特性を表1に示す。
【0090】
【表1】
【0091】
<フィルムのプラズマ処理>
ポリイミドフィルムを所定サイズに裁断し、枚葉式の真空プラズマ装置により処理を行った。真空プラズマ処理としては、平行平板型の電極を使ったRIEモード、RFプラズマによる処理を採用し、真空チャンバー内に窒素ガスを導入し、13.54MHzの高周波電力を導入するようにし、処理時間は3分間とした。
【0092】
基材として、無機板ないし、多層薄膜の場合は別途薄膜が形成された無機基板を基材として用い、以下の薄膜形成を行った
【0093】
<金属薄膜の形成例1>
無機基板を超純粋を用いて超音波洗浄し、HEPAフィルターを通じた乾燥空気により十分に乾燥させた。次いで乾燥させた無機基板を、ガス導入機構とシャッターのあるマグネトロンスパッタリング装置のチャンバー内にセットし、50mm×80mmの開口部を複数有し、開口部間12mmをとしたアルミニウム製マスクにて無機基板表面をマスキングし、チャンバー内に5mTorrとなるようにアルゴンガスを導入し、金属モリブデンターゲットを用い、DC電力印加によるスパッタリングを10秒間行い、無機基板表面にモリブデン薄膜を形成した。
なお、事前に同条件下にて600秒間のスパッタリングを行い得られたアルミニウム薄膜の膜厚を触針式の段差計にて測定したところ、582nmであった。スパッタリング時間と堆積速度との関係はほぼ直線的であることが知られているため、比例計算により10秒間にて得られたモリブデン薄膜の厚さは9.7nmと見積もった。
【0094】
<金属薄膜の形成例2>
無機基板を超純粋を用いて超音波洗浄し、HEPAフィルターを通じた乾燥空気により十分に乾燥させた。次いで乾燥させた無機基板を、ガス導入機構とシャッターのあるマグネトロンスパッタリング装置のチャンバー内にセットし、50mm×80mmの開口部を複数有し、開口部間12mmをとしたアルミニウム製マスクにて無機基板表面をマスキングし、チャンバー内に5mTorrとなるようにアルゴンガスを導入し、金属タングステンターゲットを用い、DC電力印加スパッタリングを30秒間行い、無機基板表面にタングステン薄膜を形成した。
なお、事前に同条件下にて3600秒間のスパッタリングを行い、得られた薄膜の膜厚を触針式の段差計にて測定したところ、407nmであった。スパッタリング時間と堆積速度との関係はほぼ直線的であることが知られているため、比例計算により30秒間にて得られたタングステン薄膜の厚さは3.4nmと見積もった。
【0095】
<金属薄膜の形成例3>
無機基板を超純粋を用いて超音波洗浄し、HEPAフィルターを通じた乾燥空気により十分に乾燥させた。次いで乾燥させた無機基板を、ガス導入機構とシャッターのあるマグネトロンスパッタリング装置のチャンバー内にセットし、50mm×80mmの開口部を複数有し、開口部間12mmをとしたアルミニウム製マスクにて無機基板表面をマスキングし、チャンバー内に5mTorrとなるようにアルゴンガスを導入し、金属タングステンターゲットの上に金属モリブデンチップを乗せた状態にてを用い、DC電力印加スパッタリングを30秒間行い、無機基板表面にモリブデンとタングステンの合金薄膜を形成した。
なお、事前に同条件下にて3600秒間のスパッタリングを行い、得られた薄膜の膜厚を触針式の段差計にて測定したところ、523nmであった。スパッタリング時間と堆積速度との関係はほぼ直線的であることが知られているため、比例計算により30秒間にて得られたタングステン薄膜の厚さは4.4nmと見積もった。また蛍光X線で求めたモリブデンとタングステンの合金の比率はモリブデン:タングステン=14:86(元素比)であった。
【0096】
<金属薄膜の形成例4>
無機基板を超純粋を用いて超音波洗浄し、HEPAフィルターを通じた乾燥空気により十分に乾燥させた。次いで乾燥させた無機基板を、ガス導入機構とシャッターのあるマグネトロンスパッタリング装置のチャンバー内にセットし、50mm×80mmの開口部を複数有し、開口部間12mmをとしたアルミニウム製マスクにて無機基板表面をマスキングし、チャンバー内に5mTorrとなるようにアルゴンガスを導入し、金属クロムターゲットを用い、DC電力印加スパッタリングを30秒間行い、無機基板表面にクロム薄膜を形成した。
なお、事前に同条件下にて600秒間のスパッタリングを行い、得られた薄膜の膜厚を触針式の段差計にて測定したところ、730nmであった。スパッタリング時間と堆積速度との関係はほぼ直線的であることが知られているため、比例計算により30秒間にて得られたクロム薄膜の厚さは24nmと見積もった。
【0097】
<金属薄膜の形成例5>
無機基板を超純粋を用いて超音波洗浄し、HEPAフィルターを通じた乾燥空気により十分に乾燥させた。次いで乾燥させた無機基板を、ガス導入機構とシャッターのあるマグネトロンスパッタリング装置のチャンバー内にセットし、50mm×80mmの開口部を複数有し、開口部間12mmをとしたアルミニウム製マスクにて無機基板表面をマスキングし、チャンバー内に5mTorrとなるようにアルゴンガスを導入し、金属ニッケル−クロム合金ターゲットを用い、DC電力印加スパッタリングを30秒間行い、無機基板表面にニッケル−クロム合金薄膜を形成した。
得られたニッケル−クロム合金薄膜の蛍光X線測定による厚さは160nm、ニッケル−クロム比率はニッケル:クロム=60:40(元素比)であった。
【0098】
<アルミニウム酸化物膜の形成例>
基材を超純粋を用いて超音波洗浄し、HEPAフィルターを通じた乾燥空気により十分に乾燥させた。次いで乾燥させた基材を、ガス導入機構とシャッターのあるマグネトロンスパッタリング装置のチャンバー内にセットし、50mm×80mmの開口部を複数有し、開口部間12mmをとしたアルミニウム製マスクにて基材表面をマスキングし、チャンバー内に15mTorrとなるようにアルゴンガスを導入し、金属アルミニウムターゲットを用い、13.54MHzのRF電力印可によるたマグネトロンスパッタリングを5秒間行い、基材表面にアルミニウム薄膜を形成した。
なお、事前に同条件下にて120秒間のスパッタリングを行い得られたアルミニウム薄膜の膜厚を触針式の段差計にて測定したところ、405nmであった。スパッタリング時間と堆積速度との関係はほぼ直線的であることが知られているため、比例計算により5秒間にて得られたアルミニウム薄膜の厚さは16.9nmと見積もった。
次いで、アルミニウム薄膜形成後に、チャンバー内を酸素ガスにて置換し、チャンバー内が30mTorrとなるように酸素ガスを流した状態で、逆スパッタリングを10sec行い、アルミニウム薄膜表面を酸化させ、アルミニウム酸化物膜を形成した。
【0099】
<酸化珪素>
エレクトロンビーム蒸着により厚さ70nmの酸化珪素薄膜を形成した。
【0100】
<窒化珪素>
反応性スパッタリング法にて、厚さ120nmの窒化珪素薄膜を形成した。
【0101】
<窒化アルミニウム>
反応性スパッタリング法にて、厚さ150nmの窒化アルミニウム薄膜を形成した。
【0102】
<アルミニウムとシリコンの複合酸化物膜の形成例>
前記アルミニウムとシリコンの複合酸化物膜の形成例において、アルミニウムターゲットへの印加電力を30w、二酸化珪素ターゲットへの印加電力を150wとした以外は同条件にて薄膜形成を行った。アルミニウムとシリコンの比率が37:63(元素比)のアルミニウムとシリコンの複合酸化物の薄膜を得た。
なお、事前に600秒の薄膜堆積実験を行い、触針式段差計で厚さを測定したところ、1134nmであったことから、10秒間での堆積膜厚は18.9nmと見積もった。
【0103】
<基材へのシランカップリング剤層形成>
基材として無機基板ないし薄膜形成後の無機基板を用い以下の手法にてシランカップリング剤層を形成した。
【0104】
<塗布例1(スピンコート法)>
シランカップリング剤として3−アミノプロピルトリメトキシシラン(信越化学工業社製「KBM−903」)をイソプロピルアルコールによって0.5質量%に希釈したシランカップリング剤希釈液を調製した。基材をジャパンクリエイト社製スピンコーターに設置して、イソプロピルアルコール70mlを回転中央部に滴下して500rpmにて液の振り切りと乾燥を行い、引き続き、前記シランカップリング剤希釈液約35mlを回転中央部に滴下して、まず500rpmにて10秒間回転させ、次いで回転数を1500rpmまで上げて20秒間回転させ、シランカップリング剤希釈液を振り切った。次に、クリーンベンチ内に載置されている100℃に加熱したホットプレートに、シランカップリング剤が塗布された前記基材をシランカップリング剤塗布面が上になるように載せ、約3分間加熱して、シランカップリング剤スピンコート塗布基板とした。
<塗布例2(気相塗布法)>
ホットプレートを有する真空チャンバーを用い、以下の条件にて基材へのシランカップリング剤塗布を行った。
シランカップリング剤(信越化学工業社製「KBM−903」:3−アミノプロピルトリメトキシシラン)100質量部をシャーレに満たし、ホットプレートの上に静置した。このときホットプレート温度は25℃である。次いでシランカップリング剤の液面から垂直方向に300mm離れた箇所に、基材を薄膜面を下にして水平に保持し、真空チャンバーを閉じ、大気圧にて酸素濃度が0.1体積%以下となるまで窒素ガスを導入した。次いで窒素ガスの導入を止め、チャンバー内を3×10-4Paまで減圧し、ホットプレート温度を120℃まで昇温し、10分間保持してシランカップリング剤蒸気への暴露を行った。その後、ホットプレート温度を下げ、同時に真空チャンバー内にクリーンな窒素ガスを静かに導入して大気圧まで戻し、ガラス板を取り出し、クリーン環境下にて100℃のホットプレートに、シランカップリング剤塗布面を上にして載せ、約3分間熱処理を行い、シランカップリング剤気相塗布基板を得た。
【0105】
<実施例1>
<積層体の作製と初期特性の評価>
無機基板として、370mm×470mm、厚さ1.1mmのソーダガラスを用い、モリブデン薄膜を前記形成例に従って形成し、さらに薄膜層側にスピンコート法によりシランカップリング剤処理を行った。
次いで380mm×480mmに裁断し、プラズマ処理を行ったポリイミドフィルムF1のプラズマ処理面が、無機基板のシランカップリング剤処理面に重なるように、ラミネーター(クライムプロダクツ社製SE650nH)を用いて仮ラミネートした。ラミネート条件は、無機基板側温度100℃、ラミネート時のロール圧力5kg/cm2、ロール速度5mm/秒とした。仮ラミネート後のポリイミドフィルムはフィルムの自重では剥がれないが、フィルム端部を引っ掻くと簡単に剥がれる程度の接着性であった。その後、得られた仮ラミネート積層基板をクリーンオーブンに入れ、200℃にて30分間加熱した後、室温まで放冷して、高分子フィルム積層基板を得た。得られた積層基板の特性を表2に示す。ここに易剥離部はアルミニウムとシリコンの複合酸化物薄膜層が形成されている部分、良好接着部はマスキングにより薄膜層が形成されていない部分である。
【0106】
以下、実施例1と同様に、無機基板、薄膜形成法、ポリイミドフィルム、シランカップリング剤塗布方法、ポリイミドフィルムのプラズマ処理有無などの条件を適宜変更して積層体を作製し、特性を評価した。結果を表2、表3、表4に示す。
【0107】
【表2】
【0108】
【表3】
【0109】
【表4】
【0110】
【表5】
【0111】
【表6】
【0112】
【表7】
【0113】
【表8】
【0114】
なお、表中「ガラス」は、370mm×470mm、厚さ1.1mmのソーダガラス、「Siウェハ」は8インチ、厚さ0.7mmのシリコン単結晶ウェハを用いた。「F3無滑面」は、フィルムF3のポリアミド酸V3を用いた側である。
また、Mo:モリブデン薄膜、W:タングステン薄膜、Mo-W:モリブデン−タングステン合金薄膜、Cr:クロム薄膜、Ni-Cr:ニッケル−クロム合金薄膜、Al2O3:酸化アルミニウム薄膜、AlN:窒化アルミニウム薄膜、Al2O3−SiOx:アルミニウム、シリコンの複合酸化物薄膜、SiO2:酸化珪素薄膜、Si3N4」窒化珪素薄膜、Al2O3/Mo:酸化アルミニウム薄膜(シランカップリング剤側)/モリブデン薄膜(無機基板側)、以下同様である。
【0115】
<応用例1>
実施例22にて得られた積層体を用い、以下の工程により、ポリイミドフィルム上にボトムゲート型構造を有する薄膜トランジスタレイを、易剥離部上に作製した。
積層体のポリイミドフィルム側全面に反応性スパッタリング法を用いてSiONからなる100nmのガスバリア膜を形成した。次いで、厚さ80nmのアルミニウム層をスパッタリング法にて形成し、フォトリソグラフ法によりゲート配線とゲート電極を形成した。続いて、スリットダイコーターを用いてエポキシ樹脂系のゲート絶縁膜(厚さ80nm)を形成した。さらに、スパッタリング法にて5nmのCr層、40nmの金層を形成し、フォトリソグラフ法にてソース電極とドレイン電極を形成した。加えて、スリットダイコーターを用いて、絶縁層兼ダム層となるエポキシ樹脂を塗布し、UV−YAGレーザーによるアブレーションにて、ソース電極とドレイン電極を含む半導体層用の厚さ250nmのダム層を直径100μmの円形となるように形成し、また上部電極との接続点となるビア形成も同時に行った。そして、インクジェット印刷法により有機半導体であるポリチオフェンをダム内に塗出、ビア部には銀ペーストを埋め込み、さらに上部電極としてアルミ配線を形成し640×480ピクセルを有する薄膜トランジスタレイを形成した。
得られた薄膜トランジスタレイをバックプレーンとし、フロントプレーンに電気泳動表示媒体を重ねることにより、ディスプレイ素子とし、トランジスタの収率と表示性能を、各ピクセルのON/OFFにて判定した。その結果、いずれの積層体を用いて作製された薄膜トランジスタレイでは、いずれも表示性能は良好であった。
また、薄膜トランジスタレイにフロントプレーンを重ねた後に、薄膜パターン外周の0.5mm程度内側に沿ってUV−YAGレーザーにて高分子フィルム部を焼き切り、切れ目の端部から薄いカミソリ上の刃を用いてすくい上げるように剥離を行い、フレキシブル電気泳動型ディスプレイを得た。得られた電気泳動型ディスプレイは良好な表示特性を示し、5mmφの丸棒に巻き付けても性能劣化は見られなかった。
【0116】
<応用例2>
応用例1にてフレキシブル電気泳動ディスプレイデバイスを剥離した後に、無機基板を10%の水酸化ナトリウム水溶液に室温にて20時間浸積した。その後、水洗を行い、さらに液晶基板用ガラス洗浄装置にてクリーニング洗浄を行い、乾燥後にUVオゾン洗浄を3分間行った。以後、前記<無機基板へのシランカップリング剤層形成>の工程に戻り、それ以降の工程については最初に積層体を作製したときと同様の作製法を行うことにより積層体を得た。得られた積層体の品位は良好で、十分にリサイクル使用が可能な状態であった。
【0117】
<応用例3>
実施例24にて得られた積層体を、開口部を有するステンレス製の枠を被せてスパッタリング装置内の基板ホルダーに固定した。基板ホルダーと積層体の支持体とを密着するように固定して、基板ホルダー内に冷媒を流すことによって、積層体の温度を設定できるようにし、積層体の温度を2℃に設定した。まず、積層体のポリイミドフィルム表面にプラズマ処理を施した。プラズマ処理条件は、アルゴンガス中で、周波数13.56MHz、出力200W、ガス圧1×10-3Torrの条件とし、処理時の温度は2℃、処理時間は2分間とした。次いで、周波数13.56MHz、出力450W、ガス圧3×10-3Torrの条件で、ニッケル−クロム合金のターゲットを用いて、アルゴン雰囲気下にてDCマグネトロンスパッタリング法により、1nm/秒のレートで厚さ11nmのニッケル−クロム合金被膜(下地層)を形成した。次いで、積層体の温度を2℃に設定し、スパッタリングを行った。そして、10nm/秒のレートで銅を蒸着させ、厚さ0.22μmの銅薄膜を形成した。このようにして、各積層体から下地金属薄膜形成フィルム付きの積層板を得た。なお、銅およびNiCr層の厚さは蛍光X線法によって確認した。
【0118】
次に、各フィルムからの下地金属薄膜形成フィルム付きの積層板をCu製の枠に固定し、硫酸銅めっき浴を用い、電解めっき液(硫酸銅80g/l、硫酸210g/l、HCl、光沢剤少量)に浸漬し、電気を1.5A/dm2流すことにより、厚さ4μmの厚付け銅メッキ層(厚付け層)を形成した。引き続き120℃で10分間熱処理して乾燥し、積層体の高分子フィルム面に銅箔層を形成した。
【0119】
得られた各銅箔層に対して、フォトレジスト(シプレー社製「FR−200」)を塗布乾燥した後に、ガラスフォトマスクでオフコンタクト露光し、さらに1.2質量%KOH水溶液にて現像した。次に、HClおよび過酸化水素を含む塩化第二銅のエッチングラインで、40℃、2kgf/cm2のスプレー圧でエッチングし、ライン/スペース=20μm/20μmのライン列をテストパターンとして形成した。次いで、0.5μm厚に無電解スズメッキを施した後、125℃で1時間のアニール処理を行い、配線パターンを得た。
得られた配線パターンを光学顕微鏡で観察し、またテストパターンを用いて断線/短絡の有無をチェックした。結果、いずれも配線パターンには、断線、短絡は無く、パターン形状も良好であった。次いで、応用例1と同様の手法にてガラス板から高分子フィルムを剥離し、フレキシブル配線基板とした。得られたフレキシブル配線板の屈曲性は良好であった。
【0120】
<応用例4>
実施例18にて得られた積層体を用い、以下の工程により、ポリイミドフィルム上に真空蒸着法を用いてタングステン膜(膜厚75nm)を形成し、さらに大気にふれることなく、絶縁膜として酸化シリコン膜(膜厚150nm)を積層形成した。次いで、プラズマCVD法で下地絶縁膜となる酸化窒化シリコン膜(膜厚100nm)を形成し、さらに大気にふれることなく、アモルファスシリコン膜(膜厚54nm)を積層形成した。
【0121】
次いでアモルファスシリコン膜の水素元素を除去し結晶化を促進し、ポリシリコン膜を形成する為に500℃の熱処理を40分間行った。
得られたポリシリコン膜の易剥離部にある部分を用いてTFT素子を作製した。まず、ポリシリコン薄膜をパターニングを行って所定の形状のシリコン領域を形成し、適宜、ゲート絶縁膜の形成、ゲート電極の形成、活性領域へのドーピングによるソース領域またはドレイン領域の形成、層間絶縁膜の形成、ソース電極およびドレイン電極の形成、活性化処理を行い、ポリシリコンを用いたPチャンネルTFTのアレイを作製した。
TFTアレイ外周の0.5mm程度内側に沿ってUV−YAGレーザーにて高分子フィルム部を焼き切り、切れ目の端部から薄いカミソリ上の刃を用いてすくい上げるように剥離を行い、フレキシブルなTFTアレイを得た。剥離は極微力で可能であり、TFTにダメージを与えること無く剥離することが可能であった。得られたフレキシブルTFTアレイは3mmφの丸棒に巻き付けても性能劣化は見られず、良好な特性を維持した。