(58)【調査した分野】(Int.Cl.,DB名)
前記第2の流量制御手段の前記制御部は、前記透過水ラインを流れる透過水の流量と前記排水ラインを流れる濃縮水の流量との和に対する前記透過水ラインを流れる透過水の流量の割合である回収率が所定の値になるように、前記排水ラインを流れる濃縮水の前記設定流量を決定する、請求項1に記載の膜ろ過装置。
前記最も上流側のろ過手段に供給される被処理水と前記最も上流側のろ過手段からの透過水と前記最も上流側のろ過手段からの濃縮水とのいずれかの水温を検出する水温検出手段を有し、
前記第2の流量制御手段の前記制御部は、前記水温検出手段で検出された前記水温に基づいて、前記回収率が、前記最も上流側のろ過手段の前記逆浸透膜またはナノろ過膜の膜面にシリカまたはカルシウムが析出しない最大の回収率となるように、前記排水ラインを流れる濃縮水の前記設定流量を決定する、請求項5に記載の膜ろ過装置。
前記第1の流量制御手段が、前記供給ラインに設けられ、該供給ラインを流れる被処理水の圧力を調整する圧力調整手段と、前記透過水ラインを流れる透過水の流量を検出する流量検出手段と、該流量検出手段により検出された前記透過水の流量に基づいて、前記圧力調整手段を制御する制御部と、を有する、請求項1から7のいずれか1項に記載の膜ろ過装置。
【背景技術】
【0002】
被処理水に含まれる不純物を除去する水処理装置として、逆浸透膜(RO膜)またはナノろ過膜(NF膜)を有する膜ろ過装置が知られている。この装置では、所定の供給圧力でRO膜またはNF膜に供給された被処理水(原水)が、RO膜またはNF膜により、透過水と濃縮水とに分離される。これにより、不純物が除去された処理水(透過水)が得られている。
【0003】
RO膜またはNF膜を有する膜ろ過装置では、多くの場合、水の有効利用(節水)の観点から、不純物を含む濃縮水の一部を濃縮排水として外部に排出し、残りを濃縮還流水としてRO膜またはNF膜の上流側に還流させる構成が採用されている。これにより、すべての濃縮水を濃縮排水として排出する場合に比べて、回収率(透過水の流量と濃縮排水の流量との和に対する透過水の流量の割合)を向上させることができ、節水を実現することができる。これと同時に、膜ろ過装置では、水温の変化(すなわち、水の粘性の変化)による透過水の流量変化に対応するために、加圧ポンプの回転数を制御することでRO膜またはNF膜への原水の供給圧力を調整して、透過水の流量を一定に維持する流量制御も行われている。
【0004】
透過水の流量制御では、透過水の流量が一定になるように原水の供給圧力を調整すると、それに応じて、RO膜またはNF膜で分離される濃縮水の流量も変化する。このような濃縮水の流量変化は、ファウリングやスケーリングによる膜の詰まりの発生や、圧力損失の増大による膜の破損につながるため、透過水の流量制御と同様に、濃縮水に対しても流量制御を行うことが求められている。しかしながら、上述した構成の膜ろ過装置では、透過水の流量制御に伴う濃縮水の流量変化に対し、濃縮還流水または濃縮排水の流量制御によって透過水の流量に対する濃縮水の割合を所定の割合に維持しようとすると、互いの流量制御が干渉してハンチングが発生する場合がある。
【0005】
そこで、特許文献1には、ハンチングを回避する方法として、濃縮水を流通させる濃縮水ラインに定流量弁を設けることで、濃縮水の流量を常に一定に保持する方法が提案されている。この方法によれば、透過水の流量制御が濃縮水の流量に影響を及ぼすことがなくなるため、濃縮水側でどのような流量制御を行ったとしても、それが透過水の流量制御と干渉することがなくなり、ハンチングを回避することができる。
【発明の概要】
【発明が解決しようとする課題】
【0007】
ところで、定流量弁には、定流量弁を正常に作動させるための作動差圧範囲(定流量弁の一次側と二次側の圧力差の許容範囲)が規定されているが、場合によっては、原水の供給圧力が著しく上昇し、定流量弁の一次側と二次側の圧力差が定流量弁の作動差圧範囲を超えてしまうことがあることが、本発明者らにより確認されている。例えば、複数の膜を直列に接続した場合や中高圧用の膜を使用する場合、水温が極端に低下した場合などがこれに該当するが、上述の圧力差が定流量弁の作動差圧範囲を超えてしまうと、濃縮水の流量は一定に保持されなくなる。その結果、透過水の流量制御が濃縮水の流量に影響を及ぼしてしまい、濃縮還流水または濃縮排水の流量制御を行おうとすると、互いの流量制御が干渉してハンチングを引き起こすおそれがある。
【0008】
また、濃縮水の流量が一定に保持されずに増加すると、回収率を維持するための濃縮還流水または濃縮排水の流量制御が行われている場合、濃縮水の増加分は濃縮還流水として原水に還流する。その結果、循環する濃縮水の流量が増加し、加圧ポンプの吐出流量が増加することになるが、それに応じて加圧ポンプの揚程が低くなるため、必要な透過水の流量が得られなくなるおそれがある。この場合、加圧ポンプの回転数(出力)を上げることで必要な透過水の流量を得ることはできるが、このことは省エネルギーの観点から好ましくない。
【0009】
そこで、本発明の目的は、安定した流量制御を実現するとともに、省エネルギー性に優れた膜ろ過装置を提供することである。
【課題を解決するための手段】
【0010】
上述した目的を達成するために、本発明の一態様による膜ろ過装置は、被処理水を透過水と濃縮水とに分離する逆浸透膜またはナノろ過膜を有するろ過手段と、ろ過手段に接続され、ろ過手段に被処理水を供給する供給ラインと、ろ過手段に接続され、ろ過手段からの透過水を流通させる透過水ラインと、ろ過手段に接続され、ろ過手段からの濃縮水を流通させる濃縮水ラインと、濃縮水ラインから分岐し、濃縮水ラインを流れる濃縮水の一部を外部へ排出する排水ラインと、濃縮水ラインから分岐して供給ラインに接続され、濃縮水ラインを流れる濃縮水の残りを供給ラインに還流させる還流水ラインと、透過水ラインを流れる透過水の流量を設定流量に調整する第1の流量制御手段と、濃縮水ラインに設けられ、濃縮水ラインを流れる濃縮水の流量を一定に保持する定流量弁と、定流量弁の上流側の濃縮水ラインに設けられ、濃縮水ラインを流れる濃縮水の圧力を減圧する減圧弁と、を有している。
【0011】
上述した目的を達成するために、本発明の一態様による膜ろ過装置は、被処理水を透過水と濃縮水とに分離する逆浸透膜またはナノろ過膜を有するろ過手段と、ろ過手段に接続され、ろ過手段に被処理水を供給する供給ラインと、ろ過手段に接続され、ろ過手段からの透過水を流通させる透過水ラインと、ろ過手段に接続され、ろ過手段からの濃縮水を流通させる濃縮水ラインと、
濃縮水ラインに設けられ、濃縮水ラインを流れる濃縮水の流量を一定に保持する定流量弁と、定流量弁の下流側で濃縮水ラインから分岐し、濃縮水ラインを流れる濃縮水の一部を外部へ排出する排水ラインと、
定流量弁の下流側で濃縮水ラインから分岐して供給ラインに接続され、濃縮水ラインを流れる濃縮水の残りを供給ラインに還流させる還流水ラインと、透過水ラインを流れる透過水の流量を設定流量に調整する第1の流量制御手段と、
排水ラインを流れる濃縮水の流量を設定流量に調整する第2の流量制御手段であって、排水ラインに設けられた流量調整弁と、排水ラインを流れる濃縮水の流量を検出する流量検出手段と、流量検出手段により検出された濃縮水の流量に基づいて、流量調整弁の開度を調整する制御部と、を有する第2の流量制御手段と、定流量弁の上流側の濃縮水ラインに設けられ、濃縮水ラインを流れる濃縮水の圧力を減圧する減圧弁と、を有している。
【0012】
また、本発明の他の態様による膜ろ過装置は、直列に接続された複数のろ過手段であって、それぞれが被処理水を透過水と濃縮水とに分離する逆浸透膜またはナノろ過膜を有する複数のろ過手段と、複数のろ過手段のうち最も上流側のろ過手段に接続され、最も上流側のろ過手段に被処理水を供給する供給ラインと、複数のろ過手段のうち最も下流側のろ過手段に接続され、最も下流側のろ過手段からの透過水を流通させる透過水ラインと、最も上流側のろ過手段に接続され、最も上流側のろ過手段からの濃縮水を流通させる濃縮水ラインと、
濃縮水ラインに設けられ、濃縮水ラインを流れる濃縮水の流量を一定に保持する定流量弁と、定流量弁の下流側で濃縮水ラインから分岐し、濃縮水ラインを流れる濃縮水の一部を外部へ排出する排水ラインと、
定流量弁の下流側で濃縮水ラインから分岐して供給ラインに接続され、濃縮水ラインを流れる濃縮水の残りを供給ラインに還流させる還流水ラインと、透過水ラインを流れる透過水の流量を設定流量に調整する第1の流量制御手段と、
排水ラインを流れる濃縮水の流量を設定流量に調整する第2の流量制御手段であって、排水ラインに設けられた流量調整弁と、排水ラインを流れる濃縮水の流量を検出する流量検出手段と、流量検出手段により検出された濃縮水の流量に基づいて、流量調整弁の開度を調整する制御部と、を有する第2の流量制御手段と、定流量弁の上流側の濃縮水ラインに設けられ、濃縮水ラインを流れる濃縮水の圧力を減圧する減圧弁と、を有している。
【発明の効果】
【0013】
以上、本発明によれば、安定した流量制御を実現するとともに、省エネルギー性に優れた膜ろ過装置を提供することができる。
【発明を実施するための形態】
【0015】
以下、図面を参照して、本発明の実施の形態について説明する。
【0016】
(第1の実施形態)
図1は、本発明の第1の実施形態に係る膜ろ過装置の構成を示す概略図である。
【0017】
本実施形態の膜ろ過装置10は、原水(被処理水)に含まれる不純物を除去して処理水を生成する装置であって、原水を、不純物を含む濃縮水と、不純物が除去された透過水とに分離するろ過手段11を有している。ろ過手段11は、逆浸透膜(RO膜)またはナノろ過膜(NF膜)を有している。
【0018】
また、膜ろ過装置10は、ろ過手段11にそれぞれ接続された複数のライン、すなわち、ろ過手段11に原水を供給する供給ライン1と、ろ過手段11からの透過水を流通させる透過水ライン2と、ろ過手段11からの濃縮水を流通させる濃縮水ライン3とを有している。加えて、膜ろ過装置10は、濃縮水ライン3から分岐した2つのライン、すなわち、濃縮水ライン3を流れる濃縮水の一部を外部へ排出する排水ライン4と、濃縮水の残りを供給ライン1に還流させる還流水ライン5とを有している。還流水ライン5は、濃縮水ライン3から分岐した後、後述する加圧ポンプ21の上流側で供給ライン1に接続されている。なお、還流水ライン5は、供給ライン1に直接接続される代わりに、供給ライン1に設けられた原水タンク(図示せず)に接続されていてもよい。
【0019】
さらに、膜ろ過装置10は、透過水ライン2を流れる透過水の流量を設定流量に調整する透過水流量制御機構(第1の流量制御手段)20を有している。
【0020】
透過水流量制御機構20は、供給ライン1に設けられ、供給ライン1を流れる原水の圧力(ろ過手段11への原水の供給圧力)を調整する加圧ポンプ(圧力調整手段)21と、透過水ライン2に設けられ、透過水ライン2を流れる透過水の流量を検出する透過水流量計(流量検出手段)22と、透過水流量計22により検出された透過水の流量に基づいて、加圧ポンプ21を制御する透過水流量制御部23とを有している。
【0021】
透過水流量制御部23は、加圧ポンプ21の回転数を制御するインバータ(図示せず)を含み、透過水流量計22で検出された透過水の流量が一定になるように、加圧ポンプ21の回転数を制御するものである。例えば、水温が変化すると、水の粘性が変化することで、RO膜またはNF膜で分離される透過水の流量も変化する。この変化に応じて、透過水流量制御部23は、加圧ポンプ21の回転数を制御するようになっている。すなわち、水温が低くなると、水の粘性は高くなり、その結果、RO膜またはNF膜で分離される透過水の流量は減少する。そのため、透過水流量制御部23は、この減少分を補うように、加圧ポンプ21の回転数を上げることで、原水の供給圧力を増加させる。また、水温が高くなると、水の粘性は低くなり、その結果、RO膜またはNF膜で分離される透過水の流量は増加する。そのため、透過水流量制御部23は、この増加分を打ち消すように、加圧ポンプ21の回転数を下げることで、原水の供給圧力を低下させる。
【0022】
このように、本実施形態では、加圧ポンプ21の回転数、すなわち原水の供給圧力を調整することで、透過水の流量は一定(予め設定された目標流量)に維持されるが、その原水の供給圧力の変化に応じて、RO膜またはNF膜で分離される濃縮水の流量も変化することになる。このような濃縮水の流量変化そのものを抑制するために、濃縮水ライン3には、濃縮水ライン3を流れる濃縮水の流量を一定に保持する定流量弁12が設けられている。これにより、透過水流量制御部23により加圧ポンプ21の回転数が変化して、ろ過手段11への原水の供給圧力が変化した場合にも、濃縮水の流量を一定に保持することができる。
【0023】
ところで、定流量弁12には、定流量弁12を正常に作動させるための作動差圧範囲(定流量弁の一次側と二次側の圧力差の許容範囲)が規定されている。そのため、例えば、ろ過手段11として中高圧用のRO膜を使用する場合や、水温が極端に低下した場合など、条件によっては、原水の供給圧力が著しく上昇して濃縮水の圧力が上昇し、定流量弁12の一次側と二次側の圧力差が作動差圧範囲を超えてしまうことがある。その場合、濃縮水ライン3を流れる濃縮水の流量が一定に保持されないおそれがある。
【0024】
そこで、本実施形態では、定流量弁12の上流側の濃縮水ライン3に、濃縮水ライン3を流れる濃縮水の圧力を減圧する(すなわち、二次側の圧力を一次側の圧力よりも低くすることができる)減圧弁13が設けられている。これにより、ろ過手段11への原水の供給圧力が著しく上昇する場合であっても、定流量弁12の一次側と二次側の圧力差を作動差圧範囲内に収めて定流量弁12を正常に作動させることができ、濃縮水ライン3を流れる濃縮水の流量を一定に保持することができる。
【0025】
こうして、濃縮水ライン3に減圧弁13と定流量弁12が設けられていることで、ろ過手段11で分離される濃縮水の流量が常に一定に保持され、透過水の流量制御が排水ライン4や還流水ライン5を流れる濃縮水の流量に影響を及ぼすことがなくなる。その結果、排水ライン4や還流水ライン5でどのような流量制御を行っても、それが透過水の流量制御と干渉することはなくなるため、ハンチングを回避することができる。また、定流量弁12が正常に作動して濃縮水の流量が一定に保持されるため、加圧ポンプ21の吐出流量が増加することがなく、そのことで加圧ポンプの回転数(出力)を上げる必要がない。さらに、減圧弁13を設けることは、それよりも下流側の周辺部材(配管など)にそれほどの耐圧性能が要求されなくなるため、安全面で有利であるだけでなく、耐圧性能がそれほど高くない安価な汎用品が利用可能になることで、コスト面でも有利である。
【0026】
なお、定流量弁12の規定流量は、一方では、ファウリングやスケーリングによる膜の詰まりが発生しない程度であればよく、他方では、圧力損失の増大によって膜を破損させない程度であればよい。ただし、定流量弁12の規定流量を必要以上に大きくすることは、加圧ポンプ21に要求される流量が必要以上に大きくなり、結果的に加圧ポンプ21のサイズが大きくなるため、エネルギー消費の点で好ましくない。そのため、定流量弁12の規定流量は、ろ過手段11の透過流束とろ過手段11に要求される濃縮水の最低流量も考慮して設定され、例えば、ろ過手段11として直径が約20.32cm(8インチ)のRO膜を用いる場合、1〜15m
3/hの範囲である。また、減圧弁13の種類は、濃縮水の圧力を定流量弁12の作動差圧範囲内に減圧することができるものであれば特に限定されるものではないが、定流量弁12の規定流量以上の流量が流れるものや、二次側の圧力が排水ライン4や還流水ライン5の通水差圧よりも大きくなるものを選定する必要がある。
【0027】
上述したように、定流量弁12および減圧弁13の設置により、透過水の流量制御が濃縮水の流量に影響を及ぼすことがなくなり、その結果、排水ライン4または還流水ライン5を流れる濃縮水の流量制御が容易に実行可能になる。本実施形態では、排水ライン4を流れる濃縮水(以下、「濃縮排水」という)の流量を設定流量に調整するための排水流量制御機構(第2の流量制御手段)30が設けられている。この排水流量制御機構30による濃縮排水の流量制御は、透過水流量制御機構20による透過水の流量制御とは独立して行われる。
【0028】
排水流量制御機構30は、排水ライン4に設けられた流量調整弁(流量調整手段)31と、濃縮排水の流量を検出する排水流量計(流量検出手段)32と、排水流量計32により検出された濃縮排水の流量に基づいて、流量調整弁31の開度を調整する排水流量制御部33とを有している。
【0029】
排水流量制御部33は、透過水の流量と濃縮排水の流量との和に対する透過水の流量の割合である回収率を考慮して濃縮排水の設定流量を決定し、排水流量計32による検出値がその設定流量となるように、流量調整弁31の開度を調整するようになっている。このときの回収率は、水の有効利用(節水)の観点から、できるだけ高いことが好ましい。すなわち、濃縮排水の流量はできるだけ少ないことが好ましい。しかしながら、定流量弁12により濃縮水の流量が一定に保持されているため、濃縮排水の流量が少なくなると、当然のことながら、還流水ライン5から供給ライン1に還流する濃縮水の流量が増加する。それにより、原水の不純物濃度が高まると、ろ過手段11のRO膜またはNF膜の膜面に不純物(特に、シリカまたはカルシウム)が析出するスケーリングが起こりやすくなってしまう。したがって、濃縮排水の流量は、濃縮水の不純物濃度が溶解度以上の濃度にならない範囲で回収率が最大になるように、すなわち、不純物であるシリカまたはカルシウムが析出しない範囲で回収率が最大になるように設定される。
【0030】
ただし、不純物の溶解度は、水温に応じて変化する。例えば、シリカの場合、その溶解度は温度に比例して増加し、カルシウム(炭酸カルシウム)の場合、温度が上昇するにつれてその溶解度は減少する。そのため、水温が低い場合には、シリカの溶解度が相対的に低く、シリカが析出しやすい(シリカスケールが発生しやすい)が、水温が高くなると、カルシウムの溶解度が相対的に低くなるため、カルシウムが析出しやすく(カルシウムスケールが発生しやすく)なる。そこで、本実施形態では、図示していないが、原水と透過水と濃縮水とのいずれかの水温を検出する温度センサ(水温検出手段)が設けられており、この温度センサで検出された水温に基づいて、濃縮排水の最適な設定流量が算出される。
【0031】
具体的には、まず、検出された水温でシリカが析出する理論上の回収率(以下、「シリカの析出回収率」という)と、検出された水温でカルシウム(炭酸カルシウム)が析出する理論上の回収率(以下「カルシウムの析出回収率」という)が算出される。なお、シリカの析出回収率とカルシウムの析出回収率のそれぞれの算出方法については後述する。次に、シリカの析出回収率とカルシウムの析出回収率とが比較され、目標回収率として、より小さい方の析出回収率が設定される。そして、この目標回収率と、透過水流量計22で検出された透過水の流量とに基づいて、以下の式(1)により、濃縮排水の目標流量が算出されて設定される。
(濃縮排水の流量)=(透過水の流量/目標回収率)−(透過水の流量) (1)
【0032】
なお、スケーリングの発生を確実に抑制するという観点からは、上記式(1)で算出された目標流量を上回る流量を濃縮排水の設定流量として設定することもできるが、節水の観点からは、算出された目標流量を濃縮排水の設定流量として設定することが好ましい。
【0033】
ここで、シリカの析出回収率とカルシウムの析出回収率の算出方法についてそれぞれ説明する。
【0034】
(シリカの析出回収率の算出方法)
シリカの析出回収率Y
Sは、検出された水温でのシリカの溶解度(mgSiO
2/L)をC
Sとし、予め測定された原水のシリカ濃度(mgSiO
2/L)をF
Sとしたとき、以下の式(2)から算出される。
Y
S=(C
S−F
S)/C
S (2)
【0035】
なお、シリカの溶解度の算出方法としては、ASTM(American Society for Testing and Materials)D4993−89などに規定された方法を用いることができる。
【0036】
(カルシウムの析出回収率の算出方法)
カルシウムの析出回収率は、濃縮水のランゲリア指数を算出する方法を利用して算出される。ここで、ランゲリア指数(飽和指数)とは、カルシウム(炭酸カルシウム)の析出の可能性を示す指標であり、水の実際のpHと、理論pH(pHs:水中の炭酸カルシウムが溶解も析出もしない平衡状態にあるときのpH)との差(pH−pHs)を意味する。すなわち、ランゲリア指数が正の値で絶対値が大きいほど炭酸カルシウムが析出しやすくなり、負の値では炭酸カルシウムは析出されない。そのため、カルシウムの析出回収率は、濃縮水のランゲリア指数がゼロになるときの回収率として算出される。なお、より安全側の値として設定するために、カルシウムの析出回収率は、濃縮水のランゲリア指数が負の値になるときの回収率であってもよい。
【0037】
濃縮水のランゲリア指数は、濃縮水のpHと、濃縮水の不純物濃度(カルシウム濃度、総アルカリ度、および蒸発残留物濃度)と、検出された水温とから算出される。ランゲリア指数の算出方法としては、例えば、特開平11−267687号公報(段落[0025]〜[0027])などに記載された方法を用いることができる。また、濃縮水の不純物濃度(カルシウム濃度、総アルカリ度、および蒸発残留物濃度)は、予め測定された原水の不純物濃度(カルシウム濃度、総アルカリ度、および蒸発残留物濃度)と、回収率とから算出される。したがって、カルシウムの析出回収率Y
Cは、濃縮水のランゲリア指数がゼロになるときの濃縮水の不純物濃度(mg/L)をC
Cとし、予め測定された原水の不純物濃度(mg/L)をF
Cとしたとき、以下の式(3)の関係で表されることになる。
Y
C=(C
C−F
C)/C
C (3)
【0038】
なお、シリカおよびカルシウムの析出回収率の算出方法や濃縮排水の設定流量の算出方法は、例えば加圧ポンプの容量や原水の流量などの装置設計上の制約によって、予め回収率や流量に制約がある場合には、上述した限りではない。また、濃縮排水の設定流量の算出には、予め設定された透過水の目標流量を用いることもできるが、この方法は、透過水の目標流量と実際の流量が一致していない場合にスケーリングが発生する可能性があるため好ましくない。したがって、濃縮排水の設定流量の算出には、上述したように、透過水流量計22で検出された透過水の流量を用いることが好ましい。
【0039】
上述のように回収率制御を行う場合、流量調整弁31としては、電動比例制御弁を用いることが好ましい。これにより、電動比例制御弁の分解能の範囲内で開度調整を無段階に行うことができ、電磁弁の組み合わせなどによる多段階での開度調整に比べて、回収率を滑らかに調整することができる。例えば、50〜70%の範囲の回収率を5段階(50%、55%、60%、65%、70%)にしか制御できない多段階方式では、目標回収率が64%に設定された場合、回収率を60%にしか調整することができず、無駄な濃縮排水が発生してしまう。したがって、流量調整弁31として電動比例制御弁を用いることは、このような濃縮排水の無駄も削減することができるため、節水の観点からも有利である。
【0040】
さらなる節水を実現するためには、回収率の目標値をより高く設定する必要があるが、本実施形態では、上述の析出回収率をより高くすることを目的として、スケール防止剤を原水に添加するようになっていてもよい。この場合、定流量弁12の規定流量を小さくすることができ、結果として、より小さい容量の加圧ポンプ21を用いることで省エネルギー化を実現することもできる。スケール防止剤の添加は、薬注ポンプによって行うことができる。
【0041】
スケール防止剤は、シリカやカルシウムなどのスケール成分の析出を抑制可能な物質であれば、特定のものに限定されるものではない。その種類としては、例えば、1−ヒドロキシエチリデン−1,1−ジホスホン酸、2−ホスホノブタン−1,2,4−トリカルボン酸、エチレンジアミンテトラメチレンホスホン酸、ニトリロトリメチルホスホン酸などのホスホン酸とその塩類などのホスホン酸系化合物;正リン酸塩、重合リン酸塩などのリン酸系化合物;ポリマレイン酸、マレイン酸共重合物などのマレイン酸系化合物;アクリル酸系ポリマーなどが挙げられ、アクリル酸系ポリマーとしては、ポリ(メタ)アクリル酸、マレイン酸/(メタ)アクリル酸、(メタ)アクリル酸/スルホン酸、(メタ)アクリル酸/ノニオン基含有モノマーなどのコポリマーや、(メタ)アクリル酸/スルホン酸/ノニオン基含有モノマー、(メタ)アクリル酸/アクリルアミド−アルキルスルホン酸/置換(メタ)アクリルアミド、(メタ)アクリル酸/アクリルアミド−アリールスルホン酸/置換(メタ)アクリルアミドのターポリマーなどが挙げられる。ターポリマーを構成する(メタ)アクリル酸としては、例えば、メタアクリル酸およびアクリル酸と、それらのナトリウム塩などの(メタ)アクリル酸塩などが挙げられる。ターポリマーを構成するアクリルアミド−アルキルスルホン酸としては、例えば、2−アクリルアミド−2−メチルプロパンスルホン酸とその塩などが挙げられる。また、ターポリマーを構成する置換(メタ)アクリルアミドとしては、例えば、t−ブチルアクリルアミド、t−オクチルアクリルアミド、ジメチルアクリルアミドなどが挙げられる。
【0042】
これらの中でも、ホスホン酸系化合物とアクリル酸系ポリマーのうち少なくとも1種類を含むものを用いることが好ましい。また、カルシウムとシリカに由来するスケールを同時に抑制するためには、2−ホスホノブタン−1,2,4−トリカルボン酸と、アクリル酸と(メタ)アクリル酸/2−アクリルアミド−2−メチルプロパンスルホン酸/置換(メタ)アクリルアミドのターポリマーとの混合物とからなるスケール防止剤を用いることが特に好ましい。
【0043】
なお、RO膜用の市販のスケール防止剤としては、オルガノ株式会社製の「オルパージョン」シリーズ、BWA Water Additives社製の「Flocon(登録商標)」シリーズ、Nalco社製の「PermaTreat(登録商標)」シリーズ、ゼネラル・エレクトリック社製の「Hypersperse(登録商標)」シリーズ、栗田工業株式会社製の「クリバーター(登録商標)」シリーズなどが挙げられる。
【0044】
上述したように、本実施形態では、定流量弁12および減圧弁13により濃縮水の流量が一定に維持されるため、排水ライン4および還流水ライン5の一方を流れる濃縮水の流量を規定するだけで、他方を流れる濃縮水の流量も規定することができる。そのため、図示した実施形態では、排水ライン4に流量制御手段(流量調整弁31と排水流量計32)が設けられ、還流水ライン5には、排水ライン4および還流水ライン5を流れる濃縮水の圧力バランスを調整するための手動弁(圧力調整弁)14が設けられているが、その逆であってもよい。すなわち、還流水ライン5に、流量制御手段としての流量調整弁(比例制御弁)と流量計が設けられ、排水ライン4に、圧力バランス調整のための手動弁が設けられていてもよい。あるいは、排水ライン4および還流水ライン5の両方に、流量制御手段としての流量調整弁(比例制御弁)と流量計を設けることもできる。また、上述した実施形態では、透過水流量制御部と排水流量制御部とが別個に設けられているが、1つの流量制御部により、透過水の流量調整と濃縮排水の流量調整とが行われるようになっていてもよい。
【0045】
(第2の実施形態)
図2は、本発明の第2の実施形態に係る膜ろ過装置の構成を示す概略図である。以下、第1の実施形態と同様の構成については、図面に同じ符号を付してその説明を省略し、第1の実施形態と異なる構成のみ説明する。
【0046】
本実施形態では、第1の実施形態のろ過手段(第1のろ過手段)11に加えて、その下流側にさらに別のろ過手段(第2のろ過手段)15が設けられている。第2のろ過手段15は、第1のろ過手段11に直列に接続され、第1のろ過手段11で分離された透過水を被処理水として処理するようになっている。すなわち、第2のろ過手段15の上流側には、第1のろ過手段11からの透過水を流通させる第1の透過水ライン2aが接続され、下流側には、第2のろ過手段15からの透過水を流通させる第2の透過水ライン2bが接続されている。これにより、本実施形態の膜ろ過装置10は、第1の実施形態と比べて、より良好な水質の処理水を生成することができる。
【0047】
第2のろ過手段15には、第2のろ過手段15からの濃縮水を流通させる第2の濃縮水ライン6が接続されている。第2のろ過手段15では、第1のろ過手段11からの透過水がさらに透過水と濃縮水に分離されるため、水質の観点からは、第2のろ過手段15からの濃縮水を必ずしも外部に排出する必要はない。そのため、第2の濃縮水ライン6は、節水の観点から、第2のろ過手段15で分離された濃縮水の全てを供給ライン1に還流させるために、加圧ポンプ21の上流側で供給ライン1に接続されている。あるいは、第2の濃縮水ライン6は、供給ライン1に直接接続される代わりに、供給ライン1に設けられた原水タンク(図示せず)に接続されていてもよい。なお、第2の濃縮水ライン6には、第2のろ過手段15のRO膜またはNF膜を洗浄する場合などに第2のろ過手段15からの濃縮水の一部または全部を外部に排出する排水ラインが接続されていてもよい。
【0048】
第2の濃縮水ライン6には、第2の濃縮水ライン6を流れる濃縮水の流量を調整するための手動弁16と濃縮水流量計17が設けられている。これにより、第2のろ過手段15の回収率(第2のろ過手段15からの透過水の流量と第2のろ過手段15からの濃縮水の流量との和に対する、第2のろ過手段15からの透過水の流量の割合)を任意に調整することができる。なお、回収率の手動調整の煩雑さを解消するために、手動弁16の代わりに、濃縮水流量計17で検出された濃縮水の流量に基づいて開度を調整可能な比例制御弁が設けられていてもよい。あるいは、回収率を一定範囲に保持するために、手動弁16と濃縮水流量計17の代わりに、定流量弁が設けられていてもよい。この場合、第1の実施形態と同様に、条件によっては、定流量弁の一次側と二次側の圧力差が作動差圧範囲を超えてしまうことがあるが、それを回避するために、定流量弁の上流側に減圧弁が設けられていてもよい。
【0049】
本実施形態では、膜ろ過装置10の下流側に接続された、例えば電気式脱イオン水製造装置に、一定流量の処理水を供給するために、透過水流量制御機構20の透過水流量計22は、第2の透過水ライン2bに設けられている。このため、排水流量制御部33は、回収率の目標値に基づいて濃縮排水の設定流量を算出するにあたり、第1の透過水ライン2aを流れる透過水の流量を別途知る必要があるが、本実施形態では、その流量を間接的に検出することができる。すなわち、排水流量制御部33は、透過水流量計22による測定値(第2のろ過手段15からの透過水の流量)と、濃縮水流量計17による測定値(第2のろ過手段15からの濃縮水の流量)との和から、第1の透過水ライン2aを流れる透過水の流量を算出することができる。また、上述したように、手動弁16と濃縮水流量計17の代わりに定流量弁が設けられている場合、濃縮水流量計17による測定値の代わりに、定流量弁の規定流量を用いて、第1の透過水ライン2aを流れる透過水の流量を算出することができる。あるいは、第1の透過水ライン2aに図示しない流量計が設けられ、第1のろ過手段11からの透過水の流量を直接検出するようになっていてもよい。
【0050】
なお、本実施形態では、1つの加圧ポンプ21で2つのろ過手段11,15に原水を供給する必要があるため、加圧ポンプ21による第1のろ過手段11への原水の供給圧力は、第1の実施形態に比べて大きくなる。そのため、第1の定流量弁12の規定流量は、この点も考慮して設定する必要があり、減圧弁13の種類も、第1の定流量弁12の規定流量を考慮する必要がある。例えば、2つのろ過手段11,15としてそれぞれ直径が約20.32cm(8インチ)のRO膜を用いる場合、第1のろ過手段11の適用温度範囲が5〜35℃で、原水のシリカ濃度やカルシウム濃度から回収率の制御範囲が50〜85%と想定される場合、例えば、第1の定流量弁12としては、株式会社ケイヒン製(品番:NSPW−25、設定流量:55L/min)の定流量弁を用い、減圧弁13としては、株式会社ヨシタケ製(品番:GD−200H)の減圧弁を用いることができる。
【0051】
また、本実施形態では、上述したように第1のろ過手段11への原水の供給圧力が大きくなることで、減圧弁13の設置はより効果的である。この点について、本発明者らが
図2に示す膜ろ過装置を用いて通水試験を行ったところ、減圧弁が設けられていない同様の装置に比べて、加圧ポンプ21の出力が2〜5%低くなることが確認されている。これは、減圧弁が設けられていない場合、定流量弁の一次側と二次側の圧力差が定流量弁の作動差圧範囲を超えて定流量弁がオリフィスとして機能してしまい、その結果、加圧ポンプの吐出流量が増加して揚程が低くなり、加圧ポンプの出力が上がってしまったためであると考えられる。
【0052】
上述した実施形態では、2つのろ過手段が直列に接続されているが、ろ過手段の数はこれに限定されるものではなく、3つ以上のろ過手段が直列に接続されて設けられていてもよい。その場合にも、定流量弁および減圧弁は、3つ以上のろ過手段のうち最も上流側のろ過手段に接続された濃縮水ラインに設けられ、最も下流側のろ過手段で分離された透過水が設定流量(予め設定された目標流量)に調整されることになる。なお、ここでいう「直列に接続される」とは、被処理水が複数のろ過手段で順次処理されることを意味し、隣接する2つのろ過手段において、上流側のろ過手段で分離された透過水が下流側のろ過手段に被処理水として供給されることを意味する。