特許第6851325号(P6851325)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日本ビー・ケミカル株式会社の特許一覧

<>
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6851325
(24)【登録日】2021年3月11日
(45)【発行日】2021年3月31日
(54)【発明の名称】複層塗膜形成方法
(51)【国際特許分類】
   B05D 1/36 20060101AFI20210322BHJP
   B05D 3/02 20060101ALI20210322BHJP
   B05D 7/24 20060101ALI20210322BHJP
【FI】
   B05D1/36 B
   B05D3/02 Z
   B05D7/24 301C
   B05D7/24 302T
   B05D7/24 302S
   B05D7/24 303B
【請求項の数】9
【全頁数】41
(21)【出願番号】特願2017-563820(P2017-563820)
(86)(22)【出願日】2017年1月26日
(86)【国際出願番号】JP2017002777
(87)【国際公開番号】WO2017131100
(87)【国際公開日】20170803
【審査請求日】2019年10月31日
(31)【優先権主張番号】特願2016-13673(P2016-13673)
(32)【優先日】2016年1月27日
(33)【優先権主張国】JP
(73)【特許権者】
【識別番号】593135125
【氏名又は名称】日本ペイント・オートモーティブコーティングス株式会社
(74)【代理人】
【識別番号】100145403
【弁理士】
【氏名又は名称】山尾 憲人
(74)【代理人】
【識別番号】100132252
【弁理士】
【氏名又は名称】吉田 環
(72)【発明者】
【氏名】岡 美穂
(72)【発明者】
【氏名】清水 誠
(72)【発明者】
【氏名】▲高▼以良 慶樹
(72)【発明者】
【氏名】堀内 学
(72)【発明者】
【氏名】瀬川 大介
【審査官】 清水 晋治
(56)【参考文献】
【文献】 特開2013−133445(JP,A)
【文献】 特開2013−060577(JP,A)
【文献】 特開2009−262002(JP,A)
【文献】 特開2003−201442(JP,A)
【文献】 特開2001−009357(JP,A)
【文献】 特開2001−011151(JP,A)
【文献】 特開2001−011152(JP,A)
【文献】 特開2003−306476(JP,A)
【文献】 特表2009−516638(JP,A)
【文献】 特開2011−094102(JP,A)
【文献】 特開2015−174958(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B05D 1/00−7/26
B32B 1/00−43/00
C09D 1/00−201/10
(57)【特許請求の範囲】
【請求項1】
水性中塗り塗料組成物を被塗物に塗装して、未硬化の中塗り塗膜を形成する、中塗り塗膜形成工程、
得られた未硬化の中塗り塗膜の上に、水性ベース塗料組成物を塗装して、未硬化のベース塗膜を形成する、ベース塗膜形成工程、および
得られた未硬化の中塗り塗膜およびベース塗膜を加熱して硬化する、硬化工程、
を包含する、複層塗膜形成方法であって、
前記水性中塗り塗料組成物は、
水酸基およびカルボキシル基を有する水性樹脂(A1)、
ポリイソシアネート化合物(B)、および
親水化変性カルボジイミド化合物(C)、
を含む水性中塗り塗料組成物であり、
前記水性ベース塗料組成物は、
水酸基およびカルボキシル基を有する水性樹脂(A2)、
メラミン樹脂(D)、
弱酸触媒(E)、および
水性ポリウレタン樹脂(F)、
を含む水性ベース塗料組成物であり、
前記水性中塗り塗料組成物中に含まれる、水酸基およびカルボキシル基を有する水性樹脂(A1)は、樹脂固形分換算で、80〜200mgKOH/gの水酸基価、および、10〜40mgKOH/gの酸価を有し、
前記水性ベース塗料組成物中に含まれる、水酸基およびカルボキシル基を有する水性樹脂(A2)は、樹脂固形分換算で、80〜200mgKOH/gの水酸基価を有し、
前記親水化変性カルボジイミド化合物(C)は、下記一般式(I)、(II)または(III)で表されるものであり、
【化1】
[Xは、少なくとも1個のカルボジイミド基を含有する2官能性有機基であり、Yは、同一または異種のポリアルキレングリコールモノアルキルエーテルから水酸基を除いた構造であり、Zは、数平均分子量200〜5,000の2官能ポリオールから水酸基を除いた構造である。]
【化2】
[Xは少なくとも1個のカルボジイミド基を含有する2官能性有機基であり、Yは、同一または異種のポリアルキレングリコールモノアルキルエーテルから水酸基を除いた構造であり、Rは、水素、メチル基、またはエチル基であり、Rは、炭素数4以下のアルキレン基であり、nは0または1であり、mは0〜60である。]
【化3】
[Xは、少なくとも1個のカルボジイミド基を含有する2官能性有機基であり、Yは、同一または異種のポリアルキレングリコールモノアルキルエーテルから水酸基を除いた構造である。]
前記メラミン樹脂(D)は、メラミン核1個当たりの平均イミノ基量が1.0個以上であり、かつ、平均メチロール基が0.5個以上であり、
前記水性ベース塗料組成物中に含まれる水性樹脂(A2)およびメラミン樹脂(D)の質量比が、固形分換算で、(A2)/(D)=0.7〜3の範囲内であり、
前記水性ベース塗料組成物中に含まれる弱酸触媒(E)の含有量が、前記水性ベース塗料組成物中に含まれる水性樹脂(A2)およびメラミン樹脂(D)の固形分質量((A2)+(D))100質量部に対して、0.1〜10.0質量部であり、
前記水性ポリウレタン樹脂(F)は、ガラス転移点(Tg)が−50℃以下であり、
前記水性ポリウレタン樹脂(F)の硬化膜の破断伸度が−20℃において400%以上であり、
前記硬化工程における加熱温度は、70〜120℃である、
複層塗膜形成方法。
【請求項2】
前記親水化変性カルボジイミド化合物(C)の含有量は、前記水性中塗り塗料組成物の樹脂固形分に対して1〜8質量%である、
請求項1記載の複層塗膜形成方法。
【請求項3】
前記水性ポリウレタン樹脂(F)の含有量は、前記水性ベース塗料組成物の樹脂固形分に対して8質量%以上30質量%以下である、
請求項1または2記載の複層塗膜形成方法。
【請求項4】
前記水性中塗り塗料組成物中に含まれる水性樹脂(A1)が有する酸基の当量に対する、前記親水化変性カルボジイミド化合物(C)が有するカルボジイミド基の当量の比が、0.1〜0.6である、
請求項1〜3いずれかに記載の複層塗膜形成方法。
【請求項5】
前記弱酸触媒(E)の含有量が、前記水性ベース塗料組成物中に含まれる水性樹脂(A2)およびメラミン樹脂(D)の固形分質量((A2)+(D))100質量部に対して、0.1〜5.0質量部である、
請求項1〜4いずれかに記載の複層塗膜形成方法。
【請求項6】
前記弱酸触媒(E)が、リン酸エステル化合物を含むものである、請求項1〜5いずれかに記載の複層塗膜形成方法。
【請求項7】
前記水性ベース塗料組成物は、さらに、水酸基価が80mgKOH/g未満である水性樹脂(G)を含む、
請求項1〜6いずれかに記載の複層塗膜形成方法。
【請求項8】
前記被塗物は、鋼板部および樹脂部を含む請求項1〜7いずれかに記載の複層塗膜形成方法。
【請求項9】
前記ベース塗膜形成工程で得られた未硬化のベース塗膜の上に、クリヤー塗料組成物を塗装して、未硬化のクリヤー塗膜を形成する、クリヤー塗膜形成工程、をさらに包含し、
前記硬化工程は、得られた未硬化の中塗り塗膜、ベース塗膜およびクリヤー塗膜を、加熱して硬化する工程である、
請求項1〜8いずれかに記載の複層塗膜形成方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、水性中塗り塗料組成物および水性ベース塗料組成物を用いた複層塗膜形成方法に関する。
【背景技術】
【0002】
自動車車体などの被塗物の表面には、種々の役割を持つ複数の塗膜を順次形成して、被塗物を保護すると同時に美しい外観および優れた意匠を付与している。このような複数の塗膜の形成方法としては、例えば鋼板に対しては、導電性に優れた被塗物上に電着塗膜などの下塗り塗膜を形成し、その上に、中塗り塗膜、ベース塗膜およびクリヤー塗膜を順次形成する方法が一般的である。
【0003】
ところで、近年における、省エネルギー化およびCO排出量削減といった環境負荷低減に対するさらなる要請により、塗膜形成における加熱硬化温度を低くすることが求められている。また、自動車製造分野においては、電気自動車の開発に従い、自動車車体のさらなる軽量化が求められている。自動車車体を軽量化することは、燃費向上をもたらし、省エネルギー化およびCO排出量削減の面でも効果がある。自動車車体の軽量化手段の1つとして、鋼板部を樹脂部に置き換える手法が挙げられる。
【0004】
鋼板および樹脂部材に対する従来の塗装においては、各部材の特性および軟化温度を考慮して、別々の塗料組成物が用いられることが一般的であった。一方で、自動車車体の塗装においては、塗装工程および塗装管理の簡易化および塗装物における色相一致性向上などを目的として、種々の構成部品の塗装に用いられる塗料組成物を共通化することに対する要望ある。しかしながら、鋼板および樹脂部材に用いる塗料組成物を共通化する場合は、樹脂部材の耐熱性を考慮して、塗料組成物の硬化温度を、従来の硬化温度より低い温度に設計する必要がある。さらに、鋼板部および樹脂部の両方を有する被塗物に塗膜を形成する場合においては、加熱硬化時において、各部材の熱膨張係数の違いによって、変形が生じるおそれがある。そのため、塗料組成物の共通化において、加熱硬化温度をより低くし、各部材に対する熱履歴の影響を最小化することは極めて重要である。
【0005】
一方で、加熱硬化温度を低くすることによって、得られる塗膜の架橋密度が低くなり、耐水性、耐チッピング性などの塗膜性能が劣ることがあった。
【0006】
特開2011−131135号公報(特許文献1)は、鋼板およびプラスチック基材の両方を有する基材上に、水性中塗り塗料組成物を塗装して中塗り塗膜を形成し、形成された中塗り塗膜上に水性ベース塗料組成物を塗装してベース塗膜を形成した後、有機溶剤型クリヤー塗料組成物を塗布してクリヤー塗膜を形成し、上記中塗り塗膜、ベース塗膜およびクリヤー塗膜の三層を加熱し硬化させる複層塗膜の形成方法であって、前記水性ベース塗料組成物が、(a)アクリル樹脂エマルション、(b)水溶性アクリル樹脂、および(c)メラミン樹脂、(d)プロピレングリコールモノアルキルエーテルを含む、複層塗膜の形成方法について記載する。一方でこの形成方法によって得られる複層塗膜は、例えば100℃以下の温度で硬化させた場合においては、十分な耐チッピング性が得られないおそれがある。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開2011−131135号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
本発明は上記従来の課題を解決するものであり、その目的とするところは、低温硬化であっても優れた塗膜性能を有する複層塗膜を形成することができる、複層塗膜形成方法を提供することにある。
【課題を解決するための手段】
【0009】
上記課題を解決するため、本発明は下記態様を提供する。
[1]
水性中塗り塗料組成物を被塗物に塗装して、未硬化の中塗り塗膜を形成する、中塗り塗膜形成工程、
得られた未硬化の中塗り塗膜の上に、水性ベース塗料組成物を塗装して、未硬化のベース塗膜を形成する、ベース塗膜形成工程、および
得られた未硬化の中塗り塗膜およびベース塗膜を加熱して硬化する、硬化工程、
を包含する、複層塗膜形成方法であって、
上記水性中塗り塗料組成物は、
水酸基およびカルボキシル基を有する水性樹脂(A1)、
ポリイソシアネート化合物(B)、および
親水化変性カルボジイミド化合物(C)、
を含む水性中塗り塗料組成物であり、
上記水性ベース塗料組成物は、
水酸基およびカルボキシル基を有する水性樹脂(A2)、
メラミン樹脂(D)、
弱酸触媒(E)、および
水性ポリウレタン樹脂(F)、
を含む水性ベース塗料組成物であり、
上記水性中塗り塗料組成物中に含まれる、水酸基およびカルボキシル基を有する水性樹脂(A1)は、樹脂固形分換算で、80〜200mgKOH/gの水酸基価、および、10〜40mgKOH/gの酸価を有し、
上記水性ベース塗料組成物中に含まれる、水酸基およびカルボキシル基を有する水性樹脂(A2)は、樹脂固形分換算で、80〜200mgKOH/gの水酸基価を有し、
上記親水化変性カルボジイミド化合物(C)は、下記一般式(I)、(II)または(III)で表されるものであり、
【化1】
[Xは、少なくとも1個のカルボジイミド基を含有する2官能性有機基であり、Yは、同一または異種のポリアルキレングリコールモノアルキルエーテルから水酸基を除いた構造であり、Zは、数平均分子量200〜5,000の2官能ポリオールから水酸基を除いた構造である。]
【化2】
[Xは少なくとも1個のカルボジイミド基を含有する2官能性有機基であり、Yは、同一または異種のポリアルキレングリコールモノアルキルエーテルから水酸基を除いた構造であり、Rは、水素、メチル基、またはエチル基であり、Rは、炭素数4以下のアルキレン基であり、nは0または1であり、mは0〜60である。]
【化3】
[Xは、少なくとも1個のカルボジイミド基を含有する2官能性有機基であり、Yは、同一または異種のポリアルキレングリコールモノアルキルエーテルから水酸基を除いた構造である。]
上記メラミン樹脂(D)は、メラミン核1個当たりの平均イミノ基量が1.0個以上であり、かつ、平均メチロール基が0.5個以上であり、
上記水性ベース塗料組成物中に含まれる水性樹脂(A2)およびメラミン樹脂(D)の質量比が、固形分換算で、(A2)/(D)=1〜3の範囲内であり、
上記水性ベース塗料組成物中に含まれる弱酸触媒(E)の含有量が、上記水性ベース塗料組成物中に含まれる水性樹脂(A2)およびメラミン樹脂(D)の固形分質量((A2)+(D))100質量部に対して、0.1〜10.0質量部であり、
上記水性ポリウレタン樹脂(F)は、ガラス転移点(Tg)が−50℃以下であり、
上記水性ポリウレタン樹脂(F)の硬化膜の破断伸度が−20℃において400%以上である、
複層塗膜形成方法。
[2]
上記親水化変性カルボジイミド化合物(C)の含有量は、上記水性中塗り塗料組成物の樹脂固形分に対して1〜8質量%である、上記複層塗膜形成方法。
[3]
上記水性ポリウレタン樹脂(F)の含有量は、上記水性ベース塗料組成物の樹脂固形分に対して15質量%以上30質量%以下である、上記複層塗膜形成方法。
[4]
上記水性中塗り塗料組成物中に含まれる水性樹脂(A1)が有する酸基の当量に対する、上記親水化変性カルボジイミド化合物(C)が有するカルボジイミド基の当量の比が、0.1〜0.6である、上記複層塗膜形成方法。
[5]
上記弱酸触媒(E)の含有量が、上記水性ベース塗料組成物中に含まれる水性樹脂(A2)およびメラミン樹脂(D)の固形分質量((A2)+(D))100質量部に対して、0.1〜5.0質量部である、上記複層塗膜形成方法。
[6]
上記弱酸触媒(E)が、リン酸エステル化合物を含むものである、上記複層塗膜形成方法。
[7]
上記水性ベース塗料組成物は、さらに、水酸基価が80mgKOH/g未満である水性樹脂(G)を含む、上記複層塗膜形成方法。
[8]
上記被塗物は、鋼板部および樹脂部を含む上記複層塗膜形成方法。
[9]
上記ベース塗膜形成工程で得られた未硬化のベース塗膜の上に、クリヤー塗料組成物を塗装して、未硬化のクリヤー塗膜を形成する、クリヤー塗膜形成工程、をさらに包含し、
上記硬化工程は、得られた未硬化の中塗り塗膜、ベース塗膜およびクリヤー塗膜を、加熱して硬化する工程である、上記複層塗膜形成方法。
[10]
上記硬化工程における加熱温度は、70〜120℃である、上記複層塗膜形成方法。
【発明の効果】
【0010】
本発明の複層塗膜形成方法においては、低温条件下での加熱条件(例えば100℃以下の加熱条件)であっても硬化反応が良好に進行し、優れた塗膜物性を有する硬化塗膜が得られるなどの利点がある。本発明の複層塗膜形成方法は、例えば、高温加熱硬化処理が困難であるにも関わらず、優れた塗膜物性(耐水性、耐チッピング性など)が必要とされる、鋼板部および樹脂部を有する被塗物の塗装に好適に用いることができる。
【発明を実施するための形態】
【0011】
本発明の複層塗膜形成方法は、
水性中塗り塗料組成物を被塗物に塗装して、未硬化の中塗り塗膜を形成する、中塗り塗膜形成工程、
得られた未硬化の中塗り塗膜の上に、水性ベース塗料組成物を塗装して、未硬化のベース塗膜を形成する、ベース塗膜形成工程、および
得られた未硬化の中塗り塗膜およびベース塗膜を加熱して硬化する、硬化工程、
を包含する。本発明の複層塗膜形成方法においては、上記特定の水性中塗り塗料組成物および水性ベース塗料組成物を組み合わせて用いることによって、例えば低温硬化条件で水性塗料組成物を焼き付け硬化させる場合であっても、良好な耐水性および耐チッピング性を有する複層塗膜が得られることを特徴とする。以下、各塗膜形成工程で用いられる塗料組成物について説明する。
【0012】
水性中塗り塗料組成物
本発明の方法で用いられる水性中塗り塗料組成物は、水酸基およびカルボキシル基を有する水性樹脂(A1)、ポリイソシアネート化合物(B)、および、親水化変性カルボジイミド化合物(C)、を含む。
【0013】
水酸基およびカルボキシル基を有する水性樹脂(A1)
水酸基およびカルボキシル基を有する水性樹脂(A1)は、ポリイソシアネート化合物(B)および親水化変性カルボジイミド化合物(C)と硬化反応するバインダー成分である。そして本発明において用いられる水酸基およびカルボキシル基を有する水性樹脂(A1)は、
・樹脂固形分換算での水酸基価が80〜200mgKOH/gであり、
・樹脂固形分換算での酸価が10〜40mgKOH/gである、
ことを要件とする。
樹脂固形分換算での水酸基価は80〜160mgKOH/gがより好ましく、樹脂固形分換算での酸価は15〜35mgKOH/gがより好ましい。
【0014】
本発明において用いられる水酸基およびカルボキシル基を有する水性樹脂(A1)は、酸価と比較して水酸基価の値が高い。このような水性樹脂(A1)と、成分(B)〜(C)とを含むことによって、水性中塗り塗料組成物を塗装した後、低温で硬化させた場合であっても、良好な耐チッピング性が得られる利点がある。
【0015】
上記水性樹脂(A1)は、樹脂固形分換算での水酸基価および酸価についての上記要件を満たす単一の樹脂で構成されてもよく、または、水酸基価および酸価についての上記要件を満たす複数の樹脂から構成されていてもよい。
【0016】
上記水性樹脂(A1)は、硬化に関与する反応性基として、水酸基およびカルボキシル基の2種類の官能基を有している。そして本発明における水性中塗り塗料組成物において、水性樹脂(A1)の水酸基はポリイソシアネート化合物(B)と反応し、水性樹脂(A1)のカルボキシル基は親水化変性カルボジイミド化合物(C)と反応する。
【0017】
上記水性樹脂(A1)は、上記水酸基およびカルボキシル基についての要件を満たしていれば、その種類は特に限定されないが、アクリル樹脂および/またはポリエステル樹脂であることが製造および入手が容易なことから好ましい。塗膜物性の調整の観点から、上記水性樹脂(A1)として、アクリル樹脂単独、または、アクリル樹脂およびポリエステル樹脂の混合物、を用いることが好ましい。例えば中塗り塗料組成物として用いられる場合は、水性樹脂(A1)として、アクリル樹脂およびポリエステル樹脂の混合物を用いるのがより好ましい。また、例えば上塗りベース塗料組成物として用いられる場合は、水性樹脂(A1)として、アクリル樹脂を用いるのがより好ましい。
【0018】
水性樹脂(A1)として好適に用いることができるアクリル樹脂は、例えば、水酸基を有するα,β−エチレン性不飽和モノマーおよびカルボキシル基を有するα,β−エチレン性不飽和モノマーを含むモノマーを、上記水酸基およびカルボキシル基について上記水酸基価および酸価の要件を満たす量でアクリル共重合することによって、目的とする樹脂が得られる。
【0019】
上記水酸基を有するα,β−エチレン性不飽和モノマーとしては、(メタ)アクリル酸2−ヒドロキシエチル、(メタ)アクリル酸2−ヒドロキシプロピル、(メタ)アクリル酸4−ヒドロキシブチル、アリルアルコール、メタクリルアルコール、(メタ)アクリル酸ヒドロキシエチルとε−カプロラクトンとの付加物を挙げることができる。これらの中で好ましいものは、(メタ)アクリル酸2−ヒドロキシエチル、(メタ)アクリル酸4−ヒドロキシブチル、(メタ)アクリル酸ヒドロキシエチルとε−カプロラクトンとの付加物である。なお、本明細書において「(メタ)アクリル」とはアクリルとメタクリルとの両方を意味するものとする。
【0020】
また、カルボキシル基を有するα,β−エチレン性不飽和モノマーとして、アクリル酸、メタクリル酸、アクリル酸二量体、クロトン酸、2−アクリロイルオキシエチルフタル酸、2−アクリロイルオキシエチルコハク酸、ω−カルボキシ−ポリカプロラクトンモノ(メタ)アクリレート、マレイン酸、フマル酸、イタコン酸などを挙げることができる。これらの中で好ましいものは、アクリル酸、メタクリル酸である。
【0021】
上記水性樹脂(A1)を得るためのアクリル共重合において、必要に応じて、その他のα,β−エチレン性不飽和モノマーを用いることができる。上記その他のα,β−エチレン性不飽和モノマーとしては、(メタ)アクリル酸エステル(例えば(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−プロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸t−ブチル、(メタ)アクリル酸2−エチルヘキシル、メタクリル酸ラウリル、アクリル酸フェニル、(メタ)アクリル酸イソボルニル、メタクリル酸シクロヘキシル、(メタ)アクリル酸t−ブチルシクロヘキシル、(メタ)アクリル酸ジシクロペンタジエニル、(メタ)アクリル酸ジヒドロジシクロペンタジエニルなど)、重合性アミド化合物(例えば、(メタ)アクリルアミド、N−メチロール(メタ)アクリルアミド、N−ブトキシメチル(メタ)アクリルアミドなど)を挙げることができる。
【0022】
上記水性樹脂(A1)を得る方法として、溶液重合を行ってアクリル樹脂を得た後に水性化する方法と、水性媒体中で乳化重合を行ってエマルションを得る方法とが挙げられる。
【0023】
上記乳化重合を行ってエマルションを得る場合には、上記その他のα,β−エチレン性不飽和モノマーとして、架橋性モノマーを使用することができる。上記架橋性モノマーは、分子内に2つ以上のラジカル重合可能なエチレン性不飽和基を有する化合物であり、例えば、ジビニルベンゼン、アリル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレートなどが挙げられる。
【0024】
上記溶液重合は、加熱条件下において、原料として使用するα,β−エチレン性不飽和モノマーを混合したものを重合開始剤と共に溶媒中へ滴下しながら撹拌する方法が一般的である。溶液重合する際の条件は、例えば、重合温度が60〜160℃、滴下時間が0.5〜10時間である。上記原料として使用するα,β−エチレン性不飽和モノマーは、2段階に分けて重合することも可能である。この場合、原料として使用するα,β−エチレン性不飽和モノマー全体として、上記水酸基およびカルボキシル基についての要件を満たしていればよい。
【0025】
上記重合開始剤は、通常の重合に用いられるものであれば特に限定されず、例えば、アゾ系化合物、過酸化物などが挙げられる。一般に、モノマー混合物100質量部に対する重合開始剤の量は0.1〜18質量部であり、好ましくは0.3〜12質量部である。
【0026】
また、ここで用い得る溶媒は反応に悪影響を与えないものであれば特に限定されず、例えば、アルコール、ケトン、エーテルおよび炭化水素系溶媒などが挙げられる。さらに、分子量を調節するために、ラウリルメルカプタンのようなメルカプタン、および、α−メチルスチレンダイマーなどの連鎖移動剤を必要に応じて用いることができる。
【0027】
このように溶液重合で得られるアクリル樹脂の数平均分子量は、4,000〜20,000であるのが好ましい。本明細書において、溶液重合で得られるアクリル樹脂の数平均分子量は、ポリスチレン標準サンプル基準を用いたゲルパーミエーションクロマトグラフィ(GPC)で測定することができる。
【0028】
また、アクリル樹脂のガラス転移点(Tg)は−20〜80℃の範囲内であることが好ましい。アクリル樹脂のガラス転移点は、アクリル樹脂の調製に用いたモノマーの種類および量から計算によって求めることができる。また、アクリル樹脂のガラス転移点を、示差走査型熱量計(DSC)によって測定してもよい。
【0029】
上記溶液重合で得られたアクリル樹脂は、必要に応じて溶媒を除去した後、塩基性化合物を加えて水性化することにより、上記水性樹脂(A1)が得られる。上記塩基性化合物としては、アンモニア、メチルアミン、エチルアミン、ジメチルアミン、ジエチルアミン、トリメチルアミン、トリエチルアミン、ジメチルエタノールアミン、ジエタノールアミン、ジエチルアミノエタノール、トリエタノールアミンなどが挙げられる。上記塩基性化合物を加える量は、上記溶液重合で得られたアクリル樹脂が有するカルボキシル基に対して中和率が60〜100%であることが好ましい。中和率が60%未満である場合は、水性化が十分でなく、貯蔵安定性に劣るおそれがある。このようにして得られる水性樹脂(A1)の樹脂固形分は、25〜55質量%とすることが一般的である。
【0030】
こうして得られたアクリル樹脂は、アクリル水分散体として用いることができる。このようなアクリル水分散体は、体積平均粒子径が0.01〜1μmの範囲内であることが好ましい。体積平均粒子径が上記範囲内であることによって、水分散体の安定性が良好となり、さらに、得られる塗膜の外観が良好となるという利点がある。また、後述するアクリルエマルションについても同様であり、体積平均粒子径の調節は、モノマー組成および/または乳化重合条件を調整することにより可能である。
【0031】
上記水性樹脂(A1)の調製において、水性媒体中での乳化重合を行う場合は、例えば、水、または必要に応じてアルコールなどのような有機溶媒を含む水性媒体中に乳化剤を溶解させ、加熱撹拌下、原料として使用するα,β−エチレン性不飽和モノマーを混合したものおよび重合開始剤を滴下することにより行うことができる。原料として使用するα,β−エチレン性不飽和モノマーを混合したものは、乳化剤と水とを用いて予め乳化しておいてもよい。
【0032】
乳化重合に好適に用いることができる重合開始剤としては、アゾ系の油性化合物(例えば、アゾビスイソブチロニトリル、2,2’−アゾビス(2−メチルブチロニトリル)および2,2’−アゾビス(2,4−ジメチルバレロニトリル)など)、および水性化合物(例えば、アニオン系の4,4’−アゾビス(4−シアノ吉草酸)、2,2−アゾビス(N−(2−カルボキシエチル)−2−メチルプロピオンアミジン)およびカチオン系の2,2’−アゾビス(2−メチルプロピオンアミジン));並びにレドックス系の油性過酸化物(例えば、ベンゾイルパーオキサイド、パラクロロベンゾイルパーオキサイド、ラウロイルパーオキサイドおよびt−ブチルパーベンゾエートなど)、および水性過酸化物(例えば、過硫酸カリおよび過硫酸アンモニウムなど)が挙げられる。
【0033】
乳化剤は、当業者が通常用いる一般的な乳化剤を用いることができる。乳化剤として、反応性乳化剤、例えば、アントックス(Antox)MS−60(日本乳化剤社製)、エレミノールJS−2(三洋化成工業社製)、アデカリアソープNE−20(ADEKA社製)およびアクアロンHS−10(第一工業製薬社製)、ラテムルPD−104(花王社製)などが特に好ましい。また、分子量を調節するために、ラウリルメルカプタンのようなメルカプタンおよびα−メチルスチレンダイマーなどのような連鎖移動剤を必要に応じて用いることができる。
【0034】
反応温度は開始剤により決定され、例えば、アゾ系開始剤、過酸化物では、60〜90℃であり、レドックス系では30〜70℃で行うことが好ましい。一般に、反応時間は1〜8時間である。一般にモノマー混合物100質量部に対する開始剤の量は、0.1〜5質量%である。上記乳化重合は多段階で行うことができ、例えば、二段階で行うことができる。すなわち、まず上記原料として使用するα,β−エチレン性不飽和モノマーを混合したもののうちの一部を乳化重合し、ここに上記α,β−エチレン性不飽和モノマー混合物の残りをさらに加えて乳化重合を行うものである。
【0035】
上記エマルションは、貯蔵安定性の観点から、塩基性化合物で中和することにより、pH5〜10で用いることができる。上記塩基性化合物は、先の溶液重合で得られるアクリル樹脂の水性化の際に使用するのと同じであってよい。上記中和は、乳化重合の前または後に、上記塩基性化合物を系に添加することによって行うことが好ましい。
【0036】
水性樹脂(A1)としてアクリルエマルションを用いる場合は、数平均分子量が10,000〜80,000であるのが好ましい。アクリルエマルションの水酸基価が80〜200mgKOH/gであり、酸価が10〜40mgKOH/gであり、かつ、数平均分子量が10,000〜80,000の範囲であることによって、塗料安定性を良好に確保しつつ、得られる塗膜における架橋密度がより良好な範囲となるという利点がある。これは、数平均分子量の範囲が10,000〜80,000と比較的高い範囲であり、かつ、アクリルエマルションが水酸基を上記範囲のように多く有することによって、水性樹脂(A1)が有する水酸基と反応するポリイソシアネート化合物(B)の低温硬化性が確保され、これにより、得られる塗膜における架橋密度がより良好な範囲となるためと考えられる。
【0037】
なお、アクリルエマルションの数平均分子量は、水分を減圧乾燥などにより除去した後、ポリスチレン標準サンプル基準を用いたゲルパーミエーションクロマトグラフィ(GPC)によって測定することができる。
【0038】
上記水性樹脂(A1)は、ポリエステル樹脂を含んでもよい。水性樹脂(A1)として用いることができるポリエステル樹脂は、一般的には、多価アルコール成分と多塩基酸成分とを、上記水酸基およびカルボキシル基についての要件を満たすよう縮合することによって、調製することができる。
【0039】
上記多価アルコール成分の例としては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、1,3−プロパンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、2,2−ジエチル−1,3−プロパンジオール、ネオペンチルグリコール、1,9−ノナンジオール、1,4−シクロヘキサンジオール、ヒドロキシピバリン酸ネオペンチルグリコールエステル、2−ブチル−2−エチル−1,3−プロパンジオール、3−メチル−1,5−ペンタンジオール、2,2,4−トリメチルペンタンジオールなどのヒドロキシカルボン酸成分を挙げることができる。
【0040】
上記多塩基酸成分の例としては、例えば、無水フタル酸、イソフタル酸、テレフタル酸、無水トリメリット酸、テトラクロロ無水フタル酸、無水ピロメリット酸などの芳香族多価カルボン酸および酸無水物;ヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、1,4−および1,3−シクロヘキサンジカルボン酸などの脂環族多価カルボン酸および無水物;無水マレイン酸、フマル酸、無水コハク酸、アジピン酸、セバシン酸などの脂肪族多価カルボン酸および無水物などの多塩基酸成分およびそれらの無水物などを挙げることができる。必要に応じて安息香酸またはt−ブチル安息香酸などの一塩基酸を併用してもよい。
【0041】
また、反応成分として、更に、1価アルコール、カージュラE(商品名:シエル化学製)などのモノエポキサイド化合物、およびラクトン類(β−プロピオラクトン、ジメチルプロピオラクトン、ブチロラクトン、γ−バレロラクトン、ε−カプロラクトン、γ−カプロラクトンなど)を併用してもよい。
【0042】
上記成分に加えてヒマシ油、脱水ヒマシ油などの脂肪酸、およびこれらの脂肪酸のうち1種、または2種以上の混合物である油成分を、上記酸成分およびアルコール成分に加えてもよい。また、アクリル樹脂、ビニル樹脂などをグラフト化したり、ポリイソシアネート化合物を反応させたりすることも、上記水酸基およびカルボキシル基についての要件を満たしていれば可能である。
【0043】
このようにして得られるポリエステル樹脂の数平均分子量は、500〜20,000であるのが好ましく、1,500〜10,000であるのがより好ましい。数平均分子量が500未満であるとポリエステル樹脂を水分散させた時の貯蔵安定性が低下するおそれがある。また数平均分子量が20,000を超えると、ポリエステル樹脂の粘度が上がるため、塗料組成物にした場合の固形分濃度が下がり、塗装作業性が低下するおそれがある。
【0044】
また、上記ポリエステル樹脂のガラス転移点は、−20〜80℃であることが好ましい。上記ガラス転移点が−20℃未満である場合、得られる塗膜の硬度が低下するおそれがあり、80℃を超える場合、下地隠蔽性が低下する恐れがある。ガラス転移点は0〜60℃であるのがより好ましい。ポリエステル樹脂のガラス転移点は、アクリル樹脂の場合と同様に、ポリエステル樹脂の調製に用いたモノマーの種類および量から計算によって求めることができる。また、ポリエステル樹脂のガラス転移点を、示差走査型熱量計(DSC)によって測定してもよい。
【0045】
このようにして得られるポリエステル樹脂に対して、先に挙げた塩基性化合物で中和することによって、水性樹脂(A1)を得ることができる。
【0046】
本発明における水性中塗り塗料組成物中に含まれる上記水性樹脂(A1)の含有量は、水性中塗り塗料組成物の樹脂固形分に対して30〜80質量%であるのが好ましく、50〜80質量%であるのがより好ましい。
【0047】
例えば、上記水性塗料組成物が中塗り塗料組成物として用いられる場合において、水性樹脂(A1)として、アクリル樹脂およびポリエステル樹脂の混合物を用いる場合は、アクリル樹脂およびポリエステル樹脂の比率は、アクリル樹脂/ポリエステル樹脂=7/1〜0.5/1の範囲内であるのが好ましく、6/1〜1/1の範囲であるのがさらに好ましい。
【0048】
ポリイソシアネート化合物(B)
本発明における水性中塗り塗料組成物は、上記水性樹脂(A1)を硬化させる成分として、ポリイソシアネート化合物(B)および親水化変性カルボジイミド化合物(C)の2種の成分が含まれる。ここでポリイソシアネート化合物(B)は、水分散性であってもよく、また疎水性であってもよい。疎水性であっても、後述する水分散性に優れた親水化変性カルボジイミド化合物(C)との相互作用により、水分散性が確保される。
【0049】
上記ポリイソシアネート化合物(B)で疎水性のものとして、例えば、トリレンジイソシアネート(TDI)、4,4’−ジフェニルメタンジイソシアネート(MDI)、キシリレンジイソシアネート(XDI)、メタキシリレンジイソシアネート(MXDI)などの芳香族ジイソシアネート;ヘキサメチレンジイソシアネート(HDI)などの脂肪族ジイソシアネート;イソホロンジイソシアネート(IPDI)、水添MDIなどの脂環式ジイソシアネート;これらのジイソシアネート化合物を不揮発性化し、毒性を低くした形態の化合物;これらのジイソシアネート化合物のビューレット体、ウレトジオン体、イソシアヌレート体またはアロハネート体などのアダクト体;比較的低分子のウレタンプレポリマー;などのポリイソシアネート化合物を挙げることができる。
【0050】
一方、上記(B)ポリイソシアネート化合物で水分散性を有するものとしては、上記ポリイソシアネート化合物に親水性基を導入したもの、および、界面活性剤を混合乳化させて、いわゆる自己乳化させたものを挙げることができる。
【0051】
上記親水性基として、カルボキシル基およびスルホン酸基などのアニオン性基、第三級アミノ基などのカチオン性基およびポリオキシアルキレン基などのノニオン性基が挙げられる。これらの中で、得られる塗膜の耐水性を考慮すると、上記親水性基はノニオン性基であることが好ましい。具体的なノニオン性基として、親水性が高いポリオキシエチレン基が好ましい。
【0052】
上記ポリイソシアネート化合物と界面活性剤とを混合し乳化させた、自己乳化ポリイソシアネート化合物の調製に好適に用いられる界面活性剤として、例えば、カルボキシル基およびスルホン酸基などのアニオン性基を有するアニオン界面活性剤、第三級アミノ基などのカチオン性基を有するカチオン界面活性剤、およびポリオキシアルキレン基などのノニオン性基を有するノニオン界面活性剤が挙げられる。これらの中で、得られる塗膜の耐水性を考慮すると、ノニオン界面活性剤を用いるのがより好ましい。
【0053】
水分散性を有するポリイソシアネート化合物(B)として、市販品を用いてもよい。市販されているものとしては、アクアネート100、アクアネート110、アクアネート200およびアクアネート210(東ソー社製)、バイヒジュールTPLS−2032、SBU−イソシアネートL801、バイヒジュールVPLS−2319、バイヒジュール3100、VPLS−2336およびVPLS−2150/1、バイヒジュール305、バイヒジュールXP−2655(住化バイエルウレタン社製)、タケネートWD−720、タケネートWD−725およびタケネートWD−220(三井化学社製)、レザミンD−56(大日精化工業社製)などが挙げられる。
【0054】
本発明においては、ポリイソシアネート化合物(B)として、水分散性を有するものを用いるのがより好ましい。なお、ポリイソシアネート化合物(B)として、1種を単独で用いてもよく、また2種以上を組み合わせて用いてもよい。
【0055】
本発明における水性中塗り塗料組成物中に含まれる上記ポリイソシアネート化合物(B)の含有量は、水性中塗り塗料組成物の樹脂固形分に対して5〜55質量%であるのが好ましく、10〜45質量%であるのがより好ましい。
【0056】
親水化変性カルボジイミド化合物(C)
本発明における水性中塗り塗料組成物に含まれる親水化変性カルボジイミド化合物(C)は、分子内に、
−OCONH−X−NHCOOY
[Xは少なくとも1個のカルボジイミド基を含有する2官能性有機基であり、Yはポリアルキレングリコールモノアルキルエーテルから水酸基を除いた構造である。]
で表される構造単位を1個または複数個有している。上記構造単位を有することで、優れた水分散性および優れた硬化性の両方の性能が得られると考えられる。
【0057】
上記親水化変性カルボジイミド化合物(C)として、上記構造単位を1個有するもの、2個有するもの、そして3個有するもの、の3種がある。
上記構造単位を2個有するものとしては、下記一般式(I)で表されるものがある。
【0058】
【化4】
【0059】
上記一般式(I)において、Xは少なくとも1個のカルボジイミド基を含有する2官能性有機基であり、Yは同一または異種のポリアルキレングリコールモノアルキルエーテルから水酸基を除いた構造であり、Zは数平均分子量200〜5000の2官能ポリオールから水酸基を除いた構造である。
【0060】
さらにここで、上記Xは、下記一般式(a)で表すことができる。
【0061】
【化5】
【0062】
上記一般式(a)において、Rは、炭素数6〜15の炭化水素基であることが好ましい。具体的なものとして、フェニレン基、ジフェニレンメチル基、ジフェニレン(ジメチル)メチル基、メチルフェニレン基、ジメチルフェニレン基、テトラメチルキシリレン基、ヘキシレン基、シクロヘキシレン基、ジシクロヘキシレンメチル基などを挙げることができる。好ましいものは、ジシクロヘキシレンメチル基である。また、上記pは、1〜10である。pは上記構造単位に存在するカルボジイミド基の個数であり、硬化性の観点から2以上であることが好ましく、その上限値は8以下であることがさらに好ましい。
【0063】
なお、本明細書において、上記pに限らず、繰り返し数は平均値として表されるものである。
【0064】
上記Yは、下記一般式(b)または(c)で表すことができる。
【0065】
【化6】
【0066】
上記一般式(b)および(c)において、Rは、炭素数1〜20のアルキル基であることが好ましい。具体的なものとして、メチル基、エチル基、ブチル基、ヘキシル基、オクチル基、デシル基、ドデシル基、ステアリル基などを挙げることができる。また、Rは水素原子またはメチル基であり、水素原子であることが好ましい。qは4〜40である。なお上記一般式(b)および(c)において、Rが水素である場合は、上記一般式(b)および(c)は同じ構造を示すこととなる。
【0067】
なお、上記Zは、エーテル結合、エステル結合、またはカーボネート結合によって構成されている重合体構造であり、一般式化することは困難である。これについては、後述する数平均分子量200〜5,000の2官能ポリオールについての説明を参照されたい。
【0068】
上記構造単位を2個有する親水化変性カルボジイミド化合物(C)は、1分子中にイソシアネート基を少なくとも2個含有する原料カルボジイミド化合物と、分子末端に水酸基を有し、数平均分子量200〜5,000である2官能ポリオールとを、上記原料カルボジイミド化合物のイソシアネート基のモル量が上記ポリオールの水酸基のモル量を上回る比率で反応させて得られた反応生成物に、さらにポリアルキレングリコールモノアルキルエーテルを反応させて得ることができる。
【0069】
上記分子中にイソシアネート基を少なくとも2個含有する原料カルボジイミド化合物は、反応性の観点から、両末端にイソシアネート基を有していることが好ましい。上記両末端にイソシアネート基を有する原料カルボジイミド化合物の製造方法は、当業者によってよく知られており、例えば、有機ジイソシアネートの脱二酸化炭素を伴う縮合反応を利用することができる。
【0070】
上記有機ジイソシアネートとしては、具体的には、芳香族ジイソシアネート、脂肪族ジイソシアネート、脂環族ジイソシアネート、およびこれらの混合物を用いることができ、具体的には1,5−ナフチレンジイソシアネート、4,4−ジフェニルメタンジイソシアネート、4,4−ジフェニルジメチルメタンジイソシアネート、1,3−フェニレンジイソシアネート、1,4−フェニレンジイソシアネート、2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート、2,4−トリレンジイソシアネートと2,6−トリレンジイソシアネートとの混合物、ヘキサメチレンジイソシアネート、シクロヘキサン−1,4−ジイソシアネート、キシリレンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタン−4,4−ジイソシアネート、メチルシクロヘキサンジイソシアネート、テトラメチルキシリレンジイソシアネートなどを挙げることができる。反応性の観点から、ジシクロヘキシルメタン−4,4−ジイソシアネートが好ましい。
【0071】
上記縮合反応には、通常、カルボジイミド化触媒が用いられる。上記カルボジイミド化触媒としては、具体的には、1−フェニル−2−ホスホレン−1−オキシド、3−メチル−2−ホスホレン−1−オキシド、1−エチル−2−ホスホレン−1−オキシド、3−メチル−1−フェニル−2−ホスホレン−1−オキシド、およびこれらの3−ホスホレン異性体などのホスホレンオキシドなどを挙げることができる。反応性の観点から、3−メチル−1−フェニル−2−ホスホレン−1−オキシドが好ましい。
【0072】
次に、分子末端に水酸基を有する2官能ポリオールは、特に限定されないが、反応効率の観点から、数平均分子量が200〜5,000であることが好ましい。上記分子末端に水酸基を有する2官能ポリオールとして、具体的には、ポリエーテルジオール、ポリエステルジオール、ポリカーボネートジオールを挙げることができ、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリエチレンプロピレングリコール、ポリテトラメチレンエーテルグリコール、ポリヘキサメチレンエーテルグリコール、ポリオクタメチレンエーテルグリコールなどのポリアルキレングリコール、ポリエチレンアジペート、ポリブチレンアジペート、ポリヘキサメチレンアジペート、ポリネオペンチルアジペート、ポリ−3−メチルペンチルアジペート、ポリエチレン/ブチレンアジペート、ポリネオペンチル/ヘキシルアジペートなどのポリエステルジオール、ポリカプロラクトンジオール、ポリ−3−メチルバレロラクトンジオールなどのポリラクトンジオール、ポリヘキサメチレンカーボネートジオールなどのポリカーボネートジオールおよびこれらの混合物などを例示することができる。
【0073】
上記1分子中にイソシアネート基を少なくとも2個含有する原料カルボジイミド化合物と、上記分子末端に水酸基を有し、数平均分子量200〜5,000である2官能ポリオールとの反応は、上記原料カルボジイミド化合物のイソシアネート基のモル量が上記ポリオールの水酸基のモル量を上回る比率で反応させて行われる。上記イソシアネート基のモル量が上記水酸基のモル量を下回るかまたは同量である場合は、後述のポリアルキレングリコールモノアルキルエーテルの反応を十分に行うことができない。
【0074】
上記原料カルボジイミド化合物のイソシアネート基のモル量と上記分子末端に水酸基を有するポリオールの水酸基のモル量との比率は、反応効率および経済性の観点から、1.1:1.0〜2.0:1.0であることが好ましい。なお、この工程によって得られる反応生成物における原料カルボジイミド化合物と分子末端に水酸基を有する2官能ポリオールとの重合度は、反応効率の観点から、1〜10が好ましい。
【0075】
このようにして得られた反応生成物に、さらにポリアルキレングリコールモノアルキルエーテルを反応させることにより、上記構造単位を2個有する親水化変性カルボジイミド化合物(C)を得ることができる。ポリアルキレングリコールモノアルキルエーテルとしては、下記一般式(b’)または(c’)で表されるものが用いられる。
【0076】
【化7】
【0077】
上記一般式(b’)および(c’)において、R、R、およびqは、先の一般式(b)および(c)のところで説明した内容がそのまま適用される。上記ユニットにおけるRの種類およびqは、貯蔵安定性、水分散性および水が揮発した後の反応性を考慮して、それぞれ上記範囲内において適宜設定される。水分散性の観点から、上記モノアルコキシポリアルキレングリコールにおけるRはメチル基であり、Rは水素原子であることが好ましい。さらに、上記qは、水分散性および水が揮発した後の反応性の観点から、4〜20が好ましく、6〜12がさらに好ましい。
【0078】
上記ポリアルキレングリコールモノアルキルエーテルとしては、数平均分子量が200〜5,000である、ポリアルキレングリコールモノアルキルエーテルが好ましく用いられる。このポリアルキレングリコールモノアルキルエーテルのアルキル基は、炭素数1〜20のアルキル基であるのが好ましい。ポリアルキレングリコールモノアルキルエーテルの具体例として、例えば、炭素数1〜20のアルキル基で片末端が封鎖された、ポリエチレングリコール、ポリプロピレングリコールまたはそれらの混合物からなるものなどが挙げられる。このようなポリアルキレングリコールモノアルキルエーテルのより詳細な具体例として、例えば、数平均分子量200〜5,000である、ポリエチレングリコールモノメチルエーテル、ポリエチレングリコールモノ−2−エチルヘキシルエーテル、ポリエチレングリコールモノラウリルエーテル、ポリプロピレングリコールモノメチルエーテル、ポリプロピレングリコールモノ−2−エチルヘキシルエーテル、ポリプロピレングリコールモノラウリルエーテルなどを挙げることができる。
【0079】
上記反応生成物と上記ポリアルキレングリコールモノアルキルエーテルとは、上記反応生成物のイソシアネート基のモル量が上記ポリアルキレングリコールモノアルキルエーテルの水酸基のモル量と同量または上回る比率で反応を行う。上記イソシアネート基のモル量が上記水酸基のモル量を下回る場合は、上記反応生成物に対する上記ポリアルキレングリコールモノアルキルエーテルの反応を充分に行うことができない。なお、上記反応生成物のイソシアネート基のモル量は直接測定により求められる他、仕込み配合から計算される値を採用しても構わない。
【0080】
上記原料カルボジイミド化合物と上記分子末端に水酸基を有する2官能ポリオールとの反応、および上記反応生成物とポリアルキレングリコールモノアルキルエーテルとの反応においては、触媒を使用することができる。上記反応時の温度は、特に限定されないが、反応系の制御および反応効率の観点から、60〜120℃が好ましい。また、上記反応においては活性水素を含有しない有機溶媒を用いることが好ましい。
【0081】
このような2段階の反応を経ることによって、上記構造単位を2個有する親水化変性カルボジイミド化合物(C)を得ることができる。このようにして製造された親水化変性カルボジイミド化合物(C)は、先に示した一般式(I)のみの構造を有するわけではなく、用いた原料に由来する、種々のその他の反応生成物を含む混合物である。しかし、一般的には、上記一般式(I)の構造を有していると見なして差し支えない。
【0082】
また、上記親水化変性カルボジイミド化合物(C)として、上記構造単位を3個有するものとしては、下記一般式(II)で表されるものがある。
【0083】
【化8】
【0084】
上記一般式(II)において、XおよびYは、先の上記構造単位を2個有するものについてのXおよびYの説明をそのまま適用することができる。また、Rは水素、メチル基、またはエチル基である。Rは炭素数4以下のアルキレン基であり、同一であっても異なっていてもよい。具体的なアルキレン基として、メチレン基、エチレン基、プロピレン基、ブチレン基などが挙げられる。nは0または1、mは0〜60である。
【0085】
、R、nおよびmは、親水化変性カルボジイミド化合物(C)を製造する際に用いる3官能ポリオールによって決定される。
【0086】
mが11以上である場合、疎水部に対する親水部の割合が2.0〜6.3であることが好ましい。上記疎水部に対する親水部の割合は、カルボジイミド化合物中に存在するオキシメチレン基またはオキシエチレン基の部分の分子量を、カルボジイミド化合物の分子量で除して求めることができる。
【0087】
上記構造単位を3個有する親水化変性カルボジイミド化合物(C)は、1分子中にイソシアネート基を少なくとも2個含有する原料カルボジイミド化合物と、ポリアルキレングリコールモノアルキルエーテルとを、上記原料カルボジイミド化合物のイソシアネート基の当量が上記ポリアルキレングリコールモノアルキルエーテルの水酸基の当量を上回る比率で得られた反応生成物に、さらに3官能ポリオールを反応させて得ることができる。
【0088】
上記1分子中にイソシアネート基を少なくとも2個含有する原料カルボジイミド化合物は、先の上記構造単位を2個有する親水化変性カルボジイミド化合物(C)の原料カルボジイミド化合物についての説明がそのまま適用される。
【0089】
上記原料カルボジイミド化合物と、ポリアルキレングリコールモノアルキルエーテルとの反応は、反応後に3官能ポリオールとさらに反応させるため、イソシアネート基が残存している必要がある。このため、上記反応においては、イソシアネート基の当量が水酸基の当量を上回っている必要があり、好ましくは、イソシアネート基と水酸基との当量比が2/1になる量であることが好ましい。反応は通常、当業者によく知られた条件で行うことができ、必要に応じてスズ系の触媒を使用することができる。
【0090】
上記ポリアルキレングリコールモノアルキルエーテルとしては、先の上記構造単位を2個有する親水化変性カルボジイミド化合物(C)のポリアルキレングリコールモノアルキルエーテルについての説明がそのまま適用される。
【0091】
次に、このようにして得られた反応生成物に、3官能ポリオールを反応させる。反応に用いられる上記3官能ポリオールの量は、反応物のイソシアネート当量以上の水酸基当量になる量であることが好ましく、上記イソシアネート当量と水酸基当量とが等しいことがさらに好ましい。なお、上記反応生成物のイソシアネート当量は、直接測定する以外に、先の工程におけるジイソシアネート化合物とポリアルキレングリコールモノアルキルエーテルとの配合比から計算によって求めることも可能である。反応は先の原料カルボジイミド化合物とポリアルキレングリコールモノアルキルエーテルとの反応と同様に行うことができる。
【0092】
上記3官能ポリオールは、トリメチロールプロパン、グリセリン、またはそれらのアルキレンオキサイド付加物であることが、入手が容易な点から好ましい。上記アルキレンオキサイドとしては、エチレンオキサイド、プロピレンオキサイドなどが挙げられる。グリセリンのアルキレンオキサイド付加物は三洋化成社からGPシリーズとして市販されている。得られる3鎖型親水性カルボジイミド化合物の硬化反応性を考慮すると、1つの水酸基に対してアルキレンオキサイドがそれぞれ付加した構造を持つものが特に好ましい。先のGPシリーズの中で、このような構造を持つものはGP−250、GP−3000などが挙げられる。
【0093】
このような2段階の反応を経ることによって、上記構造単位を3個有する親水化変性カルボジイミド化合物(C)を得ることができる。このようにして製造された親水化変性カルボジイミド化合物(C)は、先に述べたように、一般式(II)のみの構造を有するわけではないが、上記一般式(II)の構造を有していると見なして差し支えない。
【0094】
上記親水化変性カルボジイミド化合物(C)として、上記構造単位を1個有するものとしては、下記一般式(III)で表されるものがある。
【0095】
【化9】
[Xは、少なくとも1個のカルボジイミド基を含有する2官能性有機基であり、Yは、同一または異種のポリアルキレングリコールモノアルキルエーテルから水酸基を除いた構造である。]
【0096】
一般式(III)におけるXは、上記の一般式(I)における式(a)で表すことができる基である。
【0097】
一般式(III)におけるYは、同一または異種のポリアルキレングリコールモノアルキルエーテルから水酸基を除いた構造である。このYは、上述の一般式(I)におけるYと同様のものを示すことができる。一般式(III)で示される親水化変性カルボジイミド化合物(C)を用いることによって、架橋密度がより高いレベルで保持されるという利点がある。考えられる理由としては、カルボジイミドのユニットが複数ある一般式(I)(II)では水性樹脂の酸価が低い中で、酸との反応効率が低いこと、また、一般式(III)は一般式(I)(II)のようにかさ高い構造を有していないため、水性樹脂の水酸基とイソシアネートの架橋を阻害することがないことより、一般式(III)で示される親水化変性カルボジイミド化合物(C)の架橋密度が高くなったと考えている。
【0098】
一般式(III)におけるYは、好ましくは、下記(i)または(ii):
(i)繰り返し数6〜20のポリエチレンオキサイドユニットの末端に、炭素数1〜3のアルキル基がエーテル結合した、ポリエチレングリコールモノアルキルエーテルから、水酸基を除いた構造
(ii)繰り返し数4〜60のポリプロピレンオキサイドユニットの末端に、炭素数1〜8のアルキル基がエーテル結合した、ポリプロピレングリコールモノアルキルエーテルから、水酸基を除いた構造:
から選択される、同一または異種の構造であるのがより好ましい。
さらに好ましくは、前記(ii)のポリプロピレンオキサイドユニットの繰り返し数が15〜60である。
上記(i)および(ii)を有する、一般式(III)で示される親水化変性カルボジイミド化合物(C)を用いることによって、水分散性に優れ、安定性が向上し、さらに架橋密度がより高いレベルで保持されるという利点がある。
【0099】
一般式(III)で示される親水化変性カルボジイミド化合物(C)は、上述した有機ジイソシアネートの脱二酸化炭素を伴う縮合反応によって得られた、原料カルボジイミド化合物に、同一または異種のポリアルキレングリコールモノアルキルエーテルを反応させることによって調製することができる。
【0100】
上記ポリアルキレングリコールモノアルキルエーテルは、
・繰り返し数6〜20のポリエチレンオキサイドユニットの末端に、炭素数1〜3のアルキル基がエーテル結合した、ポリエチレングリコールモノアルキルエーテル、または、
・繰り返し数4〜60のポリプロピレンオキサイドユニットの末端に、炭素数1〜8のアルキル基がエーテル結合した、ポリプロピレングリコールモノアルキルエーテル、
であるのがより好ましい。一般式(III)で示される親水化変性カルボジイミド化合物(C)の調製において、これらのポリエチレングリコールモノアルキルエーテルおよびポリプロピレングリコールモノアルキルエーテルは、単独で用いてもよく、併用してもよい。
【0101】
上記ポリエチレングリコールモノアルキルエーテルとしては、具体的にはポリエチレングリコールモノメチルエーテル、ポリエチレングリコールモノエチルエーテル、ポリエチレングリコールモノプロピルエーテルが挙げることができ、特にポリエチレングリコールモノメチルエーテルが好適である。
上記ポリプロピレングリコールモノアルキルエーテルとしては、具体的にはポリプロピレングリコールモノメチルエーテル、ポリプロピレングリコールモノエチルエーテル、ポリプロピレングリコールモノブチルエーテル、ポリプロピレングリコール−2−エチルヘキシルエーテル等を挙げることができ、特にポリプロピレングリコールモノブチルエーテルが好適である。
【0102】
上記一般式(III)で示される親水化変性カルボジイミド化合物(C)において、何れか一方のYが(i)であって他方のYが(ii)であり、そして、上記(i)繰り返し数6〜20のポリエチレンオキサイドユニットの末端に、炭素数1〜3のアルキル基がエーテル結合した、ポリエチレングリコールモノアルキルエーテルから、水酸基を除いた構造、および(ii)繰り返し数4〜60のポリプロピレンオキサイドユニットの末端に、炭素数1〜8のアルキル基がエーテル結合した、ポリプロピレングリコールモノアルキルエーテルから、水酸基を除いた構造の比率が、(i):(ii)=1:0.7〜1:8の範囲内であるのがより好ましい。
一般式(III)で示される親水化変性カルボジイミド化合物(C)において、塗膜が形成したときに耐水性を向上させるため、カルボジイミド基の周辺がある程度疎水性となっていることが好ましい。また、水によるカルボジイミドの失活を抑止し、安定性を保持するため、カルボジイミド基の周辺がある程度疎水性となっており、水分子との接触が低い状態に保たれているのが好ましい。その一方で、一般式(III)で示されるカルボジイミド化合物において、親水性を維持するためには、ポリエチレングリコール構造を一定量有することが必要となる。ここで、上記(i)および(ii)の構造が、(i):(ii)=1:0.7〜1:8の範囲内で存在する場合において、カルボジイミド化合物の親水性を確保しつつ、一方でカルボジイミド基の周辺においてある程度疎水性を保つことができる。これにより、低温硬化性により優れ、かつ、塗料安定性にもより優れた水性中塗り塗料組成物が得られるという利点がある。なお、上記比率(i):(ii)は、(i):(ii)=1:0.7〜1:1.5の範囲内であるのがさらに好ましい。
【0103】
上記水性中塗り塗料組成物中に含まれる、親水化変性カルボジイミド化合物(C)の含有量は、前記水性中塗り塗料組成物の樹脂固形分に対して1〜8質量%であるのが好ましい。親水化変性カルボジイミド化合物(C)の量が上記範囲であることによって、得られる複層塗膜において良好な耐水性および耐水チヂミ性が得られる利点がある。
【0104】
水性中塗り塗料組成物の調製など
本発明における水性中塗り塗料組成物は、水酸基およびカルボキシル基を有する水性樹脂(A1)、ポリイソシアネート化合物(B)、および、親水化変性カルボジイミド化合物(C)を含む。
【0105】
上記水性中塗り塗料組成物においては、ポリイソシアネート化合物(B)が有するイソシアネート基の当量に対する親水化変性カルボジイミド化合物(C)が有するカルボジイミド基の当量の比が、0.01〜0.20の範囲であるのが好ましい。このように本発明においては、イソシアネート基の当量に対して、カルボジイミド基の当量が非常に少ないことを特徴としている。上記水性中塗り塗料組成物においては、このようにイソシアネート基の当量に対するカルボジイミド基の当量の比が0.01〜0.20の範囲であることによって、低温硬化性を確保しつつ、得られる塗膜の架橋密度が高くなり、良好な塗膜物性が確保されることとなるという利点がある。この当量比は、0.01〜0.09の範囲であるのがより好ましい。
【0106】
本発明において用いられる水酸基およびカルボキシル基を有する水性樹脂(A1)は、上述の通り、樹脂固形分換算で80〜200mgKOH/gの水酸基価および10〜40mgKOH/gの酸価を有している。すなわち、水酸基価の値が、酸価の値と比べて非常に多いことを特徴とする。そしてこのような水性樹脂(A1)を用いることに加えて、ポリイソシアネート化合物(B)が有するイソシアネート基の当量に対する親水化変性カルボジイミド化合物(C)が有するカルボジイミド基の当量の比が0.01〜0.20の範囲であることによって、塗料安定性を確保しつつ、十分な架橋密度を有する塗膜が得られる利点がある。例えば、上記のような水性樹脂(A1)を用いることなく、ポリイソシアネート化合物(B)が有するイソシアネート基の当量に対する親水化変性カルボジイミド化合物(C)が有するカルボジイミド基の当量の比を単に低くした場合は、塗料安定性が大幅に低下するおそれがある。これは、水性中塗り塗料組成物中において、親水化変性カルボジイミド化合物(C)が存在することによって、ポリイソシアネート化合物(B)の塗料組成物内における安定性が向上していることに由来する。
本発明においては、酸価に対して水酸基価が非常に高い水性樹脂(A1)を用いることを特徴としている。水性樹脂(A1)の水酸基価がこのように高いことによって、得られる塗膜において高い架橋密度が達成されることとなる。また、水性樹脂(A1)の酸価が低いことによって、水性樹脂(A1)の酸基とポリイソシアネート化合物(B)のイソシアネート基の間に生じうる、望ましくない副反応の抑制が達成される。そして、ポリイソシアネート化合物(B)が有するイソシアネート基の当量に対する親水化変性カルボジイミド化合物(C)が有するカルボジイミド基の当量の比が0.01〜0.20の範囲と、カルボジイミド基の量が極めて少ないことによって、塗料組成物保存後においても十分な架橋密度が達成されるなどの利点がある。
【0107】
また上記水性中塗り塗料組成物において、水性樹脂(A1)が含有する水酸基の当量に対する、ポリイソシアネート化合物(B)が有するイソシアネート基の当量の比は、0.6〜1.5の範囲内であるのが好ましい。水性樹脂(A1)の水酸基およびポリイソシアネート化合物(B)のイソシアネート基は、互いに反応しあう基である。そしてこれらの基の当量比が上記範囲であることによって、低温においても硬化反応が良好に進行し、これにより、望ましい架橋密度を有する塗膜が得られるという利点がある。
【0108】
上記水性中塗り塗料組成物においては、さらに、水性樹脂(A1)が有する酸基の当量に対する、親水化変性カルボジイミド化合物(C)が有するカルボジイミド基の当量の比が、0.1〜1.0の範囲であるのが好ましい。この当量比は0.1〜0.6の範囲であるのがより好ましい。この場合は、互いに反応するカルボジイミド基および酸基の当量において、酸基の方が過剰量存在することとなる。これにより、形成される硬化塗膜中においては基本的にはカルボジイミド基が残存しない状態となる一方で、酸基が残存することとなり、被塗物に対する塗膜密着性が向上するという利点がある。
【0109】
上記水性中塗り塗料組成物は、上記成分(A1)〜(C)以外に、必要に応じて、顔料、硬化触媒、表面調整剤、消泡剤、顔料分散剤、可塑剤、造膜助剤、紫外線吸収剤、酸化防止剤、溶剤(水、有機溶剤)などを含有することができる。上記水性中塗り塗料組成物は、低温での反応性に優れているため、塗装現場で製造することが好ましい。上記水性中塗り塗料組成物は、上記成分(A1)〜(C)成分を混合することによって得ることができる。
【0110】
上記水性中塗り塗料組成物は、上記親水化変性カルボジイミド化合物(C)が水分散性に優れているため、上記ポリイソシアネート化合物(B)の水分散性が十分でない場合においても、上記硬化剤組成物を形成することで水性中塗り塗料組成物の貯蔵安定性を高めることができる。
【0111】
上記水性中塗り塗料組成物の樹脂固形分濃度は、塗装条件によって異なるが、一般的には、15〜60質量%に設定することが好ましい。
【0112】
水性ベース塗料組成物
本発明の方法で用いられる水性ベース塗料組成物は、水酸基およびカルボキシル基を有する水性樹脂(A2)、メラミン樹脂(D)、弱酸触媒(E)、および、水性ポリウレタン樹脂(F)、を含む。
【0113】
水酸基およびカルボキシル基を有する水性樹脂(A2)
水性ベース塗料組成物中に含まれる水性樹脂(A2)は、水性中塗り塗料組成物中に含まれる上記水性樹脂(A1)と同様の樹脂であるものの、水性樹脂(A1)における酸価の範囲規定を伴わない樹脂である。すなわち、水性ベース塗料組成物中に含まれる水性樹脂(A2)は、樹脂固形分換算で80〜200mgKOH/gの水酸基価を有する樹脂である。この水性ベース塗料組成物中に含まれる水性樹脂(A2)は、10〜40mgKOH/gの酸価を有するのが好ましい。
【0114】
水性ベース塗料組成物中に含まれる水性樹脂(A2)は、樹脂固形分換算で、水酸基価が80〜200mgKOH/gであることによって、上記成分を含む水性ベース塗料組成物において、塗料安定性を良好に確保しつつ、得られる硬化塗膜の架橋密度が良好な範囲となり、耐水性などの性能が向上するなどの利点がある。これは、水性樹脂(A2)の水酸基価が上記範囲のように比較的高く、そして、水性ベース塗料組成物中に、特定のメラミン樹脂(D)、弱酸触媒(E)および水性ポリウレタン樹脂(F)がさらに含まれることによって、塗料組成物の低温硬化性が確保され、これにより、得られる塗膜における架橋密度が良好な範囲となるためと考えられる。
【0115】
上記水性樹脂(A2)は、例えば、水性ベース塗料組成物の樹脂固形分に対して20〜60質量%の範囲内で含まれるのが好ましい。上記範囲は30〜50質量%であるのがより好ましい。
【0116】
メラミン樹脂(D)
本発明における水性ベース塗料組成物中に含まれるメラミン樹脂(D)は、下記式(1)で表されるように、メラミン核(トリアジン核)の周囲に3個の窒素原子を介してR〜R10の基が結合した構造を含むものである。上記メラミン樹脂は、一般的には、複数のメラミン核が互いに結合した多核体により構成されるものである。一方で、上記メラミン樹脂は、1個のメラミン核からなる単核体であってもよい。また、メラミン樹脂を構成することになるメラミン核の構造は、下記式(1)で表されるものが好ましい。
【0117】
【化10】
【0118】
上記式(1)において、R〜R10は、同一または異なって、水素原子(イミノ基)、CHOH(メチロール基)、CHOR11、または、他のメラミン核との結合部分を表す。R11は、アルキル基であり、好ましくは、メチル基、エチル基、プロピル基、ブチル基等の炭素数1〜4のアルキル基である。
【0119】
本発明において、上記メラミン樹脂は、メラミン核1個当たりの平均イミノ基量が1.0個以上、かつ平均メチロール基量が0.5個以上である。すなわち、R〜R10のうち、イミノ基が平均1.0個以上含まれ、メチロール基が平均0.5個以上含まれている。このようなメラミン樹脂は、1分子中にイミノ基およびメチロール基が混在したイミノメチロール型メラミン樹脂誘導体である。イミノ基によってメラミン樹脂を自己縮合させることができ、メチロール基が水性樹脂の水酸基と反応して共縮合させることができる。上記メラミン樹脂は、水性樹脂(A2)との反応によって、架橋構造が形成され、良好な物性、品質を有する塗膜が得られることになる。
【0120】
本発明においては、メラミン核1個当たりのイミノ基およびメチロール基の量(平均値)を上記特定範囲に設定することによって、低温硬化性および貯蔵安定性のいずれも向上させることができる。平均イミノ基量の好ましい下限値は1.2個である。平均イミノ基量の上限値は特に限定されないが、製造上の観点からは、好ましい上限値は3.0個である。平均メチロール基量の好ましい下限値は0.65個であり、より好ましい下限値は0.7個である。平均メチロール基量の上限値は特に限定されないが、製造上の観点からは、好ましい上限値は1.0個である。
【0121】
上記メラミン樹脂におけるGPCで測定される数平均分子量は、好ましくは、300〜1,300である。数平均分子量が上記範囲内であると、塗膜の外観、耐アルカリ性および耐水性を向上させることができる。数平均分子量のより好ましい範囲は、300〜1,000、特に好ましい範囲は300〜800である。
【0122】
上記メラミン樹脂としては、当業者において通常用いられる製法によって、メラミン核1個当たりの平均イミノ基量および平均メチロール基量が上述したように高い値となるように調整して合成することができる。また、上記メラミン樹脂として、市販品を用いてもよい。市販品の具体例として、例えば、オルネクスジャパン社製の「サイメル(登録商標)701」、「サイメル202」等が挙げられる。後述する実施例においては、これらの市販品に加えて、これらよりも平均イミノ基量および平均メチロール基量が高くなるように調製したものを用いている。上記メラミン樹脂は、1種のみを用いてもよく、2種以上を併用してもよい。
【0123】
弱酸触媒(E)
上記弱酸触媒(E)は、水溶液中での電離度が比較的小さい酸であればよく、例えば、pKa(HO)が1より大きい酸触媒が好適である。pKa(HO)は、水に対する酸解離定数であり、一般的に知られている20℃における値を用いればよい。このような弱酸触媒としては、酢酸、プロピオン酸、安息香酸等のカルボン酸;リン酸、リン酸エステル、フェノール、炭酸、ホウ酸、硫化水素等が挙げられる。弱酸触媒(E)として、これらのいずれか1種を用いてもよく、または2種以上を組み合わせて用いてもよい。弱酸触媒(E)が、リン酸エステル化合物を含む態様が特に好ましい。弱酸触媒を用いることによって、低温硬化性を向上させつつ、貯蔵安定性を確保することができる。
【0124】
弱酸触媒(E)として、市販の酸触媒を用いることもできる。市販品として、例えば、サイキャット(CYCAT)シリーズのうち、pKa(HO)が1より大きいものなどが挙げられる。
【0125】
上記水性塗料組成物は、実質的にpKa(HO)が1以下の酸触媒を包含しない。実質的にとは、上記水性塗料組成物に対するpKa(HO)が1以下の酸触媒の配合量が、0.01質量%を超えないことを意味する。前記濃度を超えてpKa(HO)が1以下の酸触媒を包含すると、低温硬化の効果が得られない。
【0126】
水性ポリウレタン樹脂(F)
上記水性ベース塗料組成物は、上記成分に加えて水性ポリウレタン樹脂(F)を含む。水性ベース塗料組成物中に、特定の水性ポリウレタン樹脂(F)が含まれることによって、上記水性中塗り塗料組成物および水性ベース塗料組成物を塗装し、次いで、低温硬化条件で水性塗料組成物を焼き付け硬化させる場合であっても、水性ポリウレタン樹脂が自己および他の組成分と融着することで強靭な塗膜を形成することが可能なため、塗膜間密着性、耐水密着性などに優れた複層複層が得られることとなる。
【0127】
上記水性ポリウレタン樹脂(F)は、ポリオール化合物(F−1)と、分子内に活性水素基と親水基を有する化合物(F−2)と、有機ポリイソシアネート(F−3)と、必要により鎖伸長剤および重合停止剤を用いて得られるポリマーであって、得られたポリマーを水中に溶解または分散することによって、調製することができる。
【0128】
ポリオール化合物(F−1)としては、水酸基を2つ以上有するポリオール化合物であれば特に限定されない。ポリオール化合物(F−1)が、例えば、エチレングリコール、プロピレングリコール、1,4−ブタンジオール、1,6−ヘキサンジオール、トリメチロールプロパン、グリセリン等の多価アルコール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコール、等のポリエーテルポリオール;アジピン酸、セバシン酸、イタコン酸、無水マレイン酸、フタル酸、イソフタル酸等のジカルボン酸とエチレングリコール、トリエチレングリコール、プロピレングリコール、ブチレングリコール、トリプロピレングリコール、ネオペンチルグリコール等のグリコールから得られるポリエステルポリオール類;ポリカプロラクトンポリオール;ポリブタジエンポリオール;ポリカーボネートポリオール;ポリチオエーテルポリオール;等が挙げられる。上記ポリオール化合物(F−1)は単独で用いてもよく、または2種類以上を併用してもよい。ポリオール化合物(F−1)は、数平均分子量500〜5000であるのが好ましい。
【0129】
分子内に活性水素基と親水基を有する化合物(F−2)としては、活性水素とアニオン基{アニオン基またはアニオン形成性基(塩基と反応してアニオン基を形成するものであり、この場合にはウレタン化反応前、途中または後に塩基で中和することによってアニオン基に変える)}を含有する化合物として公知のもの(例えば、特公昭42−24192号公報明細書および特公昭55−41607号公報明細書に記載のもの、具体例としてはα,α−ジメチロールプロピオン酸、α,α−ジメチロール酪酸、ジメチロール酢酸などのジメチロールアルカン酸)、分子内に活性水素とカチオン基を有する化合物として公知のもの(たとえば特公昭43−9076号公報明細書に記載のもの)および分子内に活性水素とノニオン性の親水基を有する化合物として公知のもの(例えば、特公昭48−41718号公報に記載のもの、具体的には、ポリエチレングリコール、アルキルアルコールアルキレンオキシド付加物など)が挙げられる。分子内に活性水素基と親水基を有する化合物(F−2)として、ジメチロールアルカン酸を用いるのが好ましい。
【0130】
有機ポリイソシアネート(F−3)としては、分子中に2個以上のイソシアネート基を有するものであれば特に限定されない。有機ポリイソシアネート(F−3)の具体例として、
ヘキサメチレンジイソシアネート、2,2,4−トリメチルヘキサンジイソシアネート、リジンジイソシアネ−トなどの、炭素数2〜12の脂肪族ジイソシアネート;
1,4−シクロヘキサンジイソシアネート、イソホロンジイソシアネート、4,4’−ジシクロヘキシルメタンジイソシアネート、メチルシクロヘキシレンジイソシアネート、イソプロピリデンシクロヘキシル−4,4’−ジイソシアネートなどの、炭素数4〜18の脂環族ジイソシアネート;
2,4−トルイレンジイソシアネート、2,6−トルイレンジイソシアネート、ジフェニルメタン−4,4’−ジイソシアネート、1,5’−ナフテンジイソシアネート、トリジンジイソシアネート、ジフェニルメチルメタンジイソシアネート、テトラアルキルジフェニルメタンジイソシアネート、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート、4,4’−ジベンジルジイソシアネート、1,3−フェニレンジイソシアネート等の芳香族ジイソシアネート;
リジンエステルトリイソシアネート、トリフェニルメタントリイソシアネート、1,6,11−ウンデカントリイソシアネート、1,8−ジイソシアネート−4,4−イソシアネートメチルオクタン、1,3,6−ヘキサメチレントリイソシアネート、ビシクロヘプタントリイソシアネート等のトリイソシアネート類;
などが挙げられる。
また、これらのポリイソシアネート化合物の、ダイマー、トリマー(イソシアヌレート結合)で用いられてもよく、また、アミンと反応させてビウレットとして用いてもよい。更に、これらのポリイソシアネート化合物と、ポリオールを反応させたウレタン結合を有するポリイソシアネートも用いることができる。
有機ポリイソシアネート(F−3)として、脂肪族ジイソシアネートを用いるのがより好ましい。脂肪族ジイソシアネートを用いて水性ポリウレタン樹脂(F)を調製することによって、得られる塗膜の透水性を適切な範囲に調節することができ、また良好な低温初期耐水性を得ることができるという利点がある。
【0131】
水性ポリウレタン樹脂(F)の調製時において必要により用いることができる鎖伸長剤としては、活性水素基を2つ以上含有していれば特に限定されないが、例えば、低分子(数平均分子量500未満)ポリオール、ポリアミンなどがあげられる。上記低分子ポリオールとしては、エチレングリコール、プロピレングリコール、1,4−ブタンジオール、3−メチルペンタンジオール、2−エチル−1,3−ヘキサンジオールおよびトリメチロールプロパンなどが挙げられる。上記ポリアミンとしては、エチレンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン、ヒドラジン、キシリレンジアミン、イソホロンジアミンなどが挙げられる。
【0132】
また、重合停止剤としては、分子内に活性水素を1個有する化合物、またはモノイソシアネート化合物が挙げられる。
【0133】
上記分子内に活性水素を1個有する化合物としては、例えば、モノアルコール(例えば、メタノール、ブタノール、オクタノールなどのアルキルアルコール、アルキルアルコールアルキレンオキサイド付加物など)または、モノアミン(例えば、ブチルアミン、ジブチルアミンなどのアルキルアミンなど)が挙げられる。
【0134】
上記モノイソシアネート化合物としては、例えば、メチルイソシアネート、エチルイソシアネート、プロピルイソシアネート、ブチルイソシアネート、ラウリルイソシアネート、シクロヘキシルイソシアネート、フェニルイソシアネート、トリレンイソシアネートなどが挙げられる。
【0135】
水性ポリウレタン樹脂(F)を製造するにあたっての反応方法は、各成分を一度に反応させるワンショット法または段階的に反応させる多段法{活性水素含有化合物の一部(例えば、高分子ポリオール)とポリイソシアネートを反応させてNCO末端プレポリマーを形成したのち活性水素含有化合物の残部を反応させて製造する方法}のいずれの方法でもよい。水性ポリウレタン樹脂(F)の合成反応は通常40〜140℃、好ましくは60〜120℃で行われる。反応を促進させるため通常のウレタン化反応に用いられるジブチルスズラウレ−ト、オクチル酸スズ等のスズ系あるいはトリエチレンジアミン等アミン系の触媒を使用してもよい。また上記反応は、イソシアネートに不活性な有機溶媒(例えば、アセトン、トルエン、ジメチルホルムアミドなど)の中で行ってもよく、反応の途中または反応後に溶媒を加えてもよい。
【0136】
本発明における水性ポリウレタン樹脂(F)は、公知の方法(アニオン形成性基の場合は塩基で中和してアニオン基を形成する方法、カチオン形成性基の場合は4級化剤でカチオン基を形成する方法、または、酸で中和してカチオン基を形成する方法)で処理した後、水中に分散させることにより、調製することができる。
【0137】
上記の水中に溶解する工程は特に限定されず、上記反応後でも多段法の途中の段階でも良い。例えば、NCO末端プレポリマーの段階で水中に溶解するときは水および/またはポリアミンで鎖伸長しながら水中に溶解することにより水性ポリウレタン樹脂(F)が得られる。
【0138】
また、イソシアネートに不活性な有機溶媒を使用した場合、水中に溶解した後に脱溶媒を行ってもよい。
【0139】
本発明における水性ポリウレタン樹脂(F)は、ガラス転移点(Tg)が−50℃以下であり、水性ポリウレタン樹脂(F)の硬化膜の破断伸度が−20℃において400%以上であることを条件とする。
【0140】
上記水性ポリウレタン樹脂(F)のガラス転移点(Tg)が−50℃を超える場合は、得られる複層塗膜の塗膜密着性、耐チッピング性および耐水性が劣ることとなる。上記ガラス転移点(Tg)は、−55℃以下であるのがより好ましく、−58℃以下であるのがさらに好ましい。水性ポリウレタン樹脂(F)のガラス転移点(Tg)は、示差走査熱量計によって測定することができる。
【0141】
上記水性ポリウレタン樹脂(F)の硬化膜の破断伸度が、−20℃において400%未満である場合は、得られる複層塗膜の塗膜密着性、耐チッピング性および耐水性が劣ることとなる。上記破断伸度は、500%以上であるのがより好ましい。
【0142】
上記水性ポリウレタン樹脂(F)の硬化膜の破断伸度は、JIS K7127に従って求めることができる。
具体的には、水性ポリウレタン樹脂(F)95質量部(樹脂固形分量)および親水化変性カルボジイミド化合物(C)5質量部(樹脂固形分量)を混合する。得られた混合物を、乾燥膜厚が20μmとなるようにドクターブレードで均一に塗装する。20℃で10分間静置した後、80℃で3分間プレヒートを行い、水分を揮発させた後に、120℃で30分間焼き付けて、硬化膜を調製する。得られた硬化膜を、JIS K7127に従い、試験時温度−20℃の条件下で引張性能試験を行い、破断時の伸び率を測定し、得られた伸び率を破断伸度とする。
上記のように、水性ポリウレタン樹脂と、一般式(I)、(II)または(III)で表されるカルボジイミド化合物とを混合し焼き付けてフィルム状にすることで、水性ポリウレタン樹脂とカルボジイミド樹脂の相互の架橋および/または融着が進行し、水性ポリウレタン樹脂の破断伸度を評価できるようになる。
【0143】
上記水性ポリウレタン樹脂(F)として、市販品を用いてもよい。市販品として、例えば、楠本化成社から販売される水性ポリウレタン樹脂であるNeoRezシリーズ、ADEKA社から販売される水性ポリウレタン樹脂であるHUXシリーズ、三洋化成社から販売される水性ポリウレタン樹脂である、ユーコートシリーズ、パーマリンシリーズ、ユープレンシリーズなどが挙げられる。
【0144】
上記水性ポリウレタン樹脂(F)の含有量は、水性ベース塗料組成物の樹脂固形分に対して8質量%以上であるのが好ましく、10質量%以上であるのがより好ましく、15質量%以上であるのがさらに好ましい。上記水性ポリウレタン樹脂(F)の含有量が8質量%以上であることによって、低温硬化条件で水性塗料組成物を焼き付け硬化させる場合であっても、水性ポリウレタン樹脂が自己および他の組成分と融着することで強靭な塗膜を形成することが可能なため、塗膜間密着性、耐水密着性などに優れた複層複層が得られる利点がある。含有量の上限は、30質量%以下であるのがより好ましい。
【0145】
その他の樹脂
上記水性ベース塗料組成物は、必要に応じて、上記水性樹脂(A2)以外の樹脂成分(その他の樹脂)を含んでもよい。その他の樹脂の1例として、例えば、上記水性樹脂(A2)と同様に調製される樹脂であって、水酸基価が80mgKOH/g未満である樹脂が挙げられる。その他の樹脂の他の1例として、例えば、ポリエーテルジオール、ポリカーボネートジオールなどの、水酸基を有する樹脂などが挙げられる。
【0146】
このようなその他の樹脂は、水性ベース塗料組成物の機能(耐水性、耐チッピング性など)などを損なうことがないことを条件として、任意の量で用いることができる。水酸基価が80mgKOH/g未満である樹脂は、例えば、水性ベース塗料組成物の樹脂固形分に対して15〜45質量%の範囲内で含むのが好ましい。
【0147】
水性ベース塗料組成物の調製
上記水性ベース塗料組成物中に含まれる水性樹脂(A2)およびメラミン樹脂(D)の質量比が、固形分換算で、(A2)/(D)=0.7〜3の範囲内である。上記範囲を外れて水性樹脂(A2)が多くなりメラミン樹脂(D)が少なくなると、硬化(架橋)反応性に影響を及ぼし、低温硬化性が充分なものとはならないおそれがある。一方で、上記範囲を外れて水性樹脂(A2)が少なくなりメラミン樹脂(D)が多くなると、水性ベース塗料組成物中における酸基の量の増加によって貯蔵中にも硬化(架橋)反応性を促進させることによって、貯蔵安定性の低下をきたすおそれがある。好ましくは、水性樹脂(A2)とメラミン樹脂(D)との質量比が、固形分換算で(A2)/(D)=0.7〜2.7の範囲内であるのが好ましく、0.8〜2.7の範囲内であるのがより好ましい。
【0148】
上記水性ベース塗料組成物中に含まれる弱酸触媒(E)の含有量は、水性ベース塗料組成物中に含まれる水性樹脂(A2)およびメラミン樹脂(D)の固形分質量((A2)+(D))100質量部に対して、0.1〜10.0質量部である。なお、溶媒に溶解または分散させた弱酸触媒を用いる場合には、弱酸触媒(E)の含有量は、溶媒(揮発分)を除いた有効成分の量に基づいて計算される。上記範囲を超えて弱酸触媒の含有量が上限値より多くなると、貯蔵安定性が低下したり、塗膜物性が低下する(塗膜外観における縮み)などのおそれがある。上記範囲未満で弱酸触媒の含有量が下限値より少なくなると、硬化(架橋)反応性が低下し、低温硬化性が充分なものとはならず、また、塗膜物性も低下するおそれがある。より好ましくは、弱酸触媒(E)の含有量が、水性ベース塗料組成物中に含まれる水性樹脂(A2)およびメラミン樹脂(D)の固形分質量((A2)+(D))100質量部に対して、0.1〜5.0質量部である。これらの範囲は、弱酸触媒(E)が、特に、リン酸エステル化合物を含むものであるときに好ましい。
【0149】
上記水性ベース塗料組成物は、上記塗料組成物に対する中和率が50%以上であることが好ましい。すなわち、塗料組成物中に含まれる酸基量を100モル%とすると、それに対して50モル%以上の塩基量となるように、塩基性化合物で塗料組成物が中和されたものであることが好ましい。これは、塗料組成物中に、理論上対となる塩基が存在しない酸量が全体の50%を超えないことを意味する。中和率を上記範囲とすることによって、塗料組成物の水系媒体中における安定性を保つことができるとともに、貯蔵安定性を充分に確保することができる。50%未満であると、貯蔵中においても水性樹脂とメラミン樹脂との硬化(架橋)反応を促進し、それによって貯蔵安定性が低下するおそれがある。より好ましくは、50%を超えるようにすることである。また、塗料組成物に対する中和率の上限は、150%以下であることが好ましい。150%を超えると、弱酸触媒(E)の働きが妨げられるため、硬化(架橋)反応性が低下し、低温硬化性が充分なものとはならず、また、塗膜物性も低下するおそれがある。
【0150】
上記塩基性化合物としては、中和剤として一般的に用いられるものを用いることができ、例えば、アンモニア;メチルアミン、エチルアミン、ジメチルアミン、ジエチルアミン、トリメチルアミン、トリエチルアミン、ジメチルエタノールアミン、ジエタノールアミン、ジエチルアミノエタノール、トリエタノールアミン等のアミン化合物;アルカリ金属またはアルカリ土類金属の水酸化物、炭酸塩等が挙げられ、これらの1種または2種以上を用いることができる。
【0151】
上記水性ベース塗料組成物においては、メラミン樹脂としてイミノ基とメチロール基の量が多いものを使用するため、水性樹脂(A2)とメラミン樹脂(D)との質量比の範囲、中和率の範囲を設定することが貯蔵安定性に影響を及ぼすことになる。本発明の好ましい形態においては、これらを最適範囲に設定すれば、低温硬化技術においても貯蔵安定性を充分に確保することができるところに一つの技術的意義がある。
【0152】
上記水性ベース塗料組成物は、上記成分以外を含有していてもよく、例えば、上記親水性変性カルボジイミド化合物、水分散ブロックイソシアネートを含有するものであってもよく、これらの少なくとも一方が含まれることによって、低温硬化性を向上させることができる。
【0153】
上記水性ベース塗料組成物は、塗料組成物を構成する各成分を、通常用いられる手段によって混合することによって、調製することができる。上記水性ベース塗料組成物は、必要に応じて、顔料、表面調整剤(消泡剤、レベリング剤等)、顔料分散剤、可塑剤、造膜助剤、紫外線吸収剤、酸化防止剤、難燃剤、帯電防止剤、静電助剤、熱安定剤、光安定剤、溶剤(水、有機溶剤)その他の添加剤を含有してもよい。
【0154】
上記水性ベース塗料組成物が顔料を含む場合における顔料含有率としては、適用用途に応じて通常設定される範囲とすればよい。例えば、上記水性ベース塗料組成物中の樹脂および硬化剤の合計固形分および顔料の合計100質量部に対する顔料の質量%(PWC:Pigment Weight Concentration)として、0.1〜50質量%とすることが好ましい。
【0155】
複層塗膜形成方法
本発明の複層塗膜形成方法は、
水性中塗り塗料組成物を被塗物に塗装して、未硬化の中塗り塗膜を形成する、中塗り塗膜形成工程、
得られた未硬化の中塗り塗膜の上に、水性ベース塗料組成物を塗装して、未硬化のベース塗膜を形成する、ベース塗膜形成工程、および
得られた未硬化の中塗り塗膜およびベース塗膜を加熱して硬化する、硬化工程、
を包含する。
本発明の複層塗膜形成方法においては、上記特定の水性中塗り塗料組成物および水性ベース塗料組成物を用いることによって、低温硬化条件であっても、塗膜物性に優れた塗膜を得ることができる。上記硬化工程における塗膜の加熱硬化温度は、特に限定されず、好ましくは70〜120℃、より好ましくは70〜110℃、さらに好ましくは70〜100℃である。本発明の複層塗膜形成方法においては、このように、100℃以下の低温硬化条件で行うこともできる。このような低温硬化条件としては、塗膜の加熱硬化温度はさらに70〜90℃といった硬化条件であってよい。
【0156】
被塗物
上記方法における被塗物として、鉄、鋼、ステンレス、アルミニウム、銅、亜鉛、スズなどの金属およびこれらの合金などの鋼板;ポリエチレン樹脂、EVA樹脂、ポリオレフィン樹脂(ポリエチレン樹脂、ポリプロピレン樹脂など)、塩化ビニル樹脂、スチロール樹脂、ポリエステル樹脂(PET樹脂、PBT樹脂などを含む)、ポリカーボネート樹脂、アクリル樹脂、アクリロニトリルブタジエンスチレン(ABS)樹脂、アクリロニトリルスチレン(AS)樹脂、ポリアミド樹脂、アセタール樹脂、フェノール樹脂、フッ素樹脂、メラミン樹脂、ウレタン樹脂、エポキシ樹脂、ポリフェニレンオキサイド(PPO)などの樹脂;および、有機−無機ハイブリッド材などが挙げられる。これらは成形された状態であってもよい。
【0157】
上記鋼板は、必要に応じて、化成処理が施された後に電着塗膜が形成された状態であってもよい。化成処理として、例えば、リン酸亜鉛化成処理、ジルコニウム化成処理、クロム酸化成処理などが挙げられる。また電着塗膜として、カチオン電着塗料組成物またはアニオン電着塗料組成物を用いた電着塗装によって得られる電着塗膜が挙げられる。
【0158】
上記樹脂は、必要に応じて、有機溶媒を用いた蒸気洗浄が行われていてもよく、または中性洗剤を用いた洗浄が行われていてもよい。さらに、必要に応じたプライマー塗装が施されていてもよい。
【0159】
本発明の複層塗膜形成方法は、低温硬化条件であっても塗膜物性に優れた塗膜を形成することができることを特徴とする。そのため、本発明の方法を好適に用いることができる被塗物として、例えば、鋼板部および樹脂部を含む被塗物が挙げられる。このような被塗物に対して、本発明の複層塗膜形成方法によって複層塗膜を形成することによって、樹脂部に対して熱変形が生じるような加熱を加えることなく、樹脂部および鋼板部の両方に対して良好な物性を有する複層塗膜を形成することが可能となる。本発明の複層塗膜形成方法によって、樹脂および鋼板といった異なる素材に対しても、共通した塗料組成物を用いて塗装することができる。これにより、得られる塗膜の色相をより高度なレベルで一致させることができる利点がある。
【0160】
本発明の複層塗膜形成方法における被塗物として好適である他の被塗物として、例えば、産業機械および建設機械などが挙げられる。産業機械および建設機械などは、一般に大型であり、そして強い荷重に耐えうるため、自動車車体などと比較して構成基材(鋼板)の厚みがあるという特徴がある。そのため、このような産業機械、建設機械が被塗物である場合は、被塗物の熱容量が大きく、加熱炉中において被塗物に熱が十分に伝達しないという問題がある。本発明の複層塗膜形成方法は、低温で硬化可能であること、そして低温で硬化させた場合であっても高い架橋密度を有する塗膜が得られることを、特徴の1つとする。そのため、本発明の複層塗膜形成方法は、このように被塗物の熱容量が大きく、塗装後の高温加熱硬化処理が困難である、産業機械・建設機械を被塗物とする塗装においても、好適に用いることができる。
【0161】
上記水性中塗り塗料組成物および水性ベース塗料組成物の塗装は、通常用いられる塗装方法によって塗装することができる。例えば、上記水性中塗り塗料組成物および水性ベース塗料組成物を自動車車体に塗装する場合は、得られる塗膜の外観を高めるために、エアー静電スプレー塗装による多ステージ塗装、好ましくは2ステージで塗装するか、または、エアー静電スプレー塗装と、通称「μμ(マイクロマイクロ)ベル」、「μ(マイクロ)ベル」あるいは「メタベル」等と言われる回転霧化式の静電塗装機とを組み合わせた塗装方法などを用いることができる。
【0162】
水性中塗り塗料組成物の塗膜の膜厚は、所望の用途などに応じて適宜選択することができる。膜厚は、乾燥膜厚として例えば8〜40μmであるのが好ましく、15〜30μmであるのがさらに好ましい。
【0163】
水性ベース塗料組成物の塗膜の膜厚は、所望の用途などに応じて適宜選択することができる。膜厚は、乾燥膜厚として例えば10〜30μmであるのが好ましい。
【0164】
本発明の塗膜形成方法は、上記ベース塗膜が未硬化の状態において、さらにクリヤー塗料組成物を塗装して、クリヤー塗膜を形成し、その後に未硬化の複層塗膜を硬化させる態様も含む。この方法は、焼き付け乾燥炉を省略することができ、経済性および環境保護の面からも好ましい。
【0165】
上記塗装工程において好適に用いることができるクリヤー塗料組成物の例として、ウレタンクリヤー塗料組成物が挙げられる。ウレタンクリヤー塗料組成物としては、水酸基含有樹脂とイソシアネート化合物硬化剤とを含むクリヤー塗料組成物を挙げることができる。上記硬化剤としてのイソシアネート化合物としては特に限定されず、例えば、トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート(HDI)、トリメチルヘキサメチレンジイソシアネートなどの脂肪族イソシアネート、1,3−シクロペンタンジイソシアネート、1,4−シクロヘキサンジイソシアネート、1,2−シクロヘキサンジイソシアネートなどの脂肪族環式イソシアネート、キシリレンジイソシアネート(XDI)、2,4−トリレンジイソシアネート(TDI)、2,6−トリレンジイソシアネートなどの芳香族イソシアネート、イソホロンジイソシアネート(IPDI)、ノルボルナンジイソシアネートメチルなどの脂環族イソシアネート、これらのビュレット体、ヌレート体などの多量体および混合物などを挙げることができる。
【0166】
上記水酸基含有樹脂の水酸基価としては、20〜200mgKOH/gの範囲内であることが好ましい。上限を超えると塗膜の耐水性が低下し、下限を下回ると塗膜の硬化性が低下する。上記下限は、30mgKOH/gがより好ましく、上記上限は、180mgKOH/gがより好ましい。
【0167】
更に、上記水酸基含有樹脂の数平均分子量は、1000〜20000の範囲内であることが好ましい。上記数平均分子量が1000より小さいと作業性および硬化性が十分でなくなるおそれがある。また、20000を超えると、塗装時の不揮発分が低くなり、作業性が悪くなるおそれがある。上記下限は、2000がより好ましく、上記上限は、15000がより好ましい。
【0168】
上記水酸基含有樹脂は、更に、2〜30mgKOH/gの範囲内の酸価を有することが好ましい。上記上限を超えると塗膜の耐水性が低下し、下限を下回ると塗膜の硬化性が低下する。上記下限は、3mgKOH/gがより好ましく、上記上限は、25mgKOH/gがより好ましい。
【0169】
水酸基含有樹脂に対するイソシアネート化合物の含有量は、当業者において通常用いられる範囲で適宜選択することができる。例えば、イソシアネート基(NCO)と水酸基(OH)との当量比(NCO/OH)が、0.5〜1.7の範囲内となる量で用いるのが好ましい。上記下限は、0.7がより好ましく、上記上限は、1.5がより好ましい。
【0170】
クリヤー塗料組成物の製造方法は、特に限定されず、当業者の周知の任意の方法を用いることができる。また、クリヤー塗料組成物として、市販品を用いることもできる。市販品として、例えば、ポリウレエクセルO−1100クリヤー、O−1200クリヤー(日本ペイント・オートモーティブコーティングス株式会社製、イソシアネート硬化型クリヤー塗料組成物)などが挙げられる。
【0171】
上記クリヤー塗料組成物を用いる場合は、上記水性ベース塗料組成物を塗装して、未硬化のベース塗膜を形成した後に、クリヤー塗料組成物をウェットオンウェットで塗装し、次いで、例えば70〜120℃、好ましくは70〜110℃、より好ましくは70〜100℃で10〜30分間焼き付け硬化を行うことによって、複層塗膜を形成することができる。さらなる低温硬化条件としては、70〜90℃で10〜30分間焼き付け硬化を行う硬化条件であってもよい。
【0172】
本発明においては、被塗物の材質に応じて、上記ウレタンクリヤー塗料組成物以外のクリヤー塗料組成物を用いることもできる。例えば、酸エポキシ硬化系クリヤー塗料組成物、アクリルメラミン硬化系クリヤー塗料組成物なども用いることができる。これらクリヤー塗料組成物の例として、例えば、ポリエポキシドとポリ酸とを含有するクリヤー塗料組成物である、日本ペイント・オートモーティブコーティングス株式会社から発売されている「マックフロー O−570クリヤー」あるいは「マックフロー O−1820クリヤー」など、および、アクリル樹脂とメラミン硬化剤とを含むクリヤー塗料組成物である、日本ペイント・オートモーティブコーティングス株式会社から発売されている「スーパーラック O−100クリヤー」(商品名)などが挙げられる。これらのクリヤー塗料組成物を用いる場合の加熱硬化条件は、各クリヤー塗料組成物の組成に応じた条件を適宜選択することができる。これらのクリヤー塗料組成物を用いる場合の加熱硬化条件の一例として、例えば、120〜140℃で10〜30分間加熱する条件などが挙げられる。
【0173】
クリヤー塗料組成物の塗装方法として、上述の公知の塗装方法を用いることができ、例えばエアスプレー、静電塗装などにより塗装することができる。クリヤー塗料組成物は、乾燥膜厚として一般に10〜80μm、好ましくは20〜50μmとなるように塗装するのが好ましい。
【実施例】
【0174】
以下の実施例により本発明をさらに具体的に説明するが、本発明はこれらに限定されない。実施例中、「部」および「%」は、ことわりのない限り、質量基準による。
【0175】
製造例1 水酸基およびカルボキシル基を有するアクリルエマルション(AcEm−1)の製造
撹拌機、窒素導入管、温度制御装置、コンデンサー、滴下ロートを備えた反応容器に、脱イオン水2,000部を仕込み、窒素雰囲気下で攪拌しながら80℃に昇温した。
スチレン103部、メタクリル酸n−ブチル290部、アクリル酸n−ブチル280部、アクリル酸ヒドロキシエチル302部、アクリル酸26部、ドデシルメルカプタン3部および乳化剤としてのラテムルPD−104(花王社製、20%水溶液)100部を脱イオン水1,000部に加えて乳化したプレエマルションを、過硫酸アンモニウム3部を脱イオン水300部に溶解した開始剤水溶液とともに2時間かけて滴下した。
滴下終了後、さらに80℃ で1時間反応を継続した後冷却し、N、N−ジメチルアミノエタール8.2部を加え、樹脂固形分30質量%のアクリルエマルションを得た。モノマー組成から計算される、このアクリルエマルションの樹脂固形分換算での水酸基価は130mgKOH/g、酸価は20mgKOH/gであった。また、得られたアクリルエマルションにおけるアクリル樹脂の、水分除去後のGPC測定による数平均分子量は、45,000であった。
【0176】
製造例2 水酸基およびカルボキシル基を有するポリエステル水分散体(PE−DP)の製造
撹拌機、窒素導入管、温度制御装置、コンデンサー、デカンターを備えた反応容器に、トリメチロールプロパン250部、アジピン酸824部、シクロヘキサンジカルボン酸635部を加え、180℃に昇温して、水が留出しなくなるまで縮合反応を行った。60℃まで冷却した後、無水フタル酸120部を加え、140℃まで昇温して、これを60分間保ち、GPC測定による数平均分子量2,000のポリエステル樹脂を得た。ジメチルアミノエタノール59部(樹脂が有する酸価の80%相当(中和率80%))を80℃で加え、さらに脱イオン水1920部を投入、攪拌することによって、樹脂固形分45質量%のポリエステル水分散体を得た。このポリエステル水分散体の樹脂固形分換算での水酸基価は90mgKOH/g、酸価は35mgKOH/gであった。
【0177】
製造例3 親水化変性カルボジイミド化合物(1)の製造
4,4−ジシクロヘキシルメタンジイソシアネート700部および3−メチル−1−フェニル−2−ホスホレン−1−オキシド7部を170℃で7時間反応させ、上記一般式(a)で表される構造の、1分子にカルボジイミド基を3個有し、両末端にイソシアネート基を有するカルボジイミド化合物を得た。
次に、製造したイソシアネート末端を有する4,4−ジシクロヘキシルメタンカルボジイミド180部に、PTMG−1000(三菱化学社製の数平均分子量1,000のポリテトラメチレングリコール、数平均分子量から計算されるテトラメチレンオキサイドの繰り返し単位13.6)95部およびジブチル錫ジラウレート0.2部を加えて、85℃に加熱し、これを2時間保った。
次いで、メチルポリグリコール130(日本乳化剤社製のポリエチレングリコールモノメチルエーテル、水酸基価130mgKOH/gから計算されるエチレンオキサイドの繰り返し数9)86.4部を加え、85℃で3時間保った。IR測定によりNCOのピークが消失していることを確認して反応を終了し、60℃に冷却した後、脱イオン水を加えて、樹脂固形分40質量%の親水化変性カルボジイミド化合物(1)の水分散体を得た。得られた親水化変性カルボジイミド化合物は、上記一般式(I)で表される化合物であった。
【0178】
製造例4 親水化変性カルボジイミド化合物(2)の製造
製造例3において製造したイソシアネート末端を有する4,4−ジシクロヘキシルメタンカルボジイミド90部に、繰り返し数が平均19のポリプロピレングリコールモノブチルエーテル120部、メチルポリグリコール130 43.2部およびジブチル錫ジラウレート0.07部を加え、IRでNCOの吸収がなくなるまで80℃で保った。60℃に冷却した後、脱イオン水を加えて樹脂固形分25%の親水化変性カルボジイミド化合物(2)の水分散体を得た。得られた親水化変性カルボジイミド化合物は、上記一般式(III)で表される化合物であった。
また、得られた親水化変性カルボジイミド化合物における、(i)ポリエチレングリコールモノアルキルエーテルから水酸基を除いた構造、および(ii)ポリプロピレングリコールモノアルキルエーテルから水酸基を除いた構造の比率は、(i):(ii)=1.0:1.0であった。
【0179】
製造例5 親水化変性カルボジイミド化合物(3)の製造
4,4−ジシクロヘキシルメタンジイソシアネート393部および3−メチル−1―フェニル−2−ホスホレン−1−オキシド8部を180℃で16時間反応させ、1分子にカルボジイミド基を4個有し、両末端にイソシアネート基を有するカルボジイミド化合物を得た。ここに、オキシエチレン基の繰り返し数が9であるポリエチレングリコールモノメチルエーテル130部およびジブチル錫ジラウレート0.2部を加え、90℃で2時間加熱して、末端がイソシアネート基および親水性基であるカルボジイミド化合物を得た。さらに、GP−3000(三洋化成工業社製のグリセリンの3つの水酸基に、プロピレンオキサイドを平均で17モルずつ付加した構造を有する3価のポリオール)300部を加え、90℃で6時間反応させた。IR測定によりNCOのピークが消失していることを確認して反応を終了し、親水化変性カルボジイミド化合物(3)を得た。ここに脱イオン水を加えて撹拌し、樹脂固形分30質量%の親水化変性カルボジイミド化合物(3)の水分散体を得た。得られた親水化変性カルボジイミド化合物は、上記一般式(II)で表される化合物であった。
【0180】
製造例6 着色顔料ペーストの製造
市販の分散剤「Disperbyk 190」(ビックケミー社製)9.2部、イオン交換水17.8部、ルチル型二酸化チタン73.0部を予備混合した後、ペイントコンディショナー中でビーズ媒体を加え、室温で粒度5μm以下となるまで混合分散し、ビーズ媒体を濾過にて取り除いて着色顔料ペーストを得た。
【0181】
製造例7 水酸基価80mgKOH/g未満であるエマルション樹脂(水性樹脂)の製造
イオン交換水194.1部を仕込んだ反応容器に、アデカリアソープNE−20(ADEKA社製α−[1−[(アリルオキシ)メチル]−2−(ノニルフェノキシ)エチル]−ω−ヒドロキシオキシエチレン、固形分80質量%水溶液)0.2部と、アクアロンHS−10(第一工業製薬社製ポリオキシエチレンアルキルプロペニルフェニルエーテル硫酸エステル)0.2部とを加え、窒素気流中で混合攪拌しながら80℃に昇温した。次いで、第1段目のα,β−エチレン性不飽和モノマー混合物として、アクリル酸メチル18.5部、アクリル酸エチル31.7部、アクリル酸2−ヒドロキシエチル5.8部、スチレン10.0部、アクリルアミド4.0部、アデカリアソープNE−20を0.3部、アクアロンHS−10を0.2部、およびイオン交換水70部からなるモノマー混合物と、過硫酸アンモニウム0.2部、およびイオン交換水7部からなる開始剤溶液とを2時間にわたり並行して反応容器に滴下した。滴下終了後、1時間同温度で熟成を行った。
さらに、80℃で第2段目のα,β−エチレン性不飽和モノマー混合物として、アクリル酸エチル24.5部、アクリル酸2−ヒドロキシエチル2.5部、メタクリル酸3.1部、アクアロンHS−10を0.3部、およびイオン交換水30部からなるモノマー混合物と、過硫酸アンモニウム0.1部、およびイオン交換水3部からなる開始剤溶液とを0.5時間にわたり並行して反応容器に滴下した。滴下終了後、2時間同温度で熟成を行った。
次いで、40℃まで冷却し、400メッシュフィルターで濾過した。さらに10質量%ジメチルアミノエタノール水溶液を加えpH7に調整し、平均粒子径110nm、樹脂固形分24質量%、樹脂固形分換算での酸価20mgKOH/g、水酸基価40mgKOH/gのエマルション樹脂を得た。全モノマー組成に基づきガラス転移点を算出したところ、0℃であった。
【0182】
実施例1
水性中塗り塗料組成物の製造
製造例1で得られた、水性樹脂(A1)であるアクリルエマルション(AcEm−1)158部(樹脂固形分30質量%)および製造例4で得られたポリエステル水分散体(PE−DP)18.7部(樹脂固形分45質量%)を撹拌した。これに製造例6の着色顔料ペーストを137.7部配合し、ジメチルエタノールアミン(キシダ化学社製)0.01部でpHを8.0に調整し、アデカノールUH−814N(ウレタン会合型粘性剤、有効成分30%、ADEKA社製、商品名)1.0部を混合攪拌し、均一になるまで攪拌した。これに、ポリイソシアネート化合物(B)であるバイヒジュール305(住化バイエルウレタン社製のエチレンオキサイド基を有するポリイソシアネート化合物、エチレンオキサイド含有量:20質量%、イソシアネート基含有量:16質量%)40.9部を加え、さらに、製造例3の親水化変性カルボジイミド化合物(1)8.3部(樹脂固形分40質量%)を攪拌しながら加えて撹拌することにより、水性中塗り塗料組成物を得た。
【0183】
水性ベース塗料組成物の製造
製造例1で得られた、水性樹脂(A2)であるアクリルエマルション116.7部(樹脂固形分30%)および製造例7で得た水酸基価80mgKOH/g未満であるエマルション樹脂104.2部(樹脂固形分24質量%)を混合した。得られた混合物に対して、表中に記載の水性ポリウレタン樹脂(F)66.7部(樹脂固形分30質量%)、および、光輝性顔料としてアルペーストMH8801(旭化成社製アルミニウム顔料)21部(固形分65%)、リン酸基含有アクリル樹脂5部、ラウリルアシッドフォスフェート0.3部を添加し、さらに、2−エチルヘキサノール30部、アデカノールUH−814N3.3部(ADEKA社製増粘剤、固形分30%)、ジメチルエタノールアミン(キシダ化学社製)0.01部、そしてイオン交換水 150部、更にメラミン樹脂(D)としてのオルネクスジャパン社製の「サイメル701」を20部(樹脂固形分量)加え、弱酸触媒(E)としてのオルネクスジャパン社製の「サイキャット(登録商標)296−9」(弱酸性リン酸エステル、pKa(HO)1.8以上)を、水性樹脂(A2)であるアクリルエマルションおよびメラミン樹脂(D)の固形分合計量に対して0.5%(固形分=触媒有効量のみ)を撹拌しながら加えた後、更に、N、N−ジメチルアミノエタール(中和剤)0.5部を加えて攪拌することにより、水性ベース塗料組成物を得た。得られた塗料組成物のPWCは12.0%であった。
本実施例で使用した「サイメル701」は、イミノ−メチロール型メラミン樹脂であり、メラミン核1個当たりの平均イミノ基量が1.0個以上1.5個未満、かつ平均メチロール基量が0.5個以上1.0個未満であった。
【0184】
複層塗膜形成
被塗物として、リン酸亜鉛処理したダル鋼板に、パワーニックス150(商品名、日本ペイント・オートモーティブコーティングス株式会社製カチオン電着塗料)を、乾燥塗膜が20μmとなるように電着塗装し、160℃で30分間の加熱硬化後冷却して、鋼板基板を準備した。
得られた基板(被塗物)に、上記水性中塗り塗料組成物を回転霧化式静電塗装装置にて乾燥膜厚が25μmとなるように塗装し、ついで上記水性ベース塗料を回転霧化式静電塗装装置にて乾燥膜厚が15μmとなるように塗装し、80℃で3分間プレヒートを行った。なお、水性中塗り塗料組成物と水性ベース塗料組成物との塗装の間に6分間のインターバルを置いた。さらに、その塗板にクリヤー塗料として、ポリウレエクセル O−1200 (商品名、日本ペイント・オートモーティブコーティングス株式会社製、ポリイソシアネート化合物含有2液アクリルウレタン系有機溶剤型クリヤー塗料)を回転霧化式静電塗装装置にて乾燥膜厚が35μmとなるように塗装した後、80℃で20分間の加熱硬化を行い、複層塗膜が形成された試験片を得た。
【0185】
実施例2
水性ベース塗料組成物の製造において、メラミン樹脂(D)として、オルネクスジャパン社製の「サイメル202」を用いたこと以外は、実施例1と同様にして、水性ベース塗料組成物を製造した。
本実施例で使用した「サイメル202」は、イミノ−メチロール型メラミン樹脂であり、メラミン核1個当たりの平均イミノ基量が1.5個以上、かつ平均メチロール基量が0.5個以上1.0個未満であった。
得られた水性ベース塗料組成物を用いたこと以外は、実施例1と同様にして、複層塗膜を形成した。
なお、下記表中に示される各成分の使用量は、固形分量で示している。
【0186】
実施例3
メラミン樹脂(D)として、メラミン核1個当たりの平均イミノ基量が2.5個以上、かつ平均メチロール基量が約1.0個に調整された高イミノ−メチロール型メラミン樹脂20部(樹脂固形分量)を用いたこと以外は、実施例1と同様にして、水性ベース塗料組成物を得た。
得られた水性ベース塗料組成物を用いたこと以外は、実施例1と同様にして、複層塗膜を形成した。
【0187】
実施例4〜8
水性ベース塗料組成物の製造に用いた各成分の量を、下記表に示される量に変更したこと以外は、実施例3と同様にして、水性ベース塗料組成物を得た。
得られた水性ベース塗料組成物を用いたこと以外は、実施例1と同様にして、複層塗膜を形成した。
【0188】
実施例9〜10
水性中塗り塗料組成物の製造に用いた親水化変性カルボジイミド化合物(C)の種類を、下記表に示される化合物に変更したこと以外は、実施例1と同様にして、水性ベース塗料組成物を得た。
得られた水性ベース塗料組成物を用いたこと以外は、実施例1と同様にして、複層塗膜を形成した。
【0189】
実施例11
樹脂部材(ポリプロピレン)に、密着用水性プライマーとして、WB−3110CB (商品名、日本ペイント・オートモーティブコーティングス株式会社製、非塩素化ポリオレフィン含有導電塗料)を回転霧化式静電塗装装置にて乾燥膜厚が15μmとなるように塗装した。
得られた樹脂部材を被塗物として用いたこと以外は、実施例1と同様にして、複層塗膜を形成した。
【0190】
比較例1
水性中塗り塗料組成物の製造において、親水化変性カルボジイミド化合物(C)を用いず、各成分の量を下記表に記載の量に変更したこと以外は、実施例1と同様にして、水性中塗り塗料組成物を調製した。
得られた水性中塗り塗料組成物を用いたこと以外は、実施例1と同様にして、複層塗膜を形成した。
【0191】
比較例2
水性ベース塗料組成物の製造において、メラミン樹脂(D)を、オルネクスジャパン社製の「サイメル327」に変更したこと以外は、実施例1と同様にして、水性ベース塗料組成物を得た。
得られた水性ベース塗料組成物を用いたこと以外は、実施例1と同様にして、複層塗膜を形成した。
本比較例で使用した「サイメル327」は、イミノ型メラミン樹脂であり、メラミン核1個当たりの平均イミノ基量が1.0個以上1.5個未満、かつ平均メチロール基量が0.5個未満であった。
【0192】
比較例3
水性ベース塗料組成物の製造において、メラミン樹脂(D)を、オルネクスジャパン社製の「サイメル211」に変更したこと以外は、実施例1と同様にして、水性ベース塗料組成物を得た。
得られた水性ベース塗料組成物を用いたこと以外は、実施例1と同様にして、複層塗膜を形成した。
本比較例で使用した「サイメル211」は、イミノ型メラミン樹脂であり、メラミン核1個当たりの平均イミノ基量が1.5個以上、かつ平均メチロール基量が0.5個未満であった。
【0193】
比較例4
水性ベース塗料組成物の製造において、メラミン樹脂(D)を、オルネクスジャパン社製の「サイメル303」に変更したこと以外は、実施例1と同様にして、水性ベース塗料組成物を得た。
得られた水性ベース塗料組成物を用いたこと以外は、実施例1と同様にして、複層塗膜を形成した。
本比較例で使用した「サイメル303」は、メチロール型メラミン樹脂であり、メラミン核1個当たりの平均イミノ基量が1.0個未満、かつ平均メチロール基量が0.5個未満であった。
【0194】
比較例5〜7
水性ベース塗料組成物の製造に用いた各成分の量を、下記表に示される量に変更したこと以外は、実施例1と同様にして、水性ベース塗料組成物を得た。
得られた水性ベース塗料組成物を用いたこと以外は、実施例1と同様にして、複層塗膜を形成した。
【0195】
比較例8
水性ポリウレタン樹脂(F)の種類を、下記表に記載のものに変更したこと以外は、実施例1と同様にして、水性ベース塗料組成物を得た。
得られた水性ベース塗料組成物を用いたこと以外は、実施例1と同様にして、複層塗膜を形成した。
【0196】
実施例における数平均分子量の測定は、以下のGPCシステム測定条件で測定した値である。
装置:東ソー社製HLC−8220 GPC
カラム:Shodex KF−606M、KF−603
流速:0.6ml/min
検出器:RI、UV254nm
移動層:テトラヒドロフラン
標準サンプル:TSK STANDARD POLYSTYRENE(東ソー社製)、A−500、A−2500、F−1、F−4、F−20、F−80、F−700、1−フェニルヘキサン(アルドリッチ社製)
【0197】
各実施例および比較例で用いた水性ポリウレタン樹脂の破断伸度の測定は、以下の手順で行った。
水性ポリウレタン樹脂の破断伸度の測定
水性ポリウレタン樹脂95質量部(樹脂固形分量)および製造例5に記載の(C)親水化変性カルボジイミド化合物5質量部(樹脂固形分量)を、2つの樹脂固形分が合計で100質量部となるように混合した。埃、ダストなどがかからないような清浄な環境において、出来上がった混合液を、平坦なポリプロピレン板の上に、乾燥膜厚が20μmとなるように、ドクターブレードで均一に塗装した。20℃で10分間静置した後、80℃で3分間プレヒートを行い、水分を揮発させた後に、120℃で30分間焼き付けて、硬化膜を調製した。得られた硬化膜を、JIS K7127に従い、試験時温度−20℃の条件下で引張性能試験を行い、破断時の伸び率(破断伸度)を測定した。測定は20回行い、最大値と最低値を除いた18回の平均値をそのサンプルの破断伸度とした。
【0198】
上記実施例および比較例で得られた複層塗膜について、下記評価を行った。得られた試験結果を下記表にまとめて示す。
【0199】
耐水密着性評価
得られた試験板を、40℃の温水に240時間浸漬し、引き上げ、20℃で24時間乾燥した後、試験板の複層塗膜を素地に達するようにカッターで格子状に切り込み、大きさ2mm×2mmのゴバン目を100個作成した。続いて、その表面に粘着セロハンテープ(商標)を貼着し、20℃においてそのテープを急激に剥離した後のゴバン目塗膜の残存枚数を計測した。
碁盤目の剥がれ枚数で塗膜の優劣を判定することができる。碁盤目の剥がれが一枚でも生じた場合は、実用上の使用は困難と判断する。
【0200】
耐湿チヂミ性評価
試験板を温度50℃かつ99%湿度雰囲気に240時間暴露した後、20℃で24時間乾燥させた。試験板の塗膜状態を目視で視認し、試験前後での外観の変化を観察した。下記基準において、○および○△評価の場合は、実用性があると判断する。

○:艶、平滑性にほとんど差が見られない。
○△:艶、平滑性にわずかに変化が見られる。
△:艶、平滑性に変化がみられる。
△×:艶、平滑性とも変化がみられるが、特に艶の変化が顕著である。
×:艶、平滑性ともに顕著な差が確認できる。
【0201】
耐湿ブリスタ性評価
試験板を温度50℃かつ99%湿度雰囲気に240時間暴露した後、20℃で24時間乾燥させた。試験板の塗膜状態を目視で視認し、試験前後での外観の変化を観察した。下記基準において、○および○△評価の場合は、実用性があると判断する。

○:膨れがほとんどない。
○△:0.01mm以下の小さい膨れがあるが、さらに20℃で24時間乾燥するとほとんどなくなる。
△:0.01mm以下の小さい膨れがあり、さらに20℃で24時間乾燥しても膨れがなくならない。
△×:0.01mm以上0.05mm以下の膨れがあり、さらに20℃で24時間乾燥しても膨れがなくならない。
×:0.05mm以上の膨れがあり、さらに20℃で24時間乾燥しても膨れがなくならない。
【0202】
耐湿密着性評価
試験板を温度50℃かつ99%湿度雰囲気に240時間暴露した後、20℃で24時間乾燥させ、試験板の複層塗膜を素地に達するようにカッターで格子状に切り込み、大きさ2mm×2mmのゴバン目を100個作った。続いて、その表面に粘着セロハンテープを貼着し、20℃においてそのテープを急激に剥離した後のゴバン目塗膜の残存枚数を計測した。
碁盤目の剥がれ枚数で塗膜の優劣を判定することができる。碁盤目の剥がれが一枚でも生じた場合は、実用上の使用は困難と判断する。
【0203】
耐チッピング性評価
各実施例および比較例で得られた積層塗膜を有する試験板を、グラベロ試験機KSS−1(スガ試験機社製)を用い、以下の条件下で飛石試験を行った。
<試験条件>
石の大きさ:6〜8mm
石の量:0.7〜0.8g/個
距離:35cm
ショット圧:0.6kg/cm
ショット角度:45°
試験温度:−20℃

飛石試験後の試験板を、下記基準により目視評価した。下記基準において、4点以上を、実用上の使用が可能であり合格と判断する。
5:剥離がほとんど見られない。
4:剥離面積は小さいが、電着塗膜と中塗り塗膜との界面での剥離は殆ど見られない。
3:剥離面積がやや大きく、電着塗膜と中塗り塗膜との界面で剥離が見られる。
2:剥離面積が大きく、電着塗膜と中塗り塗膜との界面で剥離が見られる。
1:剥離面積が大きく、電着塗膜が破壊している。
【0204】
【表1】
【0205】
【表2】
【0206】
【表3】
【0207】
上記表に記載された水性ポリウレタン樹脂(F)の種類は以下の通りである。
A:N9603(楠本化成社製)、固形分濃度:34%、Tg:−10℃、破断伸度:12%
D:パーマリンU150(三洋化成社製)、固形分濃度:30%、Tg:−60℃、破断伸度:610%
【0208】
上記表において、水性樹脂の欄に記載された「AcEm−1」は、製造例1で得られたアクリルエマルションを表す。また「PE−DP」は、製造例2で得られた、水酸基およびカルボキシル基を有するポリエステル水分散体を表す。
メラミン樹脂(D)の欄に記載された「C−」は、「サイメル」の略称であり、「High−MF」は、メラミン核1個当たりの平均イミノ基量が2.5個以上、かつ平均メチロール基量が約1.0個に調整された高イミノ−メチロール型メラミン樹脂を表す。
弱酸触媒(E)の欄に記載された「C−」は、「サイキャット」の略称である。
弱酸触媒(E)の量は、水性ベース塗料組成物中に含まれる水性樹脂(A2)およびメラミン樹脂(D)の固形分質量に対する質量%であり、下記式により算出される値である。
弱酸触媒の量=(E)/((A2)+(D)) (質量%)
【0209】
実施例により得られた複層塗膜は、80℃という低温条件下で焼き付け硬化を行った場合であっても、いずれも、優れた耐水性、耐湿性および耐チッピング性を有していることが確認された。
一方で、比較例により得られた複層塗膜は、耐水性、耐湿性および耐チッピング性のうち1つまたは複数の性能が劣っていることが確認された。
比較例1は、水性中塗り塗料組成物中に親水化変性カルボジイミド化合物(C)が含まれていない例である。この場合は、得られた複層塗膜の耐水性が明らかに劣っている。
比較例2〜4は、水性ベース塗料組成物中に含まれるメラミン樹脂(D)の種類が、本発明における範囲内に含まれない例である。この場合は、特に耐湿性が劣ることとなった。
比較例5は、水性ベース塗料組成物中に弱酸触媒(E)が含まれない例である。この場合は、耐チッピング性および耐湿性が劣ることとなった。
比較例6、7は、水性ベース塗料組成物中に含まれる水性樹脂(A2)およびメラミン樹脂(D)の質量比が、本発明の範囲外である例である。この場合は、特に耐チッピング性が劣ることとなった。
比較例8は、水性ベース塗料組成物中に含まれる水性ポリウレタン樹脂の特性が、本発明の範囲外である例である。この場合は、特に耐チッピング性が劣ることとなった。また耐湿性(耐湿ブリスタ性)も劣っていた。耐湿性評価試験は、塗膜の耐水性評価試験の1種である。そしてこの耐湿性評価試験は、一般に、耐水密着性評価試験と比較して、より厳しい条件が課される、過酷な評価試験であると言える。従って比較例8においてもまた、実施例と比較して、十分な耐水性が得られていないことが分かる。
【0210】
以上の実施例および比較例から、特定の水性中塗り塗料組成物および水性ベース塗料組成物を用いて複層塗膜を形成すること、特に、上記特定成分を含む水性中塗り塗料組成物を用いて未硬化塗膜を形成し、次いで、特定のメラミン樹脂および弱酸触媒を含み、さらに水性ポリウレタン樹脂(F)を含む水性ベース塗料組成物を用いることによって、従来よりも低温硬化条件において充分に硬化(架橋)反応させることが可能となるとの本発明の有利な効果が立証され、また、本明細書に記載された本発明の構成によって奏される作用機構を合わせて考えれば、本発明の技術的意義が充分に裏付けられたものといえる。
【産業上の利用可能性】
【0211】
本発明の複層塗膜形成方法においては、低温条件下での加熱条件(例えば100℃以下の加熱条件)であっても硬化反応が良好に進行し、優れた塗膜物性を有する硬化塗膜が得られるなどの利点がある。本発明の複層塗膜形成方法は、例えば、鋼板部および樹脂部を有する被塗物の塗装に好適に用いることができる。本発明の複層塗膜形成方法はまた、省エネルギー化およびCO排出量削減といった環境負荷低減手段としても効果的な方法である。