(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0010】
以下に、本発明の各実施形態について、図面を参照しつつ説明する。但し、本発明は、その要旨を逸脱しない範囲において様々な形態で実施することができ、以下に例示する実施形態の記載内容に限定して解釈されるものではない。
【0011】
図面は、説明をより明確にするため、実際の態様に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。また、本明細書と各図において、既出の図に関して説明したものと同様の機能を備えた要素には、同一の符号を付して、重複する説明を省略することがある。
【0012】
本明細書および図面において、同一、あるいは類似する複数の構成を総じて表記する際には同一の符号を用い、これら複数の構成のそれぞれを区別して表記する際には、さらに大文字又は小文字のアルファベットを添えて表記する。一つの構成のうちの複数の部分をそれぞれ区別して表記する際には、同一の符号を用い、さらにハイフンと自然数を用いる。
【0013】
<第1実施形態>
図1及び
図2を用いて、本発明の一実施形態に係る温度センサ10について説明する。
【0014】
[構造]
図1(A)〜
図1(C)の各々は、本発明の一実施形態に係る温度センサ10の模式的斜視図、上面図、及び側面図である。
図1(A)〜
図1(C)に示すように、温度センサ10は、ブロック体100、第1熱電対200、及び第2熱電対300を含む。第1熱電対200及び第2熱電対300の各々の端部は、ブロック体100に埋設されている。
【0015】
ブロック体100は、被測定物と接する。また、第1熱電対200及び第2熱電対300はブロック体100に埋設されており、直接的には、ブロック体100の温度を測定する。すなわち、温度センサ10は、被測定物と接するブロック体100の温度を、第1熱電対200及び第2熱電対300を使用して測定する。ブロック体100の材料が、被測定物と同じ材料である場合又は被測定物よりも高い熱伝導率を有する場合には、被測定物の温度とブロック体100の温度はほぼ同じとなる。そのため、ブロック体100の温度を測定することで、被測定物の温度を求めることができる。
【0016】
ブロック体100の大きさは、埋設される熱電対の数によって適宜決定することができる。一般的に、ブロック体100が大きいと熱容量が大きくなるため、被測定物からブロック体100への熱伝導が低下する。そのため、ブロック体100の温度を被測定物の温度に近づけるためには、ブロック体100は小さい方がよい。ブロック体100の大きさは、例えば、一辺の長さが15mm以下、10mm以下、又は5mm以下であればよい。
【0017】
図1(A)〜
図1(C)においては、ブロック体100に埋設される熱電対の数を2本としたが、ブロック体100の構成はこれに限られない。ブロック体100に埋設される熱電対の数は、少なくとも2本以上であればよい。温度センサ10の熱電対の数が2本以上設けられることにより、被測定物の精度の良い温度測定や温度制御が可能となる。例えば、第1熱電対200を被測定物の温度測定用の熱電対として使用し、第2熱電対300をヒータの過加熱防止用の熱電対として使用することができる。また、別の例としては、第1熱電対200の予備の熱電対として第2熱電対300を使用することができる。本実施形態と異なり、ブロック体100を使用しないで2本の熱電対が被測定物の別々の場所に配置される場合では、被測定物の形状によっては熱電対への熱伝導が異なる場合がある。この場合、同じ被測定物の温度を測定しているにもかかわらず、2本の熱電対の各々が測定する温度が異なってしまう。一方、本実施形態に係る温度センサ10では、第1熱電対200及び第2熱電対300の各々の端部が同じブロック体100に埋設され、ブロック体100の温度を通じて被測定物の温度を測定する。そのため、第1熱電対200が測定する温度と第2熱電対300が測定する温度との差を小さくすることができる。
【0018】
さらに、第1熱電対200と第2熱電対300は、異なる種類の熱電対を使用することもできる。例えば、第1熱電対200として、測定温度範囲が500度未満の熱電対を使用し、第2熱電対300として、測定温度範囲が500度以上の熱電対を使用する。この場合、温度センサ10は、測定温度が500度未満では第1熱電対を使用し、測定温度が500度以上では第2熱電対を使用して測定することにより、温度センサ10の測定温度範囲を広げることができる。また、熱電対の測定温度範囲の上限又は下限近傍の温度では、熱電対で測定する温度と実際の温度が異なる場合も多い。この場合、温度センサ10は、第1熱電対200の測定温度範囲の上限又は下限の近傍の温度において、第2熱電対300を使用して温度を測定することで、第1熱電対200が測定した温度を補償することができる。
【0019】
図1(B)のA−A’線に沿って切断した模式的断面図を
図2(A)に示す。
図2(A)は、本実施形態に係る温度センサ10の第1熱電対200及び第2熱電対300の模式的断面図である。第1熱電対200は、第1素線211、第2素線212、第1絶縁体220、及び第1金属シース230を含む。第2熱電対300は、第3素線311、第4素線312、第2絶縁体320、及び第2金属シース330を含む。
【0020】
第1熱電対200は、第1金属シース230の中に、第1素線211及び第2素線212を含む。また、第1金属シース230の中に第1絶縁体220が充填されることによって、第1素線211、第2素線212、及び第1金属シース230の各々が絶縁化されている。
【0021】
第2熱電対300の構成も、第1熱電対200の構成と同様であるため、ここでは説明を省略する。
【0022】
第1熱電対200及び第2熱電対300は、いわゆるシース熱電対である。シース熱電対は、シース外径が小さく、柔軟性を有する。そのため、シース熱電対は曲げることが可能である。また、熱電対の2本の素線が金属シース及び絶縁体によって保護されているため、耐衝撃性や耐腐食性に優れている。
【0023】
第1金属シース230及び第2金属シース330の各々は、2本の素線だけでなく、さらに多くの素線を含むこともできる。しかし、1本の金属シースの中に含まれる素線の本数が多いと、金属シースのシース外径が大きくなり、熱電対の柔軟性が低下する。また、熱電対を埋設するブロック体100も大きくなる。そのため、熱電対を曲げて配置する場合、又は微細な被測定物に対して熱電対を配置する場合には、温度センサ10の第1熱電対200及び第2熱電対300は、2本の素線(シングルエレメント)のみを含むことが好ましい。
【0024】
図1(C)のB−B’線に沿って切断した模式的断面図を
図2(B)に示す。
図2(B)は、本実施形態に係る温度センサ10の模式的断面図である。
【0025】
第1熱電対200の端部は、第1金属シース230は閉じられ、ブロック体100に埋設されている。第1金属シース230の閉じられた部分の内部では、第1素線211と第2素線212とが接合されている。また、第1金属シース230の閉じられた部分では、中空を有するように第1絶縁体220が第1金属シース230内に充填されているが、第1絶縁体220の構成はこれに限られない。第1絶縁体220は、第1金属シース230内の全てに充填されていてもよい。なお、ブロック体100からの第1熱電対200への熱伝導を高めるため、第1金属シース230のブロック体100に埋設されている部分内には第1絶縁体220が充填されていることが好ましい。
【0026】
第2熱電対300の構成も、第1熱電対200の構成と同様であるため、ここでは説明を省略する。
【0027】
第1熱電対200及び第2熱電対300の端部は、ブロック体100に設けられた開口部にろう付けされて接合される。ろう付けのろう材料として、例えば、アルミニウム、微量なリンを含む銅、アルミニウムを含む合金、銀、銅、及び亜鉛を含む合金、銅と亜鉛を含む合金、チタン、銅、及びニッケルを含む合金、チタン、ジルコニウム、及び銅を含む合金、又はチタン、ジルコニウム、銅、及びニッケルを含む合金などを使用することができる。なお、第1熱電対200及び第2熱電対300のブロック体100への接合は、ろう付けに限られない。ろう付けの代わりに、溶接又はかしめなどによって、第1熱電対200及び第2熱電対300が接合されていてもよい。
【0028】
[材料]
ブロック体100は、被測定物と接し、被測定物から熱が伝導されるとともに、第1熱電対200及び第2熱電対300に熱を伝導する。そのため、ブロック体100の材料は、被測定物の材料と同じであることが好ましいが、これに限られない。ブロック体100は、熱伝導性の高い金属であることが好ましい。このような金属としては、10W/mK以上430W/mK以下の熱伝導率を有する金属から選択することができる。材料の比較においては、ブロック体100の材料の熱伝導率は、ブロック体100が接する被測定物の材料の熱伝導率の80%以上であることが好ましい。また、ブロック体100が被測定物の中に埋設される場合には、金属は、さらに3×10
−6/K以上25×10
−6/K以下の熱膨張率を有することが好ましい。ブロック体100の金属として、例えば、アルミニウム、チタン、ステンレスなどの金属又はこれらの合金などを使用することができる。
【0029】
また、ブロック体100の材料は、セラミックを用いることもできる。ブロック体100の材料としてセラミックを用いることで、耐腐食性に優れた温度センサ10となる。ブロック体100のセラミックとして、例えば、炭化ケイ素、窒化アルミニウム、酸化アルミニウム、又は窒化ケイ素を使用することができる。材料の硬度の比較においては、ブロック体100の材料の硬度を、ブロック体100が接する被測定物の材料の硬度よりも大きくしてもよい。
【0030】
第1素線211と第2素線212、又は、第3素線311と第4素線312とは、異なる金属が使用される。ここでは、便宜上、第1素線211及び第3素線311を+極とし、第2素線212及び第4素線312を−極とする。例えば、第1素線211と第2素線212、又は、第3素線311と第4素線312の金属の組合せは、表1の通りである。金属によって測定可能な温度範囲が異なるため、被測定物の測定する温度範囲に応じて、適切な金属材料を組み合わせた熱電対を用いればよい。
【0032】
第1絶縁体220は、第1素線211、第2素線212、及び第1金属シース230の各々が接触してショートすることを防ぐために設けられる。第2絶縁体320も同様に、第3素線311、第4素線312、及び第2金属シース330の各々が接触してショートすることを防ぐために設けられる。第1絶縁体220及び第2絶縁体320の材料は、熱伝導率が10W/mK以上300W/mKの絶縁材料から選択することができる。第1絶縁体220及び第2絶縁体320の絶縁材料としては、例えば、酸化マグネシウム、酸化アルミニウム、酸化シリコン、酸化ジルコニウム、酸化タンタル、窒化ホウ素、窒化アルミニウム、窒化シリコン、窒化ジルコニウム、窒化チタン、窒化タンタル、窒化モリブデン、又は窒化ニオブなどを使用することができる。なお、第1絶縁体220及び第2絶縁体320は、上記材料の粉末、又は粉末を焼結して粉砕した微粒子が凝集して構成される。すなわち、第1金属シース230及び第2金属シース330内に、上記材料の粉末又は微粒子を充填され、第1絶縁体220及び第2絶縁体320が形成される。
【0033】
第1金属シース230及び第2金属シース330は、ブロック体100からの熱伝導を効率良く行うため、高い熱伝導率を有する金属が好ましい。また、第1金属シース230及び第2金属シース330は、腐食性雰囲気又は酸化性雰囲気から、第1素線211、第2素線212、第3素線311、及び第4素線312を保護することもできる。このような金属としては、10W/mK以上430W/mK以下の熱伝導率を有する金属から選択することができる。第1金属シース230及び第2金属シース330として、例えば、アルミニウム、チタン、ニッケル、鉄、クロム、ニオブ、モリブデンなどの金属又はこれらの合金を使用することができる。より具体的には、第1金属シース230及び第2金属シース330の材料として、ニッケルクロム系耐熱合金又はオーステナイト系ステンレス鋼を用いることができる。
【0034】
本実施形態に係る温度センサ10によれば、複数の熱電対(例えば、第1熱電対200及び第2熱電対300)の各々の一端部がブロック体100に埋設されているため、各熱電対間での温度のばらつきが小さい。一方、複数の熱電対の各々の他端部は解放されている。各熱電対のシース外径は小さく、熱電対を折り曲げることができるため、各熱電対の他端部は自由に配置することができる。したがって、温度センサ10は、複数の熱電対を用いて被測定物の温度を精密に測定することができるとともに、温度センサ10の各熱電対を自由に配置することができる。
【0035】
[変形例1]
図3(A)及び
図3(B)を用いて、本実施形態に係る温度センサ10の変形例について説明する。ここでは、主に、第1熱電対200及び第2熱電対300の構成の変形例について説明する。
【0036】
図3(A)は、本実施形態に係る温度センサ10Aの模式的断面図である。温度センサ10Aは、ブロック体100A、第1熱電対200A、及び第2熱電対300Aを含む。第1熱電対200Aは、第1素線211A、第2素線212A、第1絶縁体220A、及び第1金属シース230Aを含む。第2熱電対300Aは、第3素線311A、第4素線312A、第2絶縁体320A、及び第2金属シース330Aを含む。第1熱電対200A及び第2熱電対300Aの各々の端部は、ブロック体100Aに埋設されている。
【0037】
温度センサ10Aでは、第1金属シース230Aの閉じられた部分に、第1素線211A及び第2素線212Aの各々の端部が接合されている。第1素線211A及び第2素線212Aは、第1金属シース230Aを閉じる際に一緒に接合されてもよく、第1金属シース230Aを閉じた後に接合されてもよい。
【0038】
第3素線311A及び第4素線312Aの構成も、第1素線211A及び第2素線212Aと同様であるため、ここでは説明を省略する。
【0039】
本実施形態に係る温度センサ10Aによれば、第1素線211A及び第2素線212Aが第1金属シース230Aと直接接し、また、第3素線311A及び第4素線312Aが第2金属シース330Aと直接接する。そのため、ブロック体100から第1素線211A、第2素線212A、第3素線311A、及び第4素線312Aへの熱伝導が良好であるため、温度センサ10Aは応答性に優れる。
【0040】
図3(B)は、本実施形態に係る温度センサ10Bの模式的断面図である。温度センサ10Bは、ブロック体100B、第1熱電対200B、及び第2熱電対300Bを含む。第1熱電対200Bは、第1素線211B、第2素線212B、第1絶縁体220B、及び第1金属シース230Bを含む。第2熱電対300Bは、第3素線311B、第4素線312B、第2絶縁体320B、及び第2金属シース330Bを含む。
【0041】
温度センサ10Bの第1熱電対200Bでは、第1素線211B及び第2素線212Bの各々の端部が、第1金属シース230Bの閉じられた部分から外部に突出し、露出されている。また、第1金属シース230Bの外部において、第1素線211Bと第2素線212Bとが接合されている。
【0042】
第2熱電対300Bの構成も、第1熱電対200Bの構成と同様であるため、ここでは説明を省略する。
【0043】
また、第1熱電対200B及び第2熱電対300Bの各々の端部は、第1素線211B、第2素線212B、第3素線311B、及び第4素線312Bが露出した状態で、ブロック体100Bに埋設されている。第1熱電対200B及び第2熱電対300Bは、ブロック体100Bに設けられた開口部に差し込み、ブロック体100Bと接合することができる。また、ブロック体100Bを2つの部分に分け、2つの部分の間に第1熱電対200B及び第2熱電対300Bを挟み、ブロック体100Bの2つの部分を接合すると同時に、第1熱電対200B及び第2熱電対300Bをブロック体100Bと接合してもよい。
【0044】
本実施形態に係る温度センサ10Bによれば、第1熱電対200Bの第1素線211B及び第2素線212B並びに第2熱電対300Bの第3素線311B及び第4素線312Bがブロック体100Bと直接接する。そのため、ブロック体100Bから第1素線211B、第2素線212B、第3素線311B、及び第4素線312Bへの熱伝導性が良好であるため、温度センサ10Bは応答性に優れる。さらに、第1素線211B、第2素線212B、第3素線311B、及び第4素線312Bの露出している部分がブロック体100Bで覆われているため、耐衝撃性や耐腐食性に優れる。
【0045】
[変形例2]
図4(A)〜
図4(E)を用いて、本実施形態に係る温度センサ10の変形例について説明する。ここでは、主に、ブロック体100の構成の変形例について説明する。
【0046】
図4(A)〜
図4(E)は、本実施形態に係る温度センサ10に適用することができるブロック体100a〜100eの模式的斜視図である。
【0047】
図4(A)に示すブロック体100aの形状は、多角柱である。多角柱は、多角形の底面に対して四角形の側面が設けられる。
図4(A)では、多角柱の底面が五角形であるが、これに限られない。多角柱の底面は、三角形、四角形、又は六角形など、被測定物の形状に合わせて適宜選択することができる。また、多角柱の側面の四角形は、例えば、正方形、長方形、平行四辺形、又はひし形である。多角柱は、直角柱でもよく、斜角柱でもよい。多角柱の側面に平行四辺形又はひし形が含まれる場合は、斜角柱となる。
【0048】
ブロック体100aにおいて、第1熱電対200及び第2熱電対300が埋設される位置は、多角柱の底面であってもよく、側面であってもよい。
【0049】
図4(B)に示すブロック体100bの形状は、円柱である。すなわち、ブロック体100bは、円形の底面と、湾曲した側面とを含む。ブロック体100bにおいても、第1熱電対200及び第2熱電対300が埋設される位置は、円柱の底面であってもよく、側面であってもよい。
【0050】
図4(C)に示すブロック体100cの形状は、球である。ブロック体100cの表面は、被測定物と均等に接することができるため、被測定物からブロック体100cへの熱伝導が均質となる。
【0051】
図4(D)に示すブロック体100dの形状は、多角錐である。
図4(D)では、多角錐の底面が三角形であるが、これに限られない。多角錐の底面は、四角形、五角形又は六角形など、被測定物の形状に合わせて適宜選択することができる。また、多角錐は、頂点からの垂線が底面の重心に一致する直錐であってもよく、頂点からの垂線が底面の重心に一致しない斜錐であってもよい。
【0052】
図4(E)に示すブロック体100eの形状は、円錐である。円錐は、頂点からの垂線が底面の円の中心に一致する直円錐であってもよく、頂点からの垂線が底面の円の中心に一致しない斜円錐であってもよい。
【0053】
以上、本実施形態に係る温度センサ10に適用することができるブロック体100の例としてブロック体100a〜100eを示したが、ブロック体100の形状はこれに限られない。ブロック体100の形状は、被測定物の形状に合わせて、適宜最適な形状を選択することができる。
【0054】
[変形例3]
図5(A)及び
図5(B)を用いて、本実施形態に係る温度センサ10の変形例について説明する。ここでは、主に、ブロック体100の表面形状の構成の変形例について説明する。
【0055】
図5(A)及び
図5(B)の各々は、本実施形態に係る温度センサ10Cの模式的上面図及び側面図である。温度センサ10Cは、ブロック体100C、第1熱電対200、及び第2熱電対300を含む。ブロック体100Cの表面には溝150Cが設けられている。なお、溝150Cは、1つ又は複数設けることができる。
【0056】
ブロック体100Cを被測定物にろう付けで接合する場合、溝150Cにろうが入り込むため、接合を強固にすることができる。また、溝150Cが設けられていることにより、ブロック体100Cの表面積が大きくなるため、被測定物からブロック体100Cへの熱伝導が良好となる。
【0057】
溝150Cの幅、深さ又は本数は、ブロック体100Cの大きさに応じて適宜選択することができる。また、溝150Cは、底面に向かってテーパーを設けることもできる。
【0058】
図5(A)及び
図5(B)に示すブロック体100Cでは、上面と底面にのみ溝150Cが設けられているが、溝150Cの構成はこれに限られない。溝150Cは、ブロック体100Cの一部の面に設けられていてもよく、ブロック体100Cの全ての面に設けられていてもよい。
【0059】
図5(A)及び
図5(B)に示すブロック体100Cでは、溝150Cが直線状に設けられているが、溝150Cの構成はこれに限られない。溝150Cは曲線を含むように設けることもできる。
【0060】
図5(A)及び
図5(B)に示すブロック体100Cでは、溝150Cが一側面から反対側の他側面まで連続して設けられているが、溝150Cの構成はこれに限られない。ブロック体100Cの表面の一部分にのみ溝を設けることもできる。また、ブロック体100Cの表面の上に、複数の溝を不連続的に設けることもできる。
【0061】
図5(A)及び
図5(B)に示すブロック体100Cでは、一方向に延伸した溝150Cが設けられているが、溝150Cの構成はこれに限られない。複数の方向に延伸した溝を設け、それらの溝が交差するようにしてもよい。例えば、ブロック体100Cの上に、格子状に溝を設けることもできる。
【0062】
図5(A)及び
図5(B)に示すブロック体100Cでは、溝150Cの断面形状は矩形であるが、溝150Cの構成はこれに限られない。溝150Cの断面形状は、三角形や五角形などの多角形、半円形、又は半楕円形とすることもできる。
【0063】
本実施形態に係る温度センサ10Cによれば、ブロック体100C上に溝150Cが設けられることにより、ブロック体100Cの表面積が増加する。そのため、被測定物との接触面積も増加し、被測定物からブロック体100Cへの熱伝導が向上する。したがって、温度センサ10Cは応答性に優れる。
【0064】
[変形例4]
図6(A)〜
図6(C)を用いて、本実施形態に係る温度センサ10の変形例について説明する。ここでは、主に、ブロック体100の表面形状の構成の別の変形例について説明する。
【0065】
図6(A)は、本実施形態に係る温度センサ10Dの模式的上面図である。温度センサ10Dは、ブロック体100D、第1熱電対200、及び第2熱電対300を含む。
【0066】
図6(A)のC−C’線及びD−D’線に沿って切断した模式的断面図を、それぞれ
図6(B)及び
図6(C)に示す。ブロック体100Dの表面には凸部150Dが設けられている。なお、凸部は、1つ又は複数設けることができる。
【0067】
ブロック体100Dを被測定物に接合する場合、凸部150Dが設けられていることにより、ブロック体100Dの表面積が大きくなるため、被測定物からブロック体100Dへの熱伝導が良好となる。
【0068】
凸部150Dの幅、高さ又は個数は、ブロック体100Dの大きさに応じて適宜選択することができる。
【0069】
図6(A)〜
図6(C)に示すブロック体100Dでは、マトリクス状に凸部150Dが配置されているが、凸部150Dの構成はこれに限られない。凸部150Dは、ブロック体100上に千鳥格子状やランダムに配置することもできる。
【0070】
図6(A)〜
図6(C)に示すブロック体100Dでは、上面と底面にのみ凸部150Dが設けられているが、凸部150Dの構成はこれに限られない。凸部150Dは、ブロック体100Dの一部の面に設けられていてもよく、ブロック体100Dの全ての面に設けられていてもよい。
【0071】
図6(A)〜
図6(C)に示すブロック体100Dでは、凸部150Dの形状は半球であるが、凸部150Dの構成はこれに限られない。凸部150Dの形状は、多角柱、円柱、多角錐、又は円錐とすることもできる。
【0072】
図6(A)〜
図6(C)に示すブロック体100Dでは、凸部150Dの断面形状は円形であるが、凸部150Dの構成はこれに限られない。凸部150Dの断面形状は、三角形や四角形などの多角形、又は半楕円形とすることもできる。
【0073】
また、図示しないが、ブロック体100にブラスト加工を施し、表面に微細な凹凸を設けることもできる。
【0074】
本実施形態に係る温度センサ10Dによれば、ブロック体100Dの上に凸部150Dが設けられることにより、ブロック体100Cの表面積が増加する。そのため、被測定物との接触面積も増加し、被測定物からブロック体100Dへの熱伝導性が向上する。したがって、温度センサ10Dは応答性に優れる。
【0075】
[変形例5]
図7(A)〜
図7(C)を用いて、本実施形態に係る温度センサ10の変形例について説明する。ここでは、主に、ブロック体100に埋設する第1熱電対200及び第2熱電対300の位置の構成の変形例について説明する。
【0076】
図7(A)は、本実施形態に係る温度センサ10Eの模式的上面図である。温度センサ10Eは、ブロック体100E、第1熱電対200、及び第2熱電対300を含む。温度センサ10Eは、ブロック体100Eの第1側面に第1熱電対200が埋設され、第1側面と反対側の第2側面に第2熱電対300が埋設されている。また、第1熱電対200と第2熱電対300とは、一直線上に配置されている。
【0077】
温度センサ10Eは、ブロック体100Eに2つの開口部を設け、一方の開口部に第1熱電対200を通し、他方の開口部に第2熱電対300を通し、ろう付けなどで接合することによって作製することができる。また、温度センサ10Eは、ブロック体100Eに貫通孔を設け、その貫通孔の両側から第1熱電対200及び第2熱電対300を通し、ろう付けなどで接合することによっても作製することができる。この場合、ブロック体100Eの内部において、第1熱電対200の端部と第2熱電対300の端部とが接することもできる。
【0078】
図7(B)は、本実施形態に係る温度センサ10Fの模式的上面図である。温度センサ10Fは、ブロック体100F、第1熱電対200、及び第2熱電対300を含む。温度センサ10Fは、ブロック体100Fの第1側面に第1熱電対200が埋設され、第1側面と反対側の第2側面に第2熱電対300が埋設されている。また、第1熱電対200F及び第2熱電対300Fは、ブロック体100Fの内部において、第1熱電対200の側面と第2熱電対300の側面とが重畳するように配置されている。なお、ブロック体100Fの内部において、第1熱電対200の側面と第2熱電対300の側面とが接することもできる。
【0079】
図7(C)は、本実施形態に係る温度センサ10Gの模式的上面図である。温度センサ10Gは、ブロック体100G、第1熱電対200、及び第2熱電対300を含む。温度センサ10Gでは、第1熱電対200と第2熱電対300とが直交するようにブロック体100Gに埋設されている。なお、第1熱電対200と第2熱電対300とのなす角は90度に限られない。第1熱電対200と第2熱電対300とのなす角は、必要に応じて、0度から180度の間で選択することができる。
【0080】
以上、ブロック体100に埋設される第1熱電対200及び第2熱電対300の位置の構成の例として温度センサ10E〜10Gを示したが、第1熱電対200及び第2熱電対300の位置に合わせて、ブロック体100E〜100Gのように形状を変えることもできる。なお、100に埋設される第1熱電対200及び第2熱電対300の位置の構成はこれに限られない。ブロック体100に埋設される第1熱電対200及び第2熱電対300の位置は、被測定物の形状に合わせて、適宜最適な形状を選択することができる。
【0081】
本実施形態においては、熱電対を具備する温度センサを例示したが、熱電対の代わりに測温抵抗体を用いることもできる。例えば、2つの測温抵抗体を1つのブロック体に埋設し、一方の測温抵抗体で基板の温度を測定し、他方の測温抵抗体でヒーターを制御することができる。また、本実施形態においては、熱電対と測温抵抗体を1つのブロック体に埋設した温度センサも可能である。いずれの場合においても、ブロック体を通じて温度を測定するため、熱電対が測定する温度又は測温抵抗体が測定する温度との差を小さくすることができる。
【0082】
<第2実施形態>
図8〜
図10を用いて、本発明の一実施形態に係るヒータユニットについて説明する。
【0083】
図8は、本発明の一実施形態に係るヒータユニット20の模式的斜視図である。ヒータユニット20は、第1プレート610、第2プレート620、及びシャフト630を含む。
【0084】
図9は、本発明の一実施形態に係るヒータユニット20の第2プレート620の上面図である。第2プレート620は、第1シースヒータ640−1、第2シースヒータ640−2、および第3シースヒータ640−3を含む。すなわち、ヒータユニット20は、3分割されたシースヒータを含む。各シースヒータ(640−1、640−2、及び640−3)は、第2プレート620に設けられた溝(623−1、623−2、及び623−3)に沿って設けられるが、溝の端部に貫通孔(624−1a及び624−1b、624−2a及び624−2b、並びに624−3a及び624−3b)が設けられており、各シースヒータ(640−1、640−2、及び640−3)は、折り曲げられてシャフト630内に格納される。各シースヒータ(640−1、640−2、及び640−3)及び溝(623−1、623−2、及び623−3)の配置の詳細は後述する。
【0085】
また、第2プレート620は、分割された各シースヒータ(640−1、640−2、及び640−3)ごとに温度センサ10が配置される。そのため、第2プレート620は、3つの温度センサ10を配置するための第2凹部(621-1、621−2、及び621−3)及び貫通孔(622−1、622−2、及び622−3)を含む。なお、
図9では、温度センサ10が省略されている。
【0086】
第1プレート610は、その上面に、シリコンや化合物半導体を含む半導体基板、あるいは石英やガラスなどの絶縁物を含む絶縁基板などが配置される。そのため、第1プレート610の上面は、基板の形状に合わせて形成することができる。例えば、平坦面を有する基板であれば、第1プレート610の上面を平坦にすることが好ましい。また、凹凸を有する基板であれば、第1プレート610の上面を基板の凹凸に合わせた形状とすることもできる。第1プレート610は金属を含み、金属は10W/mK以上430W/mK以下の熱伝導率を有する金属から選択される。高い熱伝導率を有する金属を用いることで、各シースヒータ(640−1、640−2、及び640−3)が発生する熱エネルギーを効率よく受け取ることができる。また、金属は、3×10
−6/K以上25×10
−6/K以下の熱膨張率を有することが好ましい。このような特性を満たす具体的な金属として、チタンやアルミニウム、ステンレスなどの金属が挙げられる。図示しないが、第1プレート610上には、基板を固定するための静電チャックや、基板とヒータユニット20の間にヘリウムなどの熱伝導率の高いガスを供給するための貫通孔、あるいは液体の媒体を環流するための環流路を設けることもできる。
【0087】
第2プレート620は第1プレート610の下に設けられる。第2プレート620も第1プレート610で使用可能な金属を含む。第2プレート620に含まれる金属と第1プレート610に含まれる金属は同一でも良く、異なっていてもよい。異なる場合には、第1プレート610と第2プレート620に含まれる金属の熱膨張率の差が250×10
−6/K以下となるように、それぞれの金属を選択することができる。これにより、熱膨張による変形を抑制することができ、信頼性の高いヒータユニット20を提供することができる。
【0088】
第2プレート620は、第1プレート610と接合されている。第1プレート610と第2プレート620との接合は、ろう付け、溶接、かしめ、又はねじ止めなどによって行うことができる。ろう付けのろう材料として、例えば、アルミニウム、微量なリンを含む銅、アルミニウムを含む合金、銀、銅、及び亜鉛を含む合金、銅と亜鉛を含む合金、チタン、銅、及びニッケルを含む合金、チタン、ジルコニウム、及び銅を含む合金、又はチタン、ジルコニウム、銅、及びニッケルを含む合金などを使用することができる。
【0089】
シャフト630は第1プレート610及び第2プレート620を支持するために設けられる。また、第1シースヒータ640−1、第2シースヒータ640−2、及び第3シースヒータ640−3へ電力を供給するためのリード線641、並びに温度センサ10の第1熱電対200及び第2熱電対300を格納するため、シャフト630は中空構造となっている。第1プレート610に静電チャックを設ける場合には、静電チャックへ電力を供給するための配線もシャフト630内に配置される。図示しないが、シャフト630は回転機構と接続されていてもよく、これにより、ヒータユニット20をシャフト630の長軸を中心として回転させることもできる。シャフト630は、ろう付け、溶接、かしめ、又はねじ止めなどによって、第2プレート620と接合される。
【0090】
第1シースヒータ640−1、第2シースヒータ640−2、及び第3シースヒータ640−3は、通電することで発熱する機能を有し、第2プレート620及び第1プレート610を加熱するために設けられる。これにより、ヒータユニット20上に設置される基板が加熱される。
【0091】
図9に示すように、第2プレート620内において、第1シースヒータ640−1は第1溝623−1に、第2シースヒータ640−2は第2溝623−2に、及び第3シースヒータ640−3は第3溝623−3に沿って配置される。第1溝623−1、第2溝623−2、及び第3溝623−3の各々は、第2プレート620の形状に合わせて可能な限り同心円状となるように配置されている。同心円状の溝に沿ってシースヒータが配置されることにより、第1プレート610及び第2プレート620の温度が均一となり、第1プレート610上の基板を均一に加熱することが可能となる。また、第1溝623−1の幅及び深さは、第1シースヒータ640−1のシース外径と同一、又はほぼ同一である。第2溝623−2及び第3溝623−3の幅及び深さも同様である。
【0092】
第1シースヒータ640−1は、貫通孔624−1a及び貫通孔624−1bで折り曲げられ、シャフト630内に格納される。
【0093】
図10は、
図9のE−E’線に沿って切断した第2プレート620を含むヒータユニット20の模式的断面図である。第1プレート610と第2プレート620とが接合され、その間に、ブロック体100、第1熱電対200、及び第2熱電対300を含む温度センサ10と、第1シースヒータ640−1、第2シースヒータ640−2、及び第3シースヒータ640−3が設けられている。第1熱電対200及び第2熱電対300は、第2プレート620の貫通孔622−1で折り曲げられ、シャフト630に格納されている。また、第1シースヒータ640−1は、第1溝623−1に沿って配置され、貫通孔624−1aで折り曲げられ、シャフト630に格納されている。第1シースヒータ640−1はリード線641と電気的に接続し、リード線641は、電源と接続する。
【0094】
ヒータユニット20は、第1プレート610に第1凹部611を含み、第2プレート620に第2凹部621を含む。温度センサ10のブロック体100は、第1凹部611及び第2凹部621によって囲まれた領域に配置され、接合されている。第1凹部611の深さは、第2凹部621の深さよりも大きい。すなわち、ブロック体100が接する面積は、第2プレート620よりも第1プレート610の方が大きい。そのため、温度センサ10は、第2プレート620よりも第1プレート610の影響を受けやすい。
【0095】
ヒータユニット20の温度センサ10は、基板に近い第1プレート610の温度を測定できるため、温度センサ10で測定された温度は、基板の実際の温度に近いものとなる。また、第1熱電対200及び第2熱電対300を折り曲げることができるため、第2プレート内で自由に温度センサ10を配置することができる。
【0096】
以上、第1シースヒータ640−1の構成を主に説明したが、第2シースヒータ640−2及び第3シースヒータ640−3の構成も同様であるため、ここでは説明を省略する。また、シースヒータの数は3つに限られない。ヒータユニット20に設けられるシースヒータの数は、1つ又は2つでもよく、4つ以上でもよい。
【0097】
本実施形態に係るヒータユニット20によれば、温度センサ10のブロック体100が第1プレート610と接しているため、第1プレート610上の基板の温度をブロック体100を通じて測定することができる。また、ブロック体100が第2プレート620とも接しているため、第2プレート620内の各シースヒータ(640−1、640−2、及び640−3)の温度もブロック体100を通じて測定することができる。そのため、ブロック体100に埋設された第1熱電対200及び第2熱電対300を使用して、基板の温度を測定することができるとともに、各シースヒータ(640−1、640−2、及び640−3)を制御して、各シースヒータ(640−1、640−2、及び640−3)の過加熱を防止することができる。
【0098】
[変形例]
図11(A)〜11(C)を用いて、本実施形態に係るヒータユニット20の変形例について説明する。ここでは、主に、温度センサ10の配置の変形例について説明する。なお、上述したように、シースヒータは複数に分割して設けることができるが、ここでは便宜上、シースヒータ640として説明する。
【0099】
図11(A)は、本発明の一実施形態に係るヒータユニット20Aの温度センサ10の配置部分の模式的断面図である。ヒータユニット20Aは、第1プレート610に第1凹部611Aを含み、第2プレート620に第2凹部621Aを含む。温度センサ10のブロック体100は、第1凹部611A及び第2凹部621Aによって囲まれた領域に配置され、接合されている。第2凹部621Aの深さは、第1凹部611Aの深さよりも大きい。すなわち、ブロック体100が接する面積は、第1プレート610よりも第2プレート620の方が大きい。そのため、温度センサ10は、第1プレート610よりも第2プレート620の影響を受けやすい。第2プレート620にはシースヒータ640が設けられているが、シースヒータ640の異常加熱を検知することができる。
【0100】
ヒータユニット20Aの温度センサ10は、ヒータが設けられている第2プレート620の温度を測定できるため、温度センサ10で測定された温度は、シースヒータ640の実際の温度に近いものとなる。そのため、シースヒータ640の異常加熱を検知することができる。また、第1熱電対200及び第2熱電対300を折り曲げることができるため、第2プレート内で自由に温度センサ10を配置することができる。
【0101】
図11(B)は、本発明の一実施形態に係るヒータユニット20Bの温度センサ10の配置部分の模式的断面図である。ヒータユニット20Bは、第1プレート610に第1凹部611Bを含み、第2プレート620に第2凹部621Bを含む。温度センサ10のブロック体100は、第1凹部611B及び第2凹部621Bによって囲まれた領域に配置され、接合されている。また、第2凹部621Bには、第1熱電対200及び第2熱電対300を格納する中空領域が設けられ、第1熱電対200及び第2熱電対300が、折り曲げられて格納されている。そのため、ブロック体100が接する面積は、第2プレートよりも第1プレートの方が大きく、温度センサ10は、第2プレート620よりも第1プレート610の影響を受けやすい。
【0102】
ヒータユニット20Bの温度センサ10は、基板に近い第1プレート610の温度を測定できるため、温度センサ10で測定された温度は、基板の実際の温度に近いものとなる。また、第1熱電対200及び第2熱電対300を折り曲げることができるため、第2プレート内で自由に温度センサ10を配置することができる。
【0103】
図11(C)は、本発明の一実施形態に係るヒータユニット20Cの温度センサ10の配置部分の模式的断面図である。ヒータユニット20Cは、第1プレート610に第1凹部611Cを含み、第2プレート620に第2凹部621Cを含む。温度センサ10のブロック体100は、第1凹部611C及び第2凹部621Cによって囲まれた領域に配置され、接合されている。第1凹部611Cの深さは、第2凹部621Cの深さよりも大きい。さらに、第2凹部621Cの中に、第1熱電対200及び第2熱電対300を格納するための貫通孔が設けられている。そのため、ブロック体100が接する面積は、第2プレート620よりも第1プレート610の方が大きく、温度センサ10は、第2プレート620よりも第1プレート610の影響を受けやすい。
【0104】
ヒータユニット20Cの温度センサ10は、基板に近い第1プレート610の温度を測定できるため、温度センサ10で測定された温度は、基板の実際の温度に近いものとなる。また、シャフト630の直上に温度センサ10を設ける場合、第2プレート620の貫通孔からシャフト630に第1熱電対200及び第2熱電対300を直接格納することができる。
【0105】
以上、本実施形態に係るヒータユニット20に適用することができる温度センサ10の配置の構成の例としてヒータユニット20A〜20Cを示したが、温度センサ10の配置の構成はこれに限られない。ヒータユニット20における温度センサ10は、シースヒータ640の配置、第1プレート610及び第2プレート620の形状に合わせて、適宜最適な位置に配置することができる。
【0106】
本発明の実施形態として上述した各実施形態は、相互に矛盾しない限りにおいて、適宜組み合わせて実施することができる。また、各実施形態を基にして、当業者が適宜構成要素の追加、削除もしくは設計変更を行ったものも、本発明の要旨を備えている限り、本発明の範囲に含まれる。
【0107】
また、上述した各実施形態によりもたらされる作用効果とは異なる他の作用効果であっても、本明細書の記載から明らかなもの、または、当業者において容易に予測し得るものについては、当然に本発明によりもたらされるものと理解される。