特許第6850854号(P6850854)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 東レエンジニアリング株式会社の特許一覧

<>
  • 特許6850854-ボンディングヘッドおよび実装装置 図000002
  • 特許6850854-ボンディングヘッドおよび実装装置 図000003
  • 特許6850854-ボンディングヘッドおよび実装装置 図000004
  • 特許6850854-ボンディングヘッドおよび実装装置 図000005
  • 特許6850854-ボンディングヘッドおよび実装装置 図000006
  • 特許6850854-ボンディングヘッドおよび実装装置 図000007
  • 特許6850854-ボンディングヘッドおよび実装装置 図000008
  • 特許6850854-ボンディングヘッドおよび実装装置 図000009
  • 特許6850854-ボンディングヘッドおよび実装装置 図000010
  • 特許6850854-ボンディングヘッドおよび実装装置 図000011
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6850854
(24)【登録日】2021年3月10日
(45)【発行日】2021年3月31日
(54)【発明の名称】ボンディングヘッドおよび実装装置
(51)【国際特許分類】
   H01L 21/60 20060101AFI20210322BHJP
【FI】
   H01L21/60 311T
【請求項の数】3
【全頁数】10
(21)【出願番号】特願2019-207900(P2019-207900)
(22)【出願日】2019年11月18日
(62)【分割の表示】特願2015-204941(P2015-204941)の分割
【原出願日】2015年10月16日
(65)【公開番号】特開2020-25141(P2020-25141A)
(43)【公開日】2020年2月13日
【審査請求日】2019年11月18日
(73)【特許権者】
【識別番号】000219314
【氏名又は名称】東レエンジニアリング株式会社
(72)【発明者】
【氏名】寺田 勝美
【審査官】 安田 雅彦
(56)【参考文献】
【文献】 特開2014−022629(JP,A)
【文献】 特開2004−063947(JP,A)
【文献】 米国特許出願公開第2015/0129135(US,A1)
【文献】 国際公開第2012/165313(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 21/60−607
H01L 21/52
H01L 23/34−38
H05K 13/00−08
(57)【特許請求の範囲】
【請求項1】
電子部品の加熱圧着に用いるボンディングヘッドであって、
下面に電子部品を保持するアタッチメントツールと、
前記アタッチメントツールの上部に配置されるヒータと、
前記ヒータの上部に配置される断熱ブロックとを備え、
前記ヒータの上面側に、平行な複数の溝を設けることで複数の板状壁を形成し、
更に前記板状壁上部を前記ヒータ上面に対して低くして、前記断熱ブロックの下面と前記板状壁の上部に隙間を設けたボンディングヘッド。
【請求項2】
請求項1に記載のボンディングヘッドであって、
前記隙間の間隔が、前記板状壁の高さの0.3%以上で40%以下であることを特徴とするボンディングヘッド。
【請求項3】
請求1または請求項2に記載のボンディングヘッドを備えていることを特徴とする実装装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体チップ等の電子部品を配線基板等に加熱圧着する際に用いるボンディングヘッドおよびこれを備えた実装装置に関するものである。
【背景技術】
【0002】
半導体チップ等の電子部品を配線基板等の基板に実装する方法として、フリップチップ工法が知られている。フリップチップ工法では、図5に示すような実装装置1を用いて、電子部品の電極と基板の電極を熱圧着して接合させている。
【0003】
図5の実装装置1では、まず、図示しない電子部品受け渡し機構により電子部品Cがボンディングヘッド2の先端部に配置され、ボンディングヘッド2に保持される。その後、基板ステージ4上に保持された基板Bに設けられたアライメントマークと電子部品Cに設けられたアライメントマークを画像認識手段5で認識し、位置合わせを行う。位置合わせに際しては、ボンディングヘッド2と基板ステージ4の少なくとも一方を、基板Bと平行な面内方向(XY方向およびθ方向)に移動させて行う。位置合わせ後は、ボンディングユニット3によりボンディングヘッド2を下降し、電子部品Cを昇温加熱しながら、基板Bに圧着して、電子部品Cの電極と基板Bの電極を接合する。接合が完了すると、ボンディングヘッド2は電子部品Cの保持を解除し、ボンディングユニット3によって上昇し、次に実装すべき電子部品Cを先端部に保持し、前述の一連の動作が行われる。
【0004】
ここで、ボンディングヘッド2は、図6に示すような構成となっている。すなわち、ボンディングヘッド2は、電子部品Cを下面で吸着保持するアタッチメントツール20、アタッチメントツール20の上方に配置されるヒータ21、ヒータ21の上方に配置される断熱ブロック22を備えている。アタッチメントツール20を昇温する機能を有するヒータ21を加熱することで電子部品Cが加熱されるが、ヒータ21の熱を電子部品Cに効率的に供給するために、ヒータ21上方への伝熱を抑制するため断熱ブロック22が配置されている。更に、断熱ブロック22はホルダ23を介してヘッド本体24に連結されている。
【0005】
フリップチップ工法では、はんだバンプを電子部品の電極として用いることが多く、基板に加熱圧着された電子部品は、はんだが固相状態になるまで冷却される必要がある。また、近年では、電子部品の電極側の面に熱硬化性接着剤層を予め設けておいて、熱圧着時に熱硬化性接着剤層を硬化させる工法の採用も進んでいるが、このような工法において、電子部品を保持する段階においてアタッチメントツールの温度は熱硬化性接着剤層の硬化開始温度よりも低くなければならない。このため、一連のタクトタイムにおいて、加熱したアタッチメントツール(およびヒータ)を冷却する時間の割合が増しており、タクトタイム短縮の観点から効果的な冷却手段が求められている。
【0006】
たとえば、特許文献1では、アタッチメントツールとヒータを周囲に設けた冷却ブロー用ノズルを用いて空冷する方法が紹介されている。ところが、この方法では、空冷されている面と内部に温度差を生じ、内部まで冷却する時間としては大きな短縮が望めない。
【0007】
そこで、ヒータに複数の溝を設け、ヒータと断熱ブロックの重ね合わせによって形成される流路に、ヒータ内側から冷却空気を流してヒータを冷却する方法も提案されている(例えば特許文献2)。
【0008】
その一例を図7に示す。図7では、図6に示したボンディングヘッド2におけるヒータ21と断熱ブロック22の部分を示している。また。図8および図9は、図7に示した部分を構成するヒータ21と断熱ブロック22の形状を示す三面図である。図8に示すようにヒータ21の上面には複数の溝21Uが設けられており、図9に示す断熱ブロック22とヒータ21を重ね合わせることにより、複数の管状流路21Pが形成される。一方、断熱ブロック22にはヒータ21の全ての溝21Uに跨る範囲の窪み22Dが形成され、この窪み22Dに繋がる通気孔22Vが設けられている。
【0009】
このため、通気孔22Vに冷却空気を送りこむことで、冷却空気は、ヒータ21中央付近から両側面(図7の前方向および後方向)に流れ、ヒータ21は内部から冷却される。なお、図7および図8において、溝21Uおよび管状流路21Pは説明のために大きめに描いているが、実際は各片が1mm未満の溝21U(管状流路21P)が多数形成されている。
【0010】
このように、ヒータ21の上面に溝21Uを形成し、断熱ブロック22の下面22Sと重ねて流路を形成する方式は、ヒータ21を内部から冷却できることから、外部から冷却空気を吹きかける場合に比べて有利な冷却方式である。
【先行技術文献】
【特許文献】
【0011】
【特許文献1】特開平10−340915号公報
【特許文献2】特開2014−22629号公報
【発明の概要】
【発明が解決しようとする課題】
【0012】
この方式では、図7において、溝21Uを形成する壁21Wの上部21Tは断熱ブロック22の下面22Sに密着した状態となる。その結果、壁21Wの上部21Tから外部への伝熱が妨げられヒータ21の最上面における放熱特性に難があった。その一方において、ヒータ21を昇温する際には、ヒータ21から断熱ブロック22への伝熱は僅かながらでも存在するため、熱伝導率が低く放熱の少ない断熱ブロック22の温度が上昇する。その結果、ヒータ21を冷却する段階で、(ヒータ21に密着した)断熱ブロック22からヒータ21への伝熱が生じて、ヒータ21を冷却する際の弊害にもなっていた。
【0013】
また、壁21Wの上部21Tが断熱ブロック22の下面22Sと密着していることから、ヒータ21の溝21Uと断熱ブロック22の下面22Sによって形成される管状流路21Pは、相互間で空気漏れのない状態になっている。 このため、(溝21U形成時の加工精度バラツキの影響等で)管状流路21Pの形状にバラツキがあると、個々の管状流路21P間で冷却効果が異なり、ヒータ面内で冷却ムラが生じる。
【0014】
一方において、この方式は、ヒータ21と断熱ブロック22は中央近傍で締結部品で上下方向に固定されているため、中央近傍以外の密着面においてヒータ21と断熱ブロック21は横方向には熱膨張および収縮し得る。このため、上面に微小な溝21Uを多数形成したヒータ21と断熱ブロック22を重ね合わせた形態では昇温・冷却を繰り返すことにより弊害が生じることもある。
【0015】
この弊害は、ヒータ21と断熱ブロック22の素材が異なることに起因し、昇温・冷却の際にヒータと断熱部材の界面に熱伝導率の違いによる温度差が出来、それぞれの熱膨張差によって発生する応力に係る。例えば、ヒータ21が窒化アルミで断熱ブロック22がアドセラム(登録商標)の組み合わせであった場合に熱膨張係数はどちらも5×10−6/K程度で同等であるが、熱伝導率が100倍以上違うため両材料の界面に大きな温度差が生まれて熱膨張による伸びの差が発生してしまう。すなわち、ヒータ21の上面に狭幅な溝21Uを多数形成しているめ、(溝21Uを形成する)薄い壁21Wが応力の影響を受けやすく、壁21Wの上部21Tが変形したり摩擦を生じる。このような変形や摩擦は極僅かなものであっても、ヒータ21の昇温・冷却を繰り返すうちに、図10に示すように、壁21Wの上部21Tが削られたり(図10のAB)、損傷したり(図10のBR)、断熱ブロック22の下面22Sが削られることもある。特にセラミックの場合は固くて脆い材料のため、壁21Wの上部21の角部は応力が集中して欠けやすいと言う欠点がある。
【0016】
ヒータ21の溝21Uを形成する壁21Wや断熱ブロック22の下面22Sが削られたり損傷すると、その磨耗粉PWや破片BPは溝21Uに入り込み、一部は冷却空気とともに外部に輩出され、一部は溝21Uに残り管状流路21Pを塞ぐ。ここで、外部に排出された、磨耗粉PWや破片BPは、実装雰囲気における異物となり、電子部品Cの実装品質に悪影響を及ぼす。また、溝21Uに残った磨耗分は、管状流路21Pを塞ぐことで冷却空気の流れを妨げ、冷却ムラの原因となる。
【0017】
本発明は、上記問題に鑑みて成されたものであり、冷却性能に優れ、昇温・冷却を繰り返しても、実装品質に悪影響を及ぼさないボンディングヘッドおよびこれを用いた実装装置を提供するものである。
【課題を解決するための手段】
【0018】
上記の課題を解決するために、請求項1に記載の発明は、
電子部品の加熱圧着に用いるボンディングヘッドであって、
下面に電子部品を保持するアタッチメントツールと、
前記アタッチメントツールの上部に配置されるヒータと、
前記ヒータの上部に配置される断熱ブロックとを備え、
前記ヒータの上面側に、平行な複数の溝を設けることで複数の板状壁を形成し、
更に前記板状壁上部を前記ヒータ上面に対して低くして、前記断熱ブロックの下面と前記板状壁の上部に隙間を設けたボンディングヘッドである。
【0019】
請求項2に記載の発明は、請求項1に記載のボンディングヘッドであって、
前記隙間の間隔が、前記板状壁の高さの0.3%以上で40%以下であることを特徴とするボンディングヘッドである。
【0020】
請求項3に記載の発明は、請求1または請求項2に記載のボンディングヘッドを備えていることを特徴とする実装装置である。


【発明の効果】
【0021】
本発明のボンディングヘッドおよびこれを用いた実装装置により、冷却性能に優れ、昇温・冷却を繰り返しても、実装品質に悪影響を及ぼさない電子部品の実装が行える。
【図面の簡単な説明】
【0022】
図1】本発明の一実施形態に係るボンディングヘッドのヒータと断熱ブロックを示す図である。
図2】本発明の一実施形態に係るボンディングヘッドの断熱ブロックの構造を示す三面図である。
図3】本発明の別の実施形態に係るボンディングヘッドのヒータと断熱ブロックを示す図である。
図4】本発明の別の実施形態に係るボンディングヘッドのヒータの構造を示す三面図である。
図5】実装装置の構成を示す図である。
図6】ボンディングヘッドの構成を示す図である。
図7】公知技術のボンディングヘッドのヒータと断熱ブロックを示す図である。
図8】公知技術のボンディングヘッドのヒータの構造を示す三面図である。
図9】公知技術のボンディングヘッドの断熱ブロックの構造を示す三面図である。
図10】公知技術の問題点の一つを説明する図である。
【発明を実施するための形態】
【0023】
本発明の実施形態について、図面を用いて説明する。
本発明の一実施形態に係る実装装置とボンディングヘッドは、図5に示す実装装置1と図6に示すボンディングヘッド2のような構成をしており、ボンディングヘッド2におけるヒータ21と断熱ブロック22をの拡大して示したのが図1である。また、図2には図1に示した断熱ブロック22の三面図を示している。
【0024】
図1において、ヒータ21の材質はセラミックスであり、内部に発熱抵抗体を埋め込んだものである。なお、セラミックスとしては熱伝導率が高く(50W/m・K以上)、電気的絶縁性に優れたものが望ましく、窒化アルミニウムなどが好適である。一方、断熱ブロック22の材質もセラミックスを用いるが、熱伝導率が5W/m・K以下、望ましくは1.5W/m・K以下が好適である。
【0025】
図1のヒータ21は、図8に三面図を示したものと同じ形状であり、上面の1側面から対向する側面に向けて、幅がWUで深さがHUの溝21Uが複数形成してある。溝21Uを複数形成することによって櫛歯状の壁21Wが複数形成される。図8に示すヒータ21において、壁21Wの上部21Tはヒータ21の上面21Sと同じ高さであり、壁21Wの高さはHUとなる。なお、壁21Wは幅はWTであるが、幅WTは溝21Uの幅WUと形成ピッチによって決まる。
【0026】
一方、図1の断熱ブロック22は、図2に示す三面図の形状になっている。図2に示す断熱ブロック22では、図9に示したものと異なり、第2下面22Cを有している。第2下面22Cは平坦かつ下面22Sに平行な面であるが、下面22Sに対して高さHGの段差を有しており、下面22Sを平坦な面に設置すると隙間22Gはトンネル形状となる。この第2下面22Cは、ヒータ21に断熱ブロック22を重ねたときに、トンネル形状の長手方向が溝21Uと平行となり、全ての溝21Uを包括する範囲に隙間22Gを形成する幅を有している。
【0027】
図1に示すヒータ21および断熱ブロック22を備えたボンディングヘッド2では、冷却に際して、図示しない送風系により冷却空気が通気孔22Vに送り込まれ、送り込まれた冷却空気が窪み22Dを経て、溝21Uを通過することによりヒータ21を内側から冷却する。また、冷却空気は隙間22Gも通過するが、その際に壁21Wの上面21Tにも接触するため、ヒータ21を上面から冷却する効果がある。これは、壁21Wの上面21Tが断熱ブロック22の下面22Sに密着しているため、上面21Tが冷却し難い従来技術にはない効果である。
【0028】
一方において、空気の熱伝導率の低さから、この断熱材の隙間22Gにより、壁21Wの上部21Tから第2下面22Cへの熱が伝わり難くなる。このため、ヒータ21を昇温する際の断熱ブロック22の温度が上昇が抑えられる。更に、ヒーター21の発熱の際に奪われる熱量も小さくなり、加熱圧着時にヒーター21の下面に吸着保持されているアタッチメントツール20側、しいては電子部品Cへ効果的に熱を伝えることが出来ると言う効果もある。
【0029】
また、溝21Uの形状にバラツキがあったとしても、各溝21Uの上部は隙間22Gに繋がっており、冷却効果の低い溝21Uの熱は周囲に伝播するため、溝21U間の冷却効果のバラツキは改善される。
【0030】
ところで、断熱ブロック22の下面22Sと第2下面22Cの段差によって形成される隙間の間隔HGは以下のようにして決定する。すなわち、下限値は、ヒータ21の昇温・冷却に伴う、ヒータ21と断熱ブロック22の変形が生じても、壁21Wの上部21Tが断熱ブロック22の第2下面に接触しない値。上限値は、冷却効率等の観点から、溝21Uの断面積に対する隙間22Gの断面積の比率によって定められる。
【0031】
すなわち、下限値としては、壁21Wが最大限熱膨張しても上部21Tが断熱ブロック22の第2下面22Cに接触しないよう、間隔HGは以下の式(1)を満たす。ここで、αはヒータ21を構成する材料の熱膨張係数、ΔTはヒータ21の昇温時と冷却時の温度差である。
【0032】
HG>α×ΔT×HU ・・・・・ (1)
一方、上限値としては、冷却効率の観点での冷却面積/流路体積が、隙間22Gを設けない方式よりも高くしようとすれば、以下の式(2)を満たす必要があることから式(3)であることが望ましい。
【0033】
(2HU+WU)/(HU×WU)≦WT/(HG×(WU+WT)) ・・(2)
HG≦WT×HU×WU/((WU+WT)×(2HU+WU)) ・・・(3)
ただし、ヒータ21と断熱ブロック22の間の断熱性の観点および冷却ムラを低減する効果は(3)式を満たさなくても得られる。このため、溝21U内に有効に冷却空気を送りこむという効果が得られる条件として、隙間22Gが形成する断面積が、溝21Uが形成する断面積と同等までなら問題ない。すなわち、式(4)から間隔HGの条件として式(5)を満たせばよい。
【0034】
HG×(WU+WT)≦HU×WU ・・・・・(4)
HG≦HU×WU/(WU+WT) ・・・・・(5)
このような条件を満たす条件は、溝21Uの形状および配置によって異なるが、具体的な数値としては、溝21Uの深さHUの0.3%から40%の範囲が好適である。
【0035】
ところで、ヒータ21において溝21Uの数が多いほど冷却効果が期待出来るので、加工精度に応じて出来るだ多くの数の溝を形成することが望ましい。また、溝21Uの深さHUが大なほど冷却効果が期待できるので、発熱抵抗体の埋め込みに支障がない範囲で深くすることが望ましい。ここで、溝21Uの数を増やすことおよび深さHUを大とすることは、壁21Wの機械的強度を低下させるが、前述のとおり壁21Wの上部21Tは断熱ブロック22と接触することがないので応力を受けることはない。このため、従来技術に比べて、溝21Uを多く、深く形成することが可能であるので冷却効果改善に有効である。
【0036】
このように、本実施形態で説明したボンディングヘッド2を用いることにより、ヒータ21の冷却効率が改善が図れるとともに、ヒータ21の壁21Wに削れや破損も防げる。このため本実施形態のボンディングヘッド2を用いた実装装置1では、実装品質に悪影響を及ぼすことなく電子部品実装のタクトタイム短縮も図れる。
【0037】
以上、図1を用いて、断熱ブロック22に隙間22Gを設けた例について説明したが、壁21Wの上部21Tが断熱ブロック22に接触しないのであれば、本発明はこれにこだわるものではない。すなわち、図3に示す別の実施形態のように、ヒータ21の上面22Sに対して、壁21Wの上部21Tをが低くなるような隙間21Gを設けるようにしてもよい。すなわち、図4に三面図を示すヒータ21を用いて、図9に示す断熱ブロック22と組み合わせても図1の構成と同様な効果が得られる。ここで、ヒータ21の隙間21Gの間隔についても、図2に示した断熱ブロック22の下面22Sと第2下面22Cの段差によって形成される隙間の間隔HGと同様な範囲にすることが好ましい。
【0038】
さらに本発明はボンディングヘッド2についてだけではなく、基板B側を保持加熱する基板ステージ4にも用いても良く、ボンディングヘッド2、基板ステージ4の両方に用いて両側から加熱及び冷却を行っても良い。電子部品Cが微小で基板B側の方が体積が大きくヘッド側からの熱量が十分に伝わらない場合には、基板B側からヒーターで加熱するのが有効で、電子部品C、基板Bともに微小であった場合には両側からヒーターで加熱するのが有効である。
【符号の説明】
【0039】
1 実装装置
2 ボンディングヘッド
3 ボンディングユニット
4 基板ステージ
5 画像認識手段
20 アタッチメントツール
21 ヒータ
21G 隙間
21P 管状流路
21S ヒータの上面
21T 壁の上部
21U 溝
21W 溝を形成する壁
22 断熱ブロック
22C 断熱ブロックの第2下面
22D 窪み
22G 隙間
22S 断熱ブロックの下面
22V 通気孔
23 ホルダ
24 ヘッド本体
B 基板
C 電子部品
AB 壁の削れ部
BP 破片
BR 壁の損傷部
HG 隙間の間隔
HU 溝の深さ
PW 磨耗粉
WT 壁の幅(厚み)
WU 溝の幅
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10