(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6851432
(24)【登録日】2021年3月11日
(45)【発行日】2021年3月31日
(54)【発明の名称】太陽光発電システム用の冷却システム
(51)【国際特許分類】
H02S 40/42 20140101AFI20210322BHJP
H05K 7/20 20060101ALI20210322BHJP
F24F 3/147 20060101ALI20210322BHJP
【FI】
H02S40/42
H05K7/20 Q
F24F3/147
【請求項の数】6
【全頁数】10
(21)【出願番号】特願2019-125505(P2019-125505)
(22)【出願日】2019年7月4日
(65)【公開番号】特開2021-13228(P2021-13228A)
(43)【公開日】2021年2月4日
【審査請求日】2019年10月3日
(73)【特許権者】
【識別番号】000149790
【氏名又は名称】株式会社大気社
(74)【代理人】
【識別番号】110001818
【氏名又は名称】特許業務法人R&C
(72)【発明者】
【氏名】日野原 昌信
(72)【発明者】
【氏名】今若 直征
(72)【発明者】
【氏名】舟里 忠益
【審査官】
桂城 厚
(56)【参考文献】
【文献】
特開2005−134104(JP,A)
【文献】
特開2005−241079(JP,A)
【文献】
特開2010−112633(JP,A)
【文献】
特開平11−055860(JP,A)
【文献】
特開2013−083397(JP,A)
【文献】
米国特許出願公開第2010/0300123(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 31/04−31/078
H02S 40/42
(57)【特許請求の範囲】
【請求項1】
太陽光発電システムが有する発電素子を冷却する冷却システムであって、
冷却用冷媒が循環する循環経路と、
前記冷却用冷媒を前記循環経路内において循環させる冷媒ポンプと、
前記冷媒ポンプの下流側であって、前記循環経路内において蒸発器として機能する前記発電素子の上流側に設けられた流量調節弁と、
前記発電素子との間で熱交換された前記冷却用冷媒から熱を回収する熱交換器と、を有し、
前記冷却用冷媒が、前記発電素子、前記熱交換器、前記冷媒ポンプ、前記流量調節弁、と循環して再び前記発電素子へと至るように、前記循環経路において前記発電素子、前記熱交換器、前記冷媒ポンプ、前記流量調節弁がこの順で配置されていることを特徴とする冷却システム。
【請求項2】
前記熱交換器は、前記冷却用冷媒と、当該冷却システム外の系における水、空気又は冷媒との間で熱交換可能に構成されていることを特徴とする請求項1に記載の冷却システム。
【請求項3】
前記熱交換器が凝縮器であることを特徴とする請求項1又は2に記載の冷却システム。
【請求項4】
太陽光発電システムが有する発電素子を冷却する冷却システムであって、
冷却用冷媒が循環する循環経路と、
前記冷却用冷媒を前記循環経路内において循環させる冷媒ポンプと、
前記冷媒ポンプの下流側であって、前記循環経路内において蒸発器として機能する前記発電素子の上流側に設けられた流量調節弁と、
前記発電素子との間で熱交換された前記冷却用冷媒から熱を回収する熱交換器と、を有し、
前記熱交換器は、前記冷却用冷媒と、当該冷却システム外の系における水、空気又は冷媒との間で熱交換可能に構成され、
当該冷却システム外の系は、
空調空間から吸引した空気を外部へ排出する排気系と、外部から吸引した空気を除湿して前記空調空間に供給する給気系と、前記排気系及び前記給気系を横断して配置される除湿ロータと、を備え、前記除湿ロータによって、前記給気系において除湿対象の空気から水分を吸収し、前記排気系において放出することを繰り返すことによって、前記空調空間には除湿された空気が供給されるように構成されたデシカント空調システムであって、
前記排気系は、前記除湿ロータの上流側に第一プレヒータ及び第二プレヒータを備え、
前記給気系は、前記除湿ロータの上流側にプレクーラを備えるとともに、前記除湿ロータの下流側に少なくとも第一アフタクーラを備え、
前記冷媒としての空調用冷媒が循環する空調システム用循環経路と、
前記空調システム用循環経路内において循環する前記空調用冷媒を圧縮する圧縮機と、
前記空調用冷媒の熱と前記冷却用冷媒の熱とを熱交換することによって、前記空調用冷媒を凝縮する凝縮器と、
前記凝縮器の下流側に設けられた膨張弁と、を有し、
前記プレクーラ又は前記第一アフタクーラの少なくともいずれかは、前記膨張弁の下流側に設けられた、空調システム用蒸発器として機能するように構成されたデシカント空調システムから構成され、
前記第二プレヒータが前記熱交換器として機能し、前記発電素子との間で熱交換された前記冷却用冷媒と、前記第二プレヒータを通過する空気との間で熱交換可能に構成され、
前記第二プレヒータとの間で熱交換を終えた前記冷却用冷媒は、前記空調システム用蒸発器から前記圧縮機へと至る前記空調用冷媒との間で熱交換可能に構成され、
前記空調用冷媒との間で熱交換を終えた前記冷却用冷媒は、前記凝縮器との間で熱交換可能に構成されていることを特徴とする冷却システム。
【請求項5】
前記デシカント空調システムは、前記除湿ロータと前記第一アフタクーラとの間に、第二アフタクーラを備え、
前記第二アフタクーラを通過する空気は、前記流量調節弁から前記発電素子に至る前記冷却用冷媒との間で熱交換可能に構成されていることを特徴とする請求項4に記載の冷却システム。
【請求項6】
前記圧縮機から前記凝縮器へと至る前記空調用冷媒は、前記第一プレヒータを通過する空気との間で熱交換可能に構成されていることを特徴とする請求項4又は5に記載の冷却システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、太陽光発電システムが有する発電素子を冷却する冷却システムに関する。
【背景技術】
【0002】
近年、環境問題への取り組みが盛んに行われており、自然エネルギーの活用が注目されている。自然エネルギーである太陽光を電力に変換する発電方式である太陽光発電システムにおいて、発電効率を高くするために、レンズや鏡などを利用して集光倍率を大きくすることが行われている。
【0003】
発電素子の大きさをそのままに集光倍率を高めると省コストが図れるが、発電素子の温度が高くなり焼損等の不具合の発生が懸念される。
【0004】
そこで、特に集光型の太陽光発電システムにおいては、発電素子を冷却することが必要となる。その際、発電素子の冷却効率が、太陽光発電システムの発電効率に影響するため、効率的な冷却システムが求められる。
【0005】
従来、発電素子の冷却システムとして、空冷や水冷によるものが提案されている。しかし、空冷式の冷却システムは、回収した熱の再利用が困難である。
【0006】
水冷式の冷却システムは、冷却性能を高めるためには、冷媒としての大量の水と、これを冷却する大型の熱交換器が必要となる。そのため、冷却システム自体が大型で複雑な構造となり、コスト増につながるという問題があった。
【0007】
なお、本発明の従来技術となる上述した冷却システムについて適当な先行技術文献が発見できなかったため、特許文献等の先行技術文献は示さない。
【発明の概要】
【発明が解決しようとする課題】
【0008】
本発明は上記実情に鑑みてなされたものであって、太陽光発電システムが有する発電素子の効率的な冷却を可能にするとともに、冷却によって発電素子から回収された熱の効率的な再利用を可能とすることができる冷却システムを提供することを目的とする。
【課題を解決するための手段】
【0009】
上述の目的を達成するための本発明に係る冷却システムの特徴構成は、太陽光発電システムが有する発電素子を冷却する冷却システムであって、冷却用冷媒が循環する循環経路と、前記冷却用冷媒を前記循環経路内において循環させる冷媒ポンプと、前記冷媒ポンプの下流側であって、前記循環経路内において蒸発器として機能する前記発電素子の上流側に設けられた流量調節弁と、前記発電素子との間で熱交換された前記冷却用冷媒から熱を回収する熱交換器と、を有
し、前記冷却用冷媒が、前記発電素子、前記熱交換器、前記冷媒ポンプ、前記流量調節弁、と循環して再び前記発電素子へと至るように、前記循環経路において前記発電素子、前記熱交換器、前記冷媒ポンプ、前記流量調節弁がこの順で配置されている点にある。
【0010】
上述の構成によると、太陽光から発電した際に発電素子に生じる熱を冷却用冷媒と熱交換させて熱交換器によって回収することによって、太陽光による発電のみならず熱を得ることができるため総合的なエネルギー変換率を向上させることができる。
【0011】
ところで、発電素子は低温に冷却されるほど発電効率は高くなる。しかし、発電素子を冷却した後の冷却用冷媒の有する熱を回収する観点からは、発電素子の冷却後の冷却用冷媒の温度は高いほうが好ましい。したがって、発電量と熱回収量とを最大化することが重要である。
【0012】
なお、従来のような水冷式の冷却システムにおいては、大気圧下において水の沸点は100℃であるため、冷却用冷媒としての水は100℃以下である必要があり、したがって発電素子の冷却後であっても水の温度が100℃以下である必要がある。
【0013】
本発明に係る冷却システムにおいては、直膨式が採用されており、蒸発潜熱によって冷却を行うことができるため、従来の空冷や水冷のような顕熱によって冷却を行うものに比べて冷却効率が優れ、したがって必要な冷却用冷媒の量を少なくすることができる。
【0014】
また、直膨式は、適当な冷却用冷媒を選定することで冷却用冷媒の温度を100℃以上とすることも可能であり、熱回収量を増やすことができるため熱交換効率が高く、したがって熱交換器の小型化が可能となる。このため、フロン類からなる冷却用冷媒を用いた冷却システムは、冷却用冷媒が空気や水である冷却システムに比べて、省スペース化が可能となる。
【0015】
なお、冷却システムとしては、冷却用冷媒が、蒸発器として機能する発電素子、圧縮機、熱交換器として機能する凝縮器、膨張弁、と循環して再び発電素子へと至る構成も考えられる。しかし、本発明に係る冷却システムにおいては、冷却用冷媒が、蒸発器として機能する発電素子、熱交換器として機能する凝縮器、冷媒ポンプ、流量調節弁、と循環して再び発電素子へと至る構成を採用することができるため、同じ凝縮温度であっても、循環経路に圧縮機を有する構成に比べて、蒸発温度を高くすることができる。
【0016】
すなわち、凝縮温度を調節することによって、太陽光発電システムの発電効率が良好となる冷却温度(蒸発温度)を達成することができる。
【0017】
蒸発温度の調節が可能となるため、発電素子から回収された排熱の利用を考慮した際に、冷却用冷媒が空気や水の場合に比べて、排熱の温度の制御幅を広くすることができる。したがって、回収された排熱の利用方法が広い。
【0018】
また、排熱の温度の制御幅が広いことから、冷却システムは、発電の効率化を優先させる、熱回収の効率化を優先させる、発電量及び熱回収量の最大化を優先させる、といったように太陽光から得られるエネルギーの利用方法を自在に制御することができる。
【0019】
本発明においては、前記熱交換器は、前記冷却用冷媒と、当該冷却システム外の系における水、空気又は冷媒との間で熱交換可能に構成されていると好適である。
【0020】
上述の構成によると、凝縮器を通過する冷却用冷媒と、当該冷却システム外の系における水、空気又は冷媒との間で熱交換をすることによって、当該冷却システム外の系における水、空気又は冷媒を加熱し利用することができる。
【0021】
本発明においては、前記熱交換器が凝縮器であると好適である。
【0022】
上述の構成によると、冷却用冷媒が循環経路を蒸発器として機能する発電素子、凝縮器、冷媒ポンプ、流量調節弁、と循環して再び発電素子へと至る冷却システムとすることができる。
【0023】
上述の目的を達成するための本発明に係る冷却システムの特徴構成は、太陽光発電システムが有する発電素子を冷却する冷却システムであって、冷却用冷媒が循環する循環経路と、前記冷却用冷媒を前記循環経路内において循環させる冷媒ポンプと、前記冷媒ポンプの下流側であって、前記循環経路内において蒸発器として機能する前記発電素子の上流側に設けられた流量調節弁と、前記発電素子との間で熱交換された前記冷却用冷媒から熱を回収する熱交換器と、を有し、前記熱交換器は、前記冷却用冷媒と、当該冷却システム外の系における水、空気又は冷媒との間で熱交換可能に構成され、当該冷却システム外の系は、空調空間から吸引した空気を外部へ排出する排気系と、外部から吸引した空気を除湿して前記空調空間に供給する給気系と、前記排気系及び前記給気系を横断して配置される除湿ロータと、を備え、前記除湿ロータによって、前記給気系において除湿対象の空気から水分を吸収し、前記排気系において放出することを繰り返すことによって、前記空調空間には除湿された空気が供給されるように構成されたデシカント空調システムであって、前記排気系は、前記除湿ロータの上流側に第一プレヒータ及び第二プレヒータを備え、前記給気系は、前記除湿ロータの上流側にプレクーラを備えるとともに、前記除湿ロータの下流側に少なくとも第一アフタクーラを備え、前記冷媒としての空調用冷媒が循環する空調システム用循環経路と、前記空調システム用循環経路内において循環する前記空調用冷媒を圧縮する圧縮機と、前記空調用冷媒の熱と前記冷却用冷媒の熱とを熱交換することによって、前記空調用冷媒を凝縮する凝縮器と、前記凝縮器の下流側に設けられた膨張弁と、を有し、前記プレクーラ又は前記第一アフタクーラの少なくともいずれかは、前記膨張弁の下流側に設けられた、空調システム用蒸発器として機能するように構成されたデシカント空調システムから構成され、前記第二プレヒータが前記熱交換器として機能し、前記発電素子との間で熱交換された前記冷却用冷媒と、前記第二プレヒータを通過する空気との間で熱交換可能に構成され、前記第二プレヒータとの間で熱交換を終えた前記冷却用冷媒は、前記空調システム用蒸発器から前記圧縮機へと至る前記空調用冷媒との間で熱交換可能に構成され、前記空調用冷媒との間で熱交換を終えた前記冷却用冷媒は、前記凝縮器との間で熱交換可能に構成されている
点にある。
【0024】
上述の構成によると、発電素子の冷却で回収した排熱によって第二プレヒータを通過する空気を加熱することできる。したがって、デシカント空調システムの除湿ロータの乾燥のために必要なエネルギーを補うことができる。
【0025】
第二プレヒータを通過する空気を加熱した後の冷却用冷媒と、デシカント空調システムが有する、前記プレクーラ又は前記第一アフタクーラの少なくともいずれかから圧縮機へと至る空調用冷媒との間で熱交換をさせることができるため、凝縮器を通過する空調用冷媒の冷却のための冷却用冷媒の温度を低くすることができる。
【0026】
本発明においては、前記デシカント空調システムは、前記除湿ロータと前記第一アフタクーラとの間に、第二アフタクーラを備え、前記第二アフタクーラを通過する空気は、前記流量調節弁から前記発電素子に至る前記冷却用冷媒との間で熱交換可能に構成されていると好適である。
【0027】
上述の構成によると、前記流量調節弁を通過した冷却用冷媒の熱によって、第二アフタクーラを通過する空気を冷却することができ、したがって、凝縮器から発電素子へと至る冷却用冷媒を加熱することができる。必要に応じて当該熱交換を行い、発電素子へと至る冷却用冷媒の温度を制御することによって、発電素子における蒸発温度の制御をすることができる。
【0028】
本発明においては、前記圧縮機から前記凝縮器へと至る前記空調用冷媒は、前記第一プレヒータを通過する空気との間で熱交換可能に構成されていると好適である。
【0029】
上述の構成によると、圧縮機で圧縮されて凝縮器へと至る空調用冷媒の熱によって第一プレヒータを通過する空気を加熱することできる。したがって、デシカント空調システムの除湿ロータの加熱のために必要なエネルギーを補うことができる。
【発明を実施するための形態】
【0031】
以下に、本発明に係る冷却システムの実施形態について、図面を参照しながら説明する。
【0032】
図1には、冷却システム10が示されている。冷却システム10は、太陽光発電システムが有する発電素子11を冷却するためのものであって、例えばフロン類からなる冷却用冷媒が循環する循環経路12と、冷却用冷媒を循環経路12内において循環させる冷媒ポンプ13と、冷媒ポンプ13の下流側であって、発電素子11の上流側に設けられた流量調節弁14と、発電素子11との間で熱交換された冷却用冷媒から熱を回収する熱交換器15と、を有する。この系において発電素子11は蒸発器として機能する。なお、冷却用冷媒はフロン類に限らず、水やアンモニア等の自然冷媒であってもよい。
【0033】
図2には、
図1に示す冷却システム10のモリエル線図が示されている。熱交換器15において冷却用冷媒は液化され(a→b)、その際、熱は外部に放出される。その後、冷却用冷媒は冷媒ポンプ13により昇圧される(b→c)。その後、冷却用冷媒は、流量調節弁14において液体のまま降圧される(c→d)。その後、冷却用冷媒は、発電素子11において発電素子11からの熱を吸収して蒸発し気化され(d→a)、熱交換器15に還流される。冷却用冷媒はこのように循環経路12を循環する。
【0034】
本実施形態において、熱交換器15は、凝縮器から構成され、循環経路12を循環する冷却用冷媒と、冷却システム10外の系における水、空気又は冷媒との間で熱交換可能に構成されている。
【0035】
例えば、
図3に示すように、熱交換器15は冷却用冷媒と、温水蓄熱槽20の温水との間で熱交換をすることができる。昼間に発電素子11から回収した熱によって温水蓄熱槽20の水を温め、例えば夜間の暖房や給湯に利用することができる。したがって、暖房や給湯のエネルギーコスト削減が可能になる。
【0036】
また、
図4に示すように、熱交換器15は冷却用冷媒と、外気との間で熱交換をすることができる。発電素子11から回収した熱によって空気を温め、例えば暖房や乾燥工程に利用することができる。電気ヒータなどを用いて行っていた暖房や乾燥工程のエネルギーコスト削減が可能になる。
【0037】
さらに、
図5に示すように、熱交換器15は冷却用冷媒と、デシカント空調システム100との間で熱交換をすることができる。
【0038】
冷却システム10とデシカント空調システム100との間の熱交換の説明にあたり、まず、デシカント空調システム100について説明する。
【0039】
デシカント空調システム100は、空調空間101内の空気を排気するとともに、外気を除湿、冷却して空調空間101に供給するデシカント空調機102と、これを駆動する駆動システム103とを備えている。
【0040】
デシカント空調機102のハウジング104には、空調空間101から吸引した空気を外部へ排出する排気系105と、外部から吸引した空気を除湿して空調空間101に供給する給気系106と、排気系105及び給気系106を横断して配置される除湿ロータ107と、が備えられている。
【0041】
排気系105は、除湿ロータ107の下流側に排気ファン108を備えるとともに、除湿ロータ107の上流側に第一プレヒータ109、第二プレヒータ110及び加熱器111を備えている。給気系106は、除湿ロータ107の上流側にプレクーラ112を備えるとともに、除湿ロータ107の下流側に第一アフタクーラ113及び第二アフタクーラ114を備え、さらにプレクーラ112と除湿ロータ107との間に給気ファン115を備えている。
【0042】
除湿ロータ107は、給気系106において除湿対象の空気から吸収した水分を、排気系105において放出することを繰り返すことによって、空調空間101に供給される空気の除湿を行うように構成されている。
【0043】
このデシカント空調機102を駆動させる駆動システム103は、冷却システム10外の系における冷媒としての空調用冷媒が循環する空調システム用循環経路116と、空調システム用循環経路116内において循環する空調用冷媒を圧縮する圧縮機117と、空調用冷媒の熱と冷却システム10の冷却用冷媒の熱とを熱交換することによって空調用冷媒を凝縮する凝縮器118と、凝縮器118の下流側に設けられた膨張弁119と、を有している。なお、凝縮器118は、冷却システム10における蒸発器としても機能する。
【0044】
発電素子11において太陽光から吸収する熱量と、空調空間101の除湿負荷とのバランスによっては、空調用冷媒が凝縮器118で凝縮しきれない場合がある。このような場合のために凝縮器118と膨張弁119との間に補助的な凝縮器を設けてもよく、この補助的な凝縮器によって空調用冷媒の有する熱を系外に放熱することも可能である。
【0045】
プレクーラ112及び第一アフタクーラ113は、膨張弁119の下流側に設けられた、空調システム用蒸発器として機能する。
【0046】
以上のように構成された冷却システム10とデシカント空調システム100との間の熱交換の説明をする。
【0047】
冷却システム10の発電素子11との間で熱交換された冷却用冷媒は、第二プレヒータ110を通過する空気との間で熱交換可能に構成されている。したがって、第二プレヒータ110が、冷却システム10における熱交換器15として機能する。
【0048】
第二プレヒータ110との間で熱交換を終えた冷却用冷媒は、空調システム用循環経路116に備えられた熱交換器120において、プレクーラ112及び第一アフタクーラ113からそれぞれ圧縮機117へと至る空調用冷媒との間で熱交換可能に構成されている。
【0049】
冷却システム10においては、熱交換器120によって空調用冷媒との間で熱交換を終えた冷却用冷媒が、冷媒ポンプ13によって、流量調節弁14を介して凝縮器118に供給される。凝縮器118において空調用冷媒との間で熱交換を終えた冷却用冷媒は、その後発電素子11に供給され、冷却システム10の発電素子11との間で熱交換される。
【0050】
なお、循環経路12は、流量調節弁14から、凝縮器118を介して発電素子11に至る経路の途中に分岐路16を有し、分岐路16を流れる冷却用冷媒と第二アフタクーラ114を通過する空気との間で熱交換可能に構成されている。なお、分岐路16には、流量調節弁が設けられている。
【0051】
なお、圧縮機117から凝縮器118へと至る空調用冷媒は、第一プレヒータ109を通過する空気との間で熱交換可能に構成されている。
【0052】
なお、不図示であるが、デシカント空調システム100は、冷却システム10から必要な放熱量に応じて、上記構成以外の不図示の熱交換器を適宜有することができる。
【0053】
以上のように、太陽光発電システムが有する発電素子11の効率的な冷却を可能にするとともに、冷却によって発電素子11から回収された熱の効率的な再利用を可能とすることができるようになった。
【0054】
上述した実施形態は、いずれも本発明の一例であり、当該記載により本発明が限定されるものではなく、各部の具体的構成は本発明の作用効果が奏される範囲において適宜変更設計可能である。
【符号の説明】
【0055】
10 :冷却システム
11 :発電素子
12 :循環経路
13 :冷媒ポンプ
14 :流量調節弁
15 :熱交換器
100 :デシカント空調システム
101 :空調空間
105 :排気系
106 :給気系
107 :除湿ロータ
109 :第一プレヒータ
110 :第二プレヒータ
112 :プレクーラ
113 :第一アフタクーラ
114 :第二アフタクーラ
116 :空調システム用循環経路
117 :圧縮機
118 :凝縮器
119 :膨張弁
120 :熱交換器