(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0009】
ルテニウムを含む触媒の存在下で1,1,1−トリフルオロトリクロロエタンを水素と接触させて、1316mxxを含む生成物混合物を生成することと、前記1316mxxをZ−及びE−異性体の混合物として回収することと、炭素担持銅、炭素担持ニッケル、炭素担持銅−ニッケル、及び炭素担持銅−パラジウムからなる群から選択される触媒の存在下で前記1316mxxを水素と接触させて、E−又はZ−CFC−1326mxzを含む第2の生成物混合物を生成することと、前記第2の生成物混合物を分離工程に供してE−又はZ−1326mxzを提供することと、を含む、cis−1,1,1,4,4,4−ヘキサフルオロ−2−ブテンを調製するための方法を開示する。E−又はZ−1336mxzは、相間移動触媒の存在下でアルカリ金属水酸化物を有する塩基性水溶液中にて脱塩化水素化して、ヘキサフルオロ−2−ブチンを生成することができ、次いで、リンドラー触媒又はランタニド元素若しくは銀を更に含むパラジウム触媒を用いて、これを選択的に水素化して、Z−1,1,1,4,4,4−ヘキサフルオロ−2−ブテンを生成することができる。
【0010】
別の実施形態では、フッ素含有オレフィンを調製するための方法であって、約150℃〜250℃の温度で、担体に担持されている銅及びパラジウムを含む触媒の存在下で、式E−及びZ−CF
3CCl=CClCF
3を有するクロロフルオロアルケンを水素と接触させて、式E−若しくはZ−CF
3CH=CClCF
3を有するフッ素含有オレフィン又はその混合物を含む生成物混合物を生成することを含み、Z−CF
3CCl=CClCF
3の変換率がZ−異性体の変換率の少なくとも80%であり、CF
3CH=CClCF
3の2つの異性体に対する選択率が少なくとも85%である方法を開示する。
【0011】
更に別の実施形態では、炭化ケイ素担体に担持されているルテニウムを含む触媒の存在下で、1,1,1−トリクロロ−2,2,2−トリフルオロエタンを水素と接触させて、1,1,1,4,4,4−ヘキサフルオロ−2,3−ジクロロ−2−ブテン及び塩化水素を含む生成物混合物を生成することと、前記1,1,1,4,4,4−ヘキサフルオロ−2,3−ジクロロ−2−ブテンを回収することと、を含む、クロロフルオロカーボンをカップリングするための方法を開示する。
【0012】
更に別の実施形態では、E−又はZ−HFO−1336mzzを調製するための方法であって、ヘキサフルオロ−2−ブチンの三重結合を水素化するのに十分な温度で、金属触媒の存在下で、反応器内において、1:0.025〜1:1.1の比(ヘキサフルオロ−2−ブチンのモル比)でヘキサフルオロ−2−ブチンを水素と接触させて、HFO−1336mzz及び未反応ヘキサフルオロ−2−ブチンを含む生成物流を生成することを含み、前記触媒が、100〜5000ppmの濃度で、Ag又はランタニド毒と共に酸化アルミニウム、炭化ケイ素、又はケイ酸チタン上に分散されている金属触媒であり、反応物質の生成物に対する循環比が1〜9である方法を開示する。
【0013】
多くの態様及び実施形態を上に記載したが、これらは単なる例示であり、限定するものではない。本明細書を読んだ後、当業者は、本発明の範囲から逸脱することなく、他の態様及び実施形態が可能であることを理解するであろう。
【0014】
実施形態のうちの任意の1つ以上の他の特徴及び利点は、以下の詳細な説明及び特許請求の範囲から明らかになるであろう。
【0015】
本明細書で使用するとき、クロロフルオロカーボンは、塩素及びフッ素で完全に置換されているC2、C3、又はC4アルカンであり、全ての塩素置換基は、分子の末端炭素に存在する。例示的なクロロフルオロカーボンとしては、1,1,1−トリクロロトリフルオロエタン、1,1,1−トリクロロ−ペンタフルオロプロパン、及び1,1,1−トリクロロオクタフルオロブタンが挙げられる。
【0016】
1つの実施形態では、ルテニウム触媒の存在下でCFC−113aを二量体化してZ−及びE−CFC−1316mxxを生成することと、触媒の存在下でCFC−1316mxxを水素化してHCFO−1326mxzを生成することと、これを脱塩化水素化してヘキサフルオロ−2−ブチンを生成することと、次いで、ヘキサフルオロ−2−ブチンを水素化してZ−HFO1336mzzを生成することと、を含む、Z−HFO−1336mzzを調製するための方法を開示する。
【0017】
担持ルテニウム触媒を用いる水素との反応を通して、C2及びC3クロロフルオロカーボンを二量体化してC4及びC6クロロフルオロオレフィン、例えば、F1316mxx及びF151−10mcxxを生成できることが既に報告されている。米国特許第5,919,994号を参照されたい。クロロフルオロカーボンは、CCl
3CF
3及びCCl
3CF
2CF
3を含んでいた。ルテニウム触媒を、フッ化アルミナ、フッ化アルミニウム、並びにZn、Mg、Ca、Ba、Y、Sm、Eu、及びDyからなる群から選択される少なくとも1つの金属のフッ化物に担持することができた。副生成物の中でも、恐らく1つ以上の塩素置換基の水素化分解から形成された、中程度の量のC2化合物、例えば、1,1,1−トリフルオロエタン(HFC−143a)、1,1,1−トリフルオロ−2−クロロエタン(HCFC−133a)、又は1,1,1−トリフルオロ−2,2−ジクロロエタン(HCFC−123a)が生成された。二量体化によって、反応したCFC−113a1モル当たり2モルのHClが生成される。
【0018】
このような触媒は、水素化分解反応には有用であるが、この種の二量体化反応には最適ではないことが見出されている。特に、ある期間カップリング反応に使用した後の触媒サンプルは、典型的に、粉砕強度の著しい低下を示すことが観察されている。更に、カップリング法からの反応生成物として塩化水素を生成するこれらの反応については、反応器を出るときに反応器の排液から不純物が除去される(scrubbed)場合、恐らく担体とのハロゲン交換に由来して、塩化水素に加えてフッ化水素の証拠が存在する。また、これは、反応器材料の構成に耐食性材料を使用することを必要とする。
【0019】
炭化ケイ素担体上に堆積したルテニウム触媒は、長期間使用した後でさえも、高い粉砕強度を有する触媒を提供することが見出されている。ルテニウムは、含浸、又は溶液からの蒸発等、当該技術分野において周知の技術によって担体上に堆積し得る。1つの実施形態では、担体に担持されているルテニウムの濃度は、典型的に、0.1重量パーセント〜5重量パーセントの範囲である。別の実施形態では、担体に担持されているルテニウムの濃度は、0.25重量パーセント〜3重量パーセントである。更に別の実施形態では、担体に担持されているルテニウムの濃度は、0.5重量パーセント〜2重量パーセントである。2%フッ化カルシウム担持ルテニウムの粉砕強度は、113aを1316mxxに変換するために反応器内で12時間使用した後、3.0キログラムから0.82キログラム(6.6ポンドから1.8ポンド)に低減することが観察された。比較すると、1%炭化ケイ素担持ルテニウム触媒の粉砕強度は、使用前に20.5キログラム(45.1ポンド)であり、12時間使用した後も本質的に変化しなかった。
【0020】
ルテニウムは、例えば、ハロゲン化ルテニウム(例えば、塩化ルテニウム)又はニトロシル硝酸ルテニウムを含む、任意の可溶性ルテニウム化合物から堆積し得る。
【0021】
1つの実施形態における二量体化反応は、典型的に、150℃〜300℃の温度で実施される。別の実施形態では、二量体化反応は、150℃〜240℃で実施される。更に別の実施形態では、二量体化反応は、150℃〜190℃で実施される。1つの実施形態では、水素のCFC−113aに対するモル比は、4:1〜20:1であり得る。別の実施形態では、水素のCFC−113aに対するモル比は、12:1〜20:1であり得る。塩化水素を除去(scrubbing out)した後、Z−及びE−CFC−1316mxxを含む生成物混合物は、蒸留によって回収することができる。イオンクロマトグラフィーによるハロゲン用の除去溶液の分析は、CaF
2に担持されている触媒について、除去溶液中のハロゲンの2.3%〜8.3%がフッ素であることを示す。SiC上に担持されている触媒を用いて実行した反応用の除去溶液の同様の分析から、ハロゲンの0.6%がフッ化物として見出される。
【0022】
工程II
炭素担持銅、フッ化カルシウム担持銅、硫酸バリウム担持パラジウム、アルミナ担持パラジウム/塩化バリウム、リンドラー触媒(CaCO
3担持パラジウム、鉛で被毒)、鉛で被毒されたフッ化カルシウム担持パラジウム、炭素担持銅−ニッケル、炭素担持ニッケル、フッ化カルシウム担持ニッケル、フッ化カルシウム担持銅/ニッケル/クロム、及び未担持の銅及びニッケルの合金を含有する触媒を用いて、水素の存在下で、クロロフルオロアルケンをフルオロアルケン、フルオロアルキン、又はモノクロロフルオロアルケンに変換することができる。他の触媒としては、銅及びニッケル、ニッケル及びクロム又は銅、ニッケル及びクロムを含む触媒が挙げられる。更に他の触媒としては、カリウム、セシウム、ルビジウム、又はこれらの組み合わせ等のアルカリ金属を更に含む、銅、ニッケル、又はクロムの組み合わせが挙げられる。このような触媒は、金属フッ化物、アルミナ、及び二酸化チタン等の担体に担持されていてもよいし、又は担持されていなくてもよい。
【0023】
このような触媒は、比較的低い反応速度しか有していない場合があるので、商業スケールでかなりの量を生成するには大きな反応器が必要になる。更に、クロロフルオロオレフィン1316mxxは、典型的に、約3:2〜約2:1の比の、E−及びZ−異性体の混合物として見出される。実際には、炭素に担持されている銅又は炭素に担持されている銅及びニッケルの触媒を用いる場合、E−異性体は、Z−異性体よりも著しく反応性が高い。Z−異性体のHCFO−1326mxzへの適切な変換率を得るために、反応器は、より速やかに及びより緩徐に反応する異性体の両方を適切に変換するような大きさ及び条件に設定する必要がある。
【0024】
更に、銅、又は銅及びニッケルを含む触媒を用いて、許容できる変換率及び反応速度を得るためには、通常は、300℃以上の反応温度が必要とされていた。しかし、銅金属は、およそ250℃で昇華し始めるので、300℃以上の温度で、担体に担持されている銅又は担体に担持されている銅及びニッケルで構成される触媒を用いて反応器を稼働させると、反応器系の下流部品の内部に銅のコーティングが堆積する。したがって、このような系及び触媒は、長期間、商業生産設備で使用するには実用的ではない。
【0025】
銅を含む触媒を、少量の、炭素に担持されているパラジウムと併用すると、反応速度及び選択性の両方を著しくかつ予想外にも改善できることが見出されている。1つの実施形態では、触媒は、0.1〜1.0重量パーセントのパラジウムを含む。1つの実施形態では、触媒は、0.1〜20重量パーセントの銅を含む。別の実施形態では、触媒は、0.6〜5.0重量パーセントの銅を含む。
【0026】
1つの実施形態では、Z−異性体のE−異性体に対する反応性の比は、2.5:1未満である。別の実施形態では、Z−異性体のE−異性体に対する反応性の比は、2.0:1未満である。更に別の実施形態では、Z−異性体のE−異性体に対する反応性の比は、1.5:1未満である。
【0027】
1つの実施形態では、本方法の接触時間は、約2〜約120秒間の範囲である。別の実施形態では、本方法の接触時間は、15〜60秒間の範囲である。
【0028】
1つの実施形態では、水素のクロロフルオロアルケンに対する比は、約1:1〜約4:1である。別の実施形態では、水素のクロロフルオロアルケンに対する比は、約1:1〜約2:1である。
【0029】
1つの実施形態では、フッ素含有オレフィンを調製するための方法は、耐酸性合金材料で構築された反応容器内で、クロロフルオロアルケンを水素と反応させることを含む。このような耐酸性合金材料としては、ステンレス鋼、高ニッケル合金、例えば、モネル、ハステロイ、及びインコネルが挙げられる。1つの実施形態では、反応は、蒸気相で生じる。
【0030】
1つの実施形態では、本方法を実行する温度は、塩素置換基を水素で置換させるのに十分な温度であってよい。別の実施形態では、本方法は、約150℃〜約300℃の温度で実施される。
【0031】
幾つかの実施形態では、水素化脱塩素(hydrodechlorination)反応の圧力は重要ではない。他の実施形態では、本方法は、大気圧又は自己圧力(autogenous pressure)で実施される。反応で形成される過剰圧力の塩化水素を排気するための手段を提供することができ、また前記手段は、副生成物の形成を最小化することにおいて利点を提供することができる。幾つかの実施形態では、本方法は、特定の温度の反応器内で、水素及びクロロフルオロアルケンを触媒床に流し込むことによって簡単に実施される。幾つかの実施形態では、本方法は、反応器内で、水素、クロロフルオロアルケン、及びキャリアガスを触媒床に流し込むことによって実施される。キャリアガスの例としては、窒素、アルゴン、及びヘリウム等の不活性ガスが挙げられる。
【0032】
反応の更なる生成物としては、部分的に水素化脱塩素された中間体;完全に脱塩素された生成物、飽和水素化化合物;様々な部分的に塩素化された中間体又は飽和化合物;及び塩化水素(HCl)を挙げることができる。例えば、クロロフルオロアルケンが2,3−ジクロロ−1,1,1,4,4,4−ヘキサフルオロ−2−ブテン(CFC−1316mxx、E−及び/又はZ−異性体)である場合、E−及び/又はZ−1,1,1,4,4,4−ヘキサフルオロ−2−クロロ−2−ブテン(E−及び/又はZ−HFC−1326mxz)に加えて形成される化合物には、E−及び/又はZ−1,1,1,4,4,4−ヘキサフルオロ−2−ブテン(HFC−1336mzz)、1,1,1,4,4,4−ヘキサフルオロブタン(HFC−356mff)、ペンタフルオロブタン(HFC−1345、様々な異性体)、2−クロロ−1,1,1,4,4,4−ヘキサフルオロブタン(HFC−346mdf)、及び1,1,1,4,4,4−ヘキサフルオロ−2−ブチン(HFB)を挙げることができる。
【0033】
工程III
また、ヘキサフルオロ−2−ブチンを生成するための方法であって、4〜12個の炭素原子のアルキル基を有する四級アルキルアンモニウム塩及びその混合物の存在下で、Z−1,1,1,4,4,4−ヘキサフルオロ−2−クロロ−2−ブテン(HCFC−1326mxz)をアルカリ金属水酸化物の水溶液と反応させて、ヘキサフルオロ−2−ブチンを含む混合物を生成することと、ヘキサフルオロ−2−ブチンを回収することと、を含み、Z−1,1,1,4,4,4−ヘキサフルオロ−2−クロロ−2−ブテンのヘキサフルオロ−2−ブチンへの変換率が、1時間当たり少なくとも50%である方法も本明細書に開示する。
【0034】
また、ヘキサフルオロ−2−ブチンを生成するための方法であって、少なくとも8個の炭素の少なくとも1個のアルキル基を含む四級アルキルアンモニウム塩の存在下で、E−1,1,1,4,4,4−ヘキサフルオロ−2−クロロ−2−ブテンを含むフルオロクロロオレフィンをアルカリ金属水酸化物の水溶液と反応させることと、ヘキサフルオロ−2−ブチンを回収することと、を含み、E−1,1,1,4,4,4−ヘキサフルオロ−2−クロロ−2−ブテンのヘキサフルオロ−2−ブチンへの変換率が、1時間当たり少なくとも15%である方法も開示する。
【0035】
また、ヘキサフルオロ−2−ブチンを生成するための方法であって、4〜12個の炭素原子のアルキル基を有する四級アルキルアンモニウム塩及びその混合物、並びに非イオン性界面活性剤の存在下で、Z−及びE−1,1,1,4,4,4−ヘキサフルオロ−2−クロロ−2−ブテンを含むフルオロクロロオレフィンをアルカリ金属水酸化物の水溶液と反応させることと、ヘキサフルオロ−2−ブチンを回収することと、を含み、Z−又はE−1,1,1,4,4,4−ヘキサフルオロ−2−クロロ−2−ブテンのヘキサフルオロ−2−ブチンへの変換率が、1時間当たり少なくとも20%である方法も開示する。
【0036】
ヒドロフルオロクロロオレフィンHCFC−1326mxzは、1,1,1,4,4,4−ヘキサフルオロ−2−ブテンを合成するための幾つかのスキームにおける不純物であり、これは、泡膨張剤として興味深い。他の可能なスキームでは、中間体であり得る。HCFC−1326mxzを合成する1つの方法は、1,1,1,4,4,4−ヘキサフルオロ−2,3−ジクロロ−2−ブテンの水素化を介する方法である。どの合成方法でも、典型的には、二重結合を中心としたZ−及びE−立体異性体の混合物が得られる。残念なことに、それは、かなり高い毒性を示すので、不純物として形成されようと中間体として形成されようと、高収率で有用な生成物に変換することが望ましい。脱塩化水素化により、ヘキサフルオロ−2−ブチンが得られ、これを水素化して1,1,1,4,4,4−ヘキサフルオロ−2−ブテンを得ることができる。古典的な有機化学では、塩化ビニルを脱塩化水素してアセチレンを形成するには、かなり厳しい条件、例えば、液体アンモニア中のナトリウム等の超強塩基を必要とする。より高分子量のポリフッ化塩化ビニルは、100〜120℃から200又は250℃以下の温度で水性塩基を用いてアルキンに脱ハロゲン化水素化できることが報告されている。しかし、これらの温度では、ヘキサフルオロ−2−ブチンは、反応器内における蒸気圧が高くなりすぎ、分解されやすくなる。
【0037】
Z−及びE−1,1,1,4,4,4−ヘキサフルオロ−2−クロロ−2−ブテンは、塩基性水溶液と相間移動触媒としての四級アルキルアンモニウム塩とを併用して、100℃を大きく下回る温度で脱塩化水素化できることが見出されている。
【0038】
本明細書で使用するとき、相間移動触媒は、水相又は固相から有機相へのイオン性化合物の移動を促進する物質を意味することを意図する。相間移動触媒は、これらの類似していない不適合な成分の反応を促進する。様々な相間移動触媒が様々な様式で機能し得るが、その作用機序は、相間移動触媒が脱塩化水素反応を促進する限り、本発明におけるその有用性を限定するものではない。
【0039】
本明細書で使用するとき、相間移動触媒は、アルキル基が4〜12個の炭素原子を有するアルキル鎖である、四級アルキルアンモニウム塩である。1つの実施形態では、四級アルキルアンモニウム塩は、テトラブチルアンモニウム塩である。塩のアニオンは、塩化物若しくは臭化物等のハロゲン化物、硫酸水素、又は任意のその他の一般的に用いられるアニオンであってよい。
【0040】
別の実施形態では、四級アルキルアンモニウム塩は、トリオクチルメチルアンモニウムクロリド(Aliquat 336)である。別の実施形態では、四級アルキルアンモニウム塩は、テトラオクチルアンモニウムクロリドである。更に別の実施形態では、四級アルキルアンモニウム塩は、テトラオクチルアンモニウム硫酸水素である。
【0041】
クラウンエーテル、クリプタンド、又は非イオン性界面活性剤単独など、他の用途で相間移動触媒であると一般的に考えられる他の化合物は、同様に脱塩化水素化反応の変換率又は速度に著しい影響を与えない。
【0042】
1,1,1,4,4,4−ヘキサフルオロ−2−クロロ−2−ブテンのZ−及びE−異性体は、脱塩化水素化に関して著しく異なる反応性を示し、この反応において有効な相間移動触媒としてどのように機能するかについては異なる要件を有する。Z−異性体CF
3CCl=CHCF
3の脱塩化水素化は、アルキル基が4〜12個の炭素原子を有するアルキル鎖である四級アルキルアンモニウム塩を用いて実施され得る。塩のアニオンは、塩化物若しくは臭化物等のハロゲン化物、硫酸水素、又は任意のその他の一般的に用いられるアニオンであってよい。1つの実施形態では、四級アルキルアンモニウム塩は、テトラブチルアンモニウム塩である。別の実施形態では、四級アルキルアンモニウム塩は、テトラヘキシルアンモニウム塩である。別の実施形態では、四級アルキルアンモニウム塩は、テトラオクチルアンモニウム塩である。更に別の実施形態では、四級アルキルアンモニウム塩は、トリオクチルメチルアンモニウム塩である。
【0043】
1,1,1,4,4,4−ヘキサフルオロ−2−クロロ−2−ブテンのE−異性体の脱塩化水素化は、アルキル基が8個以上の炭素を有する少なくとも1つのアルキル鎖を有するアルキル鎖である、四級アルキルアンモニウム塩を用いて実施され得る。別の実施形態では、四級アルキルアンモニウム塩は、トリオクチルメチルアンモニウム塩等、8個以上の炭素を有する3つのアルキル鎖を有する。更に別の実施形態では、四級アルキルアンモニウム塩は、テトラオクチルアンモニウム塩である。更に別の実施形態では、四級アルキルアンモニウム塩は、テトラデシルアンモニウム塩である。更に別の実施形態では、四級アルキルアンモニウム塩は、テトラドデシルアンモニウム塩である。塩のアニオンは、塩化物若しくは臭化物等のハロゲン化物、硫酸水素、又は任意のその他の一般的に用いられるアニオンであってよい。
【0044】
更に別の実施形態では、1,1,1,4,4,4−ヘキサフルオロ−2−クロロ−2−ブテンのE−異性体の脱塩化水素化は、アルキル基が4〜12個の炭素原子を有するアルキル鎖である四級アルキルアンモニウム塩を用いて、非イオン性界面活性剤の存在下で実施され得る。非イオン性界面活性剤は、エトキシ化ノニルフェノール、及びエトキシ化C12〜C15直鎖脂肪族アルコールであってよい。好適な非イオン性界面活性剤としては、Stepan Company製のBio−soft(登録商標)N25−9及びMakon(登録商標)10が挙げられる。
【0045】
1つの実施形態では、四級アルキルアンモニウム塩は、1,1,1,4,4,4−ヘキサフルオロ−2−クロロ−2−ブテンの0.5モルパーセント〜2.0モルパーセントの量で添加される。別の実施形態では、四級アルキルアンモニウム塩は、1,1,1,4,4,4−ヘキサフルオロ−2−クロロ−2−ブテンの1モルパーセント〜2モルパーセントの量で添加される。更に別の実施形態では、四級アルキルアンモニウム塩は、1,1,1,4,4,4−ヘキサフルオロ−2−クロロ−2−ブテンの1モルパーセント〜1.5モルパーセントの量で添加される。
【0046】
1つの実施形態では、Z−又はE−1,1,1,4,4,4−ヘキサフルオロ−2−クロロ−2−ブテンの脱塩化水素化は、アルカリ金属ハロゲン化物塩の存在下で実施される。1つの実施形態では、アルカリ金属は、ナトリウム又はカリウムである。1つの実施形態では、ハロゲン化物は、塩化物又は臭化物である。1つの実施形態では、アルカリ金属ハロゲン化物塩は、塩化ナトリウムである。任意の特定の理論に束縛されるものではないが、アルカリ金属ハロゲン化物塩は、相間移動触媒を安定化すると考えられている。脱塩化水素化反応自体はアルカリ金属塩化物、特に、水酸化ナトリウムを塩基として用いる場合は塩化ナトリウムを生成するが、更に塩化ナトリウムを添加すると、ヘキサフルオロ−2−ブチンの収量が増加するという更なる効果が得られる。
【0047】
また、アルカリ金属ハロゲン化物塩の添加は、反応からの排水中で測定されるフッ化物イオンの量を低減する。任意の特定の理論に束縛されるものではないが、フッ化物の存在は、1,1,1,4,4,4−ヘキサフルオロ−2−クロロ−2−ブテン出発物質又はヘキサフルオロ−2−ブチン生成物のいずれかの分解に由来すると考えられている。
【0048】
幾つかのサンプルでは、脱塩化水素化からの排水中にみられるフッ化物イオンの量は、約6000ppmである。幾つかの例では、相間移動触媒1モル当たり30〜60当量の塩化ナトリウムを用いると、排水中のフッ化物イオンの量が2000ppmに低減される。1つの実施形態では、アルカリ金属ハロゲン化物は、相間移動触媒1モル当たり25〜100当量で添加される。別の実施形態では、アルカリ金属ハロゲン化物は、相間移動触媒1モル当たり30〜75当量で添加される。更に別の実施形態では、アルカリ金属ハロゲン化物は、相間移動触媒1モル当たり40〜60当量で添加される。
【0049】
1つの実施形態では、反応は、約60〜90℃の温度で実施される。別の実施形態では、反応は、70℃で実施される。
【0050】
本明細書で使用するとき、塩基性水溶液は、主に7を超えるpHを有する水性液体である液体(溶液、分散液、エマルション、又は懸濁液等のいずれか)である。幾つかの実施形態では、塩基性水溶液は、8を超えるpHを有する。幾つかの実施形態では、塩基性水溶液は、10を超えるpHを有する。幾つかの実施形態では、塩基性水溶液は、10〜13のpHを有する。幾つかの実施形態では、塩基性水溶液は、水と混和性であっても不混和性であってもよい有機液体を少量含有する。幾つかの実施形態では、塩基性水溶液中の液体媒体は、少なくとも90%水である。幾つかの実施形態では、水は、水道水であり、他の実施形態では、水は、脱イオン水又は蒸留水である。
【0051】
塩基性水溶液中の塩基は、アルカリ、アルカリ土類金属、及びこれらの混合物の水酸化物、酸化物、炭酸塩、又はリン酸塩からなる群から選択される。1つの実施形態では、使用することができる塩基は、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、酸化マグネシウム、酸化カルシウム、炭酸ナトリウム、炭酸カリウム、リン酸ナトリウム、リン酸カリウム、又はこれらの混合物である。
【0052】
工程IV
1つの実施形態において、本方法は、特定の触媒の存在下における選択的水素化によって高選択性でヘキサフルオロ−2−ブチンからZ−HFO−1336mzzを合成する方法である。
【0053】
1つの実施形態では、触媒は、パラジウムの負荷量が少ない、銀及び/又はランタニドでドープされた、酸化アルミニウム又はケイ酸チタン上に分散しているパラジウム触媒である。1つの実施形態では、パラジウム負荷量は、100ppm〜5000ppmである。別の実施形態では、パラジウム負荷量は、200ppm〜5000ppmである。1つの実施形態では、触媒に、銀、セリウム、又はランタンのうちの少なくとも1つをドープする。1つの実施形態では、セリウム又はランタンのパラジウムに対するモル比は、2:1〜3:1である。1つの実施形態では、銀のパラジウムに対するモル比は、約0.5:1.0である。
【0054】
別の実施形態では、鉛化合物で不活化又はコンディショニングされている、炭酸カルシウム担体に担持されている不均一パラジウム触媒であるリンドラー触媒が用いられる。鉛化合物は、酢酸鉛、酸化鉛、又は任意のその他の好適な鉛化合物であり得る。1つの実施形態では、触媒は、炭酸カルシウムのスラリーの存在下でパラジウム塩を還元し、次いで、鉛化合物を添加することによって調製される。1つの実施形態では、パラジウム塩は、塩化パラジウムである。別の実施形態では、触媒は、キノリンで不活化又はコンディショニングされる。1つの実施形態では、用いられる触媒の量は、フッ化アルキンの量の約0.5重量%〜約4重量%である。別の実施形態では、用いられる触媒の量は、フッ化アルキンの量の約1重量%〜約3重量%である。更に別の実施形態では、用いられる触媒の量は、フッ化アルキンの量の約1重量%〜約2重量%である。
【0055】
1つの実施形態では、本方法は、バッチ式法で実施される。別の実施形態では、本方法は、気相中にて連続法で実施される。
【0056】
1つの実施形態では、触媒の存在下におけるフッ化アルキンの水素化反応は、少しずつ水素を添加して実施されるべきであり、各添加毎に容器の圧力が約0.7MPa(100psi)以下増大する。別の実施形態では、水素の添加は、容器内の圧力が各添加毎に約0.3MPa(50psi)以下しか増大しないように制御される。1つの実施形態では、十分な水素が水素化反応で消費されて、フッ化アルキンの少なくとも50%がアルケンに変換された後、反応の残留物に対して、より大きな増分で水素を添加することができる。別の実施形態では、十分な水素が水素化反応で消費されて、フッ化アルキンの少なくとも60%がアルケンに変換された後、反応の残留物に対して、より大きな増分で水素を添加することができる。更に別の実施形態では、十分な水素が水素化反応で消費されて、フッ化アルキンの少なくとも70%がアルケンに変換された後、反応の残留物に対して、より大きな増分で水素を添加することができる。1つの実施形態では、水素添加のより大きな増分は、2MPa(300psi)であってよい。別の実施形態では、水素添加のより大きな増分は、3MPa(400psi)であってよい。
【0057】
1つの実施形態では、添加される水素の量は、フッ化アルキン1モル当たり約1モル当量である。別の実施形態では、添加される水素の量は、フッ化アルキン1モル当たり約0.9モル〜約1.3モルである。更に別の実施形態では、添加される水素の量は、フッ化アルキン1モル当たり約0.95モル〜約1.1モルである。更に別の実施形態では、添加される水素の量は、フッ化アルキン1モル当たり約0.95モル〜約1.03モルである。
【0058】
1つの実施形態では、水素化は、周囲温度で実施される。別の実施形態では、水素化は、周囲温度よりも高い温度で実施される。更に別の実施形態では、水素化は、周囲温度よりも低い温度で実施される。更に別の実施形態では、水素化は、約0℃未満の温度で実施される。
【0059】
連続法の実施形態では、フッ化アルキンと水素との混合物を、触媒を含む反応ゾーンに通過させる。1つの実施形態では、水素のフッ化アルキンに対するモル比は、約1:1である。連続法の別の実施形態では、水素のフッ化アルキンに対するモル比は、1:1未満である。更に別の実施形態では、水素のフッ化アルキンに対するモル比は、約0.67:1.0である。
【0060】
連続法の1つの実施形態では、反応ゾーンを周囲温度で維持する。連続法の別の実施形態では、反応ゾーンを30℃の温度で維持する。連続法の更に別の実施形態では、反応ゾーンを約40℃の温度で維持する。連続法の更に別の実施形態では、反応ゾーンを60℃〜90℃の温度で維持する。
【0061】
連続法の1つの実施形態では、フッ化アルキン及び水素の流速は、反応ゾーンにおける滞留時間が約30秒間になるように維持する。連続法の別の実施形態では、フッ化アルキン及び水素の流速は、反応ゾーンにおける滞留時間が約15秒間になるように維持する。連続法の更に別の実施形態では、フッ化アルキン及び水素の流速は、反応ゾーンにおける滞留時間が約7秒間になるように維持する。
【0062】
反応ゾーンにおける接触時間は、フッ化アルキン及び水素が反応ゾーンに入る流速を増大させることによって短縮されることが理解される。流速が増大するにつれて、単位時間当たりの水素化されるフッ化アルキンの量が増大する。水素化は発熱性であるので、反応ゾーンの長さ及び直径、並びにその放熱能に応じて、より高い流速では、反応ゾーンに外部冷却源を設けて所望の温度を維持することが望ましい場合がある。
【0063】
連続法の1つの実施形態では、フッ化アルキンと水素との混合物は、不活性キャリアガスを更に含む。1つの実施形態では、不活性キャリアガスは、窒素、ヘリウム、又はアルゴンからなる群から選択される。1つの実施形態では、不活性キャリアガスは、連続法に供給されるガスの約10%〜約80%である。別の実施形態では、不活性キャリアガスは、連続法に供給されるガスの約20%〜約50%である。
【0064】
連続法の1つの実施形態では、リンドラー触媒中の担体に担持されているパラジウムの量は、5重量%である。別の実施形態では、リンドラー触媒中の担体に担持されているパラジウムの量は、5重量%超である。更に別の実施形態では、担体に担持されているパラジウムの量は、約5重量%〜約1重量%であり得る。
【0065】
1つの実施形態では、バッチ式又は連続水素化法の完了時に、例えば分留を含む任意の従来の方法を通してcis−ジヒドロフルオロアルケンを回収することができる。別の実施形態では、バッチ式又は連続水素化法の完了時に、cis−ジヒドロフルオロアルケンは、更なる精製工程を必要としない十分な純度を有する。
【0066】
本明細書で使用するとき、用語「備える(comprises)」、「備える(comprising)」、「含む(includes)」、「含む(including)」、「有する(has)」、「有する(having)」、又はこれらの任意のその他の変形は、非排他的な包含を網羅することを意図する。例えば、要素のリストを含むプロセス、方法、物品、又は装置は、これら要素だけに限定されるものではなく、このようなプロセス、方法、物品、又は装置に対して明示的に記載されていない、又はこれらに固有のものではない、その他の要素も含む場合がある。更に、明示的に逆の記載がない限り、「又は」とは、包括的な又はを指し、排他的な又はを指すものではない。例えば、条件A又はBは、以下のうちのいずれか1つを満たす:Aは真であり(すなわち存在し)かつBは偽である(すなわち存在しない)、Aは偽であり(すなわち存在しないものであり)かつBは真である(すなわち存在する)、並びにA及びBの両者が真である(すなわち存在する)。
【0067】
また、「a」又は「an」の使用は、本明細書に記載される要素及び成分を説明するために採用される。これは、単に便宜上、及び本発明の範囲の一般的な意味を与えるためになされる。この記載は、1つ又は少なくとも1つを含むものと解釈されるべきであり、単数形は、別の意味を有することが明白でない限り、複数形も含む。
【0068】
特に定義しない限り、本明細書で使用される全ての技術的及び科学的用語は、本発明の属する当該技術分野の当業者によって一般的に理解されるものと同一の意味を有する。本明細書に記載されるものと類似又は同等の方法及び材料を、本発明の実施形態の実施又は試験において使用することができるが、好適な方法及び材料を以下に記載する。本明細書で言及される全ての刊行物、特許出願、特許、及びその他の参考文献は、特定の一説が引用されない限り、その全体が参照により援用される。意味が矛盾する場合は、定義を含めて本明細書が優先される。更に、材料、方法、及び実施例は、単なる例証であり、限定することを意図するものではない。
【実施例】
【0069】
本明細書に記載される概念について以下の実施例で更に説明するが、これは、特許請求の範囲に記載する本発明の範囲を限定するものではない。
【0070】
(実施例1)
実施例1は、塩化ルテニウムからの、炭化ケイ素に担持されているルテニウム触媒の調製について示す。
【0071】
この実験では、50グラム(50g)のSiC担体を、辛うじてSiCを湿らせるだけの量の水中2.632gのRuCl
3(H
2O)
3に添加する。1400の速度設定のボルテクサーを用いてサンプルを混合する。混合物を15〜20秒間ボルテックスし、次いで、5分間凝固させる。過剰の水が全て吸収されるまで、これを30〜60分間にわたって数回繰り返す。サンプルをビーカー内で1時間空気乾燥させた後、サンプルを取り出し、篩上に置いて空気乾燥させる。サンプルが目視で空気乾燥されたら、石英ボート内及び炉に入れる。4時間かけて125℃まで加熱し、次いで、窒素下で4時間かけて250℃まで加熱する。
【0072】
(実施例2)
実施例2は、ニトロシル硝酸ルテニウムからの、炭化ケイ素に担持されているルテニウム触媒の調製について示す。
【0073】
この実験では、50グラム(50g)のSiC担体を、辛うじてSiCを湿らせるだけの量の水中3.208gのRu(NO)NO
3及び1.42gのトリエタノールアミンに添加する。1400の速度設定のボルテクサーを用いてサンプルを混合する。混合物を15〜20秒間ボルテックスし、次いで、5分間凝固させる。過剰の水が全て吸収されるまで、これを30〜60分間にわたって数回繰り返す。サンプルをビーカー内で1時間空気乾燥させた後、サンプルを取り出し、篩上に置いて空気乾燥させる。サンプルが目視で空気乾燥されたら、石英ボート内及び炉に入れる。4時間かけて125℃まで加熱し、次いで、窒素下で4時間かけて250℃まで加熱する。
【0074】
(実施例3)
実施例3は、1% Ru/SiC触媒を用いる113aの1316mxxへの変換を示す。
【0075】
インコネルチューブ(1センチメートル(1/2インチ)OD)に、2cc(1.07g)の1% Ru/SiCの0.318cm(1/8”)ペレットを充填する。触媒床を120℃に昇温し、水素(50sccm)で60分間パージし、次いで、250℃で180分間パージした。次いで、水素流を20sccmで維持しながら、120分間175℃に降温した。温度を160℃に降温し、CFC−113a(CF
3CCl
3)の流れを2.31mL/時に設定し、水素を32sccmに設定した。反応器の排液をオンラインGCMSを介して毎時分析し、次いで、結果を平均して、以下の表中の値を得た。温度を170℃に昇温し、排液を4時間にわたって毎時分析し、平均し、以下の表に示す。
【0076】
【表1】
【0077】
(実施例4)
実施例4は、2% Ru触媒を用いる113aの1316mxxへの変換を示す。
【0078】
インコネルチューブ(1センチメートル(1/2インチ)OD)に、SiC又はCaF
2のいずれかの0.318cm(1/8”)ペレットに担持されている2%Ruを2cc(1.07g)充填した。触媒床を120℃に昇温し、水素(50sccm)で60分間パージし、次いで、250℃で180分間パージした。次いで、水素流を20sccmで維持しながら、120分間175℃に降温した。160℃に降温し、CFC−113a(CF
3CCl
3)の流れを2.31mL/時に設定し、水素を32sccmに設定した。反応器の排液をオンラインGCMSを介して毎時分析し、次いで、結果を平均して、以下の表中の値を得た。170℃に昇温し、排液を4時間にわたって毎時分析し、平均し、以下の表に示す。
【0079】
【表2】
【0080】
(実施例5)
実施例5は、炭素担持Pd/Cu触媒を用いるCFC−1316mxxのHFC−1326mzzへの変換を示す。
【0081】
インコネル(登録商標)チューブ(1.59センチメートル(5/8インチ)OD)に、酸で洗浄した炭素(18〜30メッシュ)に担持されているPd/Cuを13cc(5.3gm)充填した。反応器の温度をN
2流(30sccm、5.0×10
-7m
3/秒)下で30分間100℃に昇温した。次いで、H
2流下で1時間200℃に昇温した。触媒及び流れを以下の表3中の実験に記載の通り変更し、反応器の排液をGCMSにより分析して、以下のモルパーセントの生成物を得た。
【0082】
【表3】
【0083】
(実施例6)
実施例6は、炭素担持Pd/Cu触媒を用いるCFC−1316mxxのHFC−1336mzzへの変換を示す。
【0084】
ハステロイ反応器25cm L×1cm o.d.×0.086cm(10”L×1/2”o.d.×.034”)の壁に、11ccの触媒を充填した。触媒を50sccm(8.3×10
-7m
3/秒)の水素流中で65時間150℃でコンディショニングした。1316mxxの水素化脱塩素について、表4に示す通り、炭素担持Pd/Cu又はアルミナ担持Pd/BaCl2を用いて240℃の温度で調査した。反応生成物をGCMSにより分析して、以下のモル濃度を得た。
【0085】
【表4】
【0086】
(実施例7)
実施例7は、E−及びZ−1326mxzの変換度に対する触媒の効果を示す。
【0087】
ハステロイ反応器12cm L×1cm o.d.×0.086cm(5”L×1/2”o.d.×.034”)の壁に、0.6% Pd/5.5% Cu/C、又はNi/Cu/C触媒3ccを充填した。触媒を50sccm(8.3×10
-7m
3/秒)の水素流中で65時間150℃でコンディショニングした。
【0088】
(実施例8)
実施例8は、炭素担持Cu触媒を用いるCFC−1316mxxのHFC−1336mzzへの変換を示す。
【0089】
400mLのパイレックスビーカー内で、脱イオン水中10% HCl65mL中において、10.73gのCuCl
2・2H
2Oの溶液を調製した。酸で洗浄した炭素(10/30メッシュ)46.0gを溶液に添加した。固いスラリーを、時折撹拌しながら室温で1時間静置した。次いで、スラリーを110〜120℃にて空気下で一晩乾燥させた。その後、触媒を石英チューブに移し、25℃で15分間500sccm(8.3×10
-6m
3/秒)のN
2でパージし、次いで、各100sccmのHe及びH
2で15分間パージした。次いで、触媒をHe/H
2中で6時間かけて5℃/分で500℃に加熱した。この手順により、48.52gの触媒が得られた。
【0090】
ハステロイ反応器25cm L×1cm o.d.×0.086cm(10”L×1/2”o.d.×.034”)の壁に、酸で洗浄した炭素に担持されている8% Cu触媒11cc(4.73g)を充填した。触媒を50sccm(8.3×10
-7m
3/秒)の水素流中で16時間150℃でコンディショニングした。50sccm(8.3×10
-7m
3/秒)の水素流中で2時間350℃に昇温した。1316mxxの水素化脱塩素を、以下の表5に示す通り、約300〜400℃の範囲の温度で調査した。反応生成物をGCMSにより分析して、以下のモル濃度を得た。
【0091】
【表5】
【0092】
(実施例9)
実施例9は、炭素担持Cu/Ni触媒を用いるCFC−1316mxxのHFC−1336への変換を示す。
【0093】
ハステロイ反応器38cm L×2.5cm o.d.×0.19cm(15”L×1”o.d.×.074”)の壁に、炭素担持1% Cu/1% Ni触媒23cc(8.7g)を充填した。触媒を、以下のプロトコルに従って、50sccm(8.3×10
-7m
3/秒)の水素流でコンディショニングした:50℃で1時間、次いで100℃で1時間、次いで150℃で1時間、次いで200℃で1時間、次いで250℃で1時間、次いで300℃で2時間、次いで最後に200℃で16時間。
【0094】
1316mxxの水素化脱塩素について、200〜375℃の温度範囲にわたって調査した。反応生成物をGCMSにより分析して、表6に示す通りのモル濃度を得た。
【0095】
【表6】
【0096】
(実施例10)
実施例10は、リンドラー触媒を用いるヘキサフルオロ−2−ブチンの選択的水素化を示す。
【0097】
5gのリンドラー(鉛で被毒したCaCO3担持5% Pd)触媒を1.3Lのロッカーボム(rocker bomb)に投入した。480g(2.96モル)のヘキサフルオロ−2−ブチンをロッカーに投入した。反応器を冷却し(−78℃)、空にした。ボムを室温に加温した後、Δp=0.3MPa(50psi)を超えない増分で、H
2をゆっくり添加した。合計3モルのH
2を反応器に添加した。粗生成物のガスクロマトグラフィー分析は、混合物が、CF
3C≡CCF
3(0.236%)、CF
3CH=CHCF
3のtrans−異性体(0.444%)、飽和CF
3CH
2CH
2CF
3(1.9%)CF
2=CHCl、出発ブチン由来の不純物(0.628%)、CF
3CH=CHCF
3のcis−異性体(96.748%)からなることを示した。蒸留によって、287g(収率59%)の100%純粋なcis−CF
3CH=CHCF
3(沸点33.3℃)を得た。
【0098】
(実施例11)
実施例11は、200ppmのアルミナ担持Pdの触媒を用いて、セリウムで3:1ドープした、ヘキサフルオロ−2−ブチンの水素化を示す。
【0099】
長さ20cm(8”)、O.D.(外径)2.5cm(1”)、及び壁厚0.19cm(0.074”)のハステロイチューブ反応器を3gの触媒で充填した。触媒を、200℃で1時間、窒素(50sccm)及び水素(10sccm)流を用いて、70℃でコンディショニングした。反応器を82℃に冷却した。次いで、ヘキサフルオロ−2−ブチン(5.5sccm)、水素(1.6sccm)、及び窒素(454sccm)の混合物を、0.3MPa(50psig)の逆圧で反応器に流し込んだ。反応器から出た後、生成物混合物を冷却トラップに補集し、ガスクロマトグラフィーによって分析した。生成物混合物は、CF
3CH=CHCF
3(cis)(36.5%)、CF
3CH=CHCF
3(trans)(1.6%)、CF
3CH
2CH
2CF
3(0.43%)、及び未反応CF
3C≡CCF
3(60.8%)を含有することが見出された。
【0100】
(実施例12)
実施例12は、200ppmアルミナ担持Pdの触媒を用いて、ランタンで2:1ドープした、ヘキサフルオロ−2−ブチンの水素化を示す。
【0101】
長さ20cm(8”)、O.D.(外径)2.5cm(1”)、及び壁厚0.19cm(0.074”)のハステロイチューブ反応器を3gの触媒で充填した。触媒を、200℃で1時間、窒素(50sccm)及び水素(10sccm)流を用いて、70℃でコンディショニングした。反応器を74℃に冷却した。次いで、ヘキサフルオロ−2−ブチン(5.8sccm)、水素(2.0sccm)、及び窒素(455sccm)の混合物を、0.3MPa(50psig)の逆圧で反応器に流し込んだ。反応器から出た後、生成物混合物を冷却トラップに補集し、ガスクロマトグラフィーによって分析した。生成物混合物は、CF
3CH=CHCF
3(cis)(34.3%)、CF
3CH=CHCF
3(trans)(0.95%)、CF
3CH
2CH
2CF
3(0.08%)、及び未反応CF
3C≡CCF
3(64.7%)を含有することが見出された。
【0102】
(実施例13)
実施例13は、cis−及びtrans−1,1,1,4,4,4−ヘキサフルオロ−2−ブテンの混合物を生成するための連続法における、ヘキサフルオロ−2−ブチンの水素化を示す。
【0103】
長さ25cm(10”)、O.D.(外径)12cm(5”)、及び壁厚0.89cm(0.35”)のハステロイチューブ反応器を10gのリンドラー触媒で充填した。触媒を24時間、水素流を用いて70℃でコンディショニングした。次いで、モル比1:1のヘキサフルオロ−2−ブチン及び水素の流れを、30秒間の接触時間をもたらすのに十分な流速で、30℃の反応器に通過させた。反応器から出た後、生成物混合物を冷却トラップに補集し、ガスクロマトグラフィーによって分析した。生成物混合物は、CF
3CH=CHCF
3(cis)(72%)、CF
3CH=CHCF
3(trans)(8.8%)、CF
3CH
2CH
2CF
3(7.8%)、及び未反応CF
3C≡CCF
3(3.3%)を含有することが見出された。
【0104】
(実施例14)
実施例14は、水素:アルキンのモル比が0.67:1の連続法におけるヘキサフルオロ−2−ブチンの水素化を示す。
【0105】
反応器に供給される水素:ヘキサフルオロ−2−ブチンのモル比を0.67:1.0にしたことを除いて、実施例13の手順に従った。生成物混合物の分析は、CF
3CH=CHCF
3(cis)(65.3%)、CF
3CH=CHCF
3(trans)(4.4%)、CF
3CH
2CH
2CF
3(3.4%)、及びCF
3C≡CCF
3(23.5%)を示した。
【0106】
(実施例15)
実施例15は、接触時間が7秒間の連続法におけるヘキサフルオロ−2−ブチンの水素化を示す。
【0107】
接触時間が7秒間になるように流速を調整したことを除いて、実施例13の手順に従った。反応はわずかに発熱性であり、反応器は42℃に加温された。生成物混合物の分析は、CF
3CH=CHCF
3(cis)(72.5%)、CF
3CH=CHCF
3(trans)(8.7%)、CF
3CH
2CH
2CF
3(8.6%)、及びCF
3C≡CCF
3(6.9%)を示した。
【0108】
(実施例16)
NaOH水溶液(12mL、0.12モル)を、35℃のテトラ−n−ブチルアンモニウムブロミド(0.45g、0.001325モル)の存在下で、Z−1326(20g、0.1モル)及び水(18mL)の混合物に添加した。添加後、反応温度を70℃に昇温し、ガスクロマトグラフィーを用いて反応をモニタした。反応は1時間後に完了し、15.4gの生成物(変換率:100%;収率:95%)をドライアイストラップに補集した。
【0109】
(実施例17)
NaOH水溶液(12mL、0.12モル)を、35℃のAliquat(登録商標)336(0.53g、0.001325モル)の存在下で、Z−1326(20g、0.1モル)及び水(18mL)の混合物に添加した。添加後、反応温度を70℃に昇温し、ガスクロマトグラフィーを用いて反応をモニタした。反応は1時間後に完了し、15.6の生成物(変換率:100%;収率:96%)をドライアイストラップに補集した。
【0110】
(実施例18)
NaOH水溶液(12mL、0.12モル)を、42℃のAliquat(登録商標)336(0.53g、0.001325モル)の存在下で、E−1326(20g、0.1モル)及び水(18mL)の混合物に添加した。添加後、反応温度を70℃に昇温し、ガスクロマトグラフィーを用いて反応をモニタした。反応は1時間後に完了し、15.8gの生成物(変換率:100%;収率:98%)をドライアイストラップに補集した。
【0111】
(実施例19)
NaOH水溶液(12mL、0.12モル)を、42℃のテトラオクチルアンモニウムブロミド(0.72g、0.001325モル)の存在下で、E−1326(20g、0.1モル)及び水(18mL)の混合物に添加した。添加後、反応温度を70℃に昇温し、ガスクロマトグラフィーを用いて反応をモニタした。反応は、6.5時間後に完了した。15.6gの生成物(変換率:100%;収率:95%)をドライアイストラップに補集した。
【0112】
一般記述又は実施例において上述された作業の全てが必要なわけではなく、特定の作業の一部は必要でない場合があり、また、1つ以上の更なる作業を上述の作業に加えて実施してもよいことに注意されたい。また更に、作業が記載されている順序は、必ずしもそれらが実施される順序ではない。
【0113】
上述の明細書において、具体的な実施例を参照して概念が記述されている。しかしながら、以下の特許請求の範囲に示されている本発明の範囲から逸脱することなく、様々な修正及び変更をなすことが可能であることが、当業者には理解されよう。したがって、本明細書及び図は、限定的な意味ではなく例示として見なされるものであり、そのような修正は全て、本発明の範囲内に含まれることが意図される。
【0114】
利益、その他の利点、及び問題の解決策が、具体的な実施形態に関連して上記に記述されてきた。しかしながら、これらの利益、利点、問題の解決策、及び任意の利益、利点又は解決策を生じ得る又はより明らかになり得るいかなる特徴も、特許請求の範囲の一部又は全てにおいて必須、必要、又は不可欠な特徴として解釈されるものではない。
【0115】
明確にするために別個の実施形態の文脈において本明細書に記述されている特定の特徴は、単一の実施形態の中で組み合わせて提供されてもよいことが理解されるべきである。逆に、簡潔にするために単一の実施形態の文脈において記述されている様々な特徴も、別個に提供されてよく、また任意の下位組み合わせで提供されてもよい。更に、範囲で記述されている値に対する言及は、その範囲内のあらゆる値を含む。